ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dedekindicclemicc Unicode version

Theorem dedekindicclemicc 14570
Description: Lemma for dedekindicc 14571. Same as dedekindicc 14571, except that we merely show  x to be an element of  ( A [,] B ). Later we will strengthen that to  ( A (,) B
). (Contributed by Jim Kingdon, 5-Jan-2024.)
Hypotheses
Ref Expression
dedekindicc.a  |-  ( ph  ->  A  e.  RR )
dedekindicc.b  |-  ( ph  ->  B  e.  RR )
dedekindicc.lss  |-  ( ph  ->  L  C_  ( A [,] B ) )
dedekindicc.uss  |-  ( ph  ->  U  C_  ( A [,] B ) )
dedekindicc.lm  |-  ( ph  ->  E. q  e.  ( A [,] B ) q  e.  L )
dedekindicc.um  |-  ( ph  ->  E. r  e.  ( A [,] B ) r  e.  U )
dedekindicc.lr  |-  ( ph  ->  A. q  e.  ( A [,] B ) ( q  e.  L  <->  E. r  e.  L  q  <  r ) )
dedekindicc.ur  |-  ( ph  ->  A. r  e.  ( A [,] B ) ( r  e.  U  <->  E. q  e.  U  q  <  r ) )
dedekindicc.disj  |-  ( ph  ->  ( L  i^i  U
)  =  (/) )
dedekindicc.loc  |-  ( ph  ->  A. q  e.  ( A [,] B ) A. r  e.  ( A [,] B ) ( q  <  r  ->  ( q  e.  L  \/  r  e.  U
) ) )
dedekindicc.ab  |-  ( ph  ->  A  <  B )
Assertion
Ref Expression
dedekindicclemicc  |-  ( ph  ->  E! x  e.  ( A [,] B ) ( A. q  e.  L  q  <  x  /\  A. r  e.  U  x  <  r ) )
Distinct variable groups:    A, q, r, x    B, q, r, x    L, q, r, x    U, q, r, x    ph, q,
r, x

Proof of Theorem dedekindicclemicc
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 dedekindicc.a . . 3  |-  ( ph  ->  A  e.  RR )
2 dedekindicc.b . . 3  |-  ( ph  ->  B  e.  RR )
3 dedekindicc.lss . . 3  |-  ( ph  ->  L  C_  ( A [,] B ) )
4 dedekindicc.uss . . 3  |-  ( ph  ->  U  C_  ( A [,] B ) )
5 dedekindicc.lm . . 3  |-  ( ph  ->  E. q  e.  ( A [,] B ) q  e.  L )
6 dedekindicc.um . . 3  |-  ( ph  ->  E. r  e.  ( A [,] B ) r  e.  U )
7 dedekindicc.lr . . 3  |-  ( ph  ->  A. q  e.  ( A [,] B ) ( q  e.  L  <->  E. r  e.  L  q  <  r ) )
8 dedekindicc.ur . . 3  |-  ( ph  ->  A. r  e.  ( A [,] B ) ( r  e.  U  <->  E. q  e.  U  q  <  r ) )
9 dedekindicc.disj . . 3  |-  ( ph  ->  ( L  i^i  U
)  =  (/) )
10 dedekindicc.loc . . 3  |-  ( ph  ->  A. q  e.  ( A [,] B ) A. r  e.  ( A [,] B ) ( q  <  r  ->  ( q  e.  L  \/  r  e.  U
) ) )
11 dedekindicc.ab . . 3  |-  ( ph  ->  A  <  B )
121, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11dedekindicclemlu 14568 . 2  |-  ( ph  ->  E. x  e.  ( A [,] B ) ( A. q  e.  L  q  <  x  /\  A. r  e.  U  x  <  r ) )
131ad4antr 494 . . . . . . . . . 10  |-  ( ( ( ( ( ph  /\  ( ( x  e.  ( A [,] B
)  /\  y  e.  ( A [,] B ) )  /\  ( A. q  e.  L  q  <  x  /\  A. r  e.  U  x  <  r ) ) )  /\  ( A. q  e.  L  q  <  y  /\  A. r  e.  U  y  <  r ) )  /\  x #  y )  /\  x  <  y )  ->  A  e.  RR )
142ad4antr 494 . . . . . . . . . 10  |-  ( ( ( ( ( ph  /\  ( ( x  e.  ( A [,] B
)  /\  y  e.  ( A [,] B ) )  /\  ( A. q  e.  L  q  <  x  /\  A. r  e.  U  x  <  r ) ) )  /\  ( A. q  e.  L  q  <  y  /\  A. r  e.  U  y  <  r ) )  /\  x #  y )  /\  x  <  y )  ->  B  e.  RR )
153ad4antr 494 . . . . . . . . . 10  |-  ( ( ( ( ( ph  /\  ( ( x  e.  ( A [,] B
)  /\  y  e.  ( A [,] B ) )  /\  ( A. q  e.  L  q  <  x  /\  A. r  e.  U  x  <  r ) ) )  /\  ( A. q  e.  L  q  <  y  /\  A. r  e.  U  y  <  r ) )  /\  x #  y )  /\  x  <  y )  ->  L  C_  ( A [,] B
) )
164ad4antr 494 . . . . . . . . . 10  |-  ( ( ( ( ( ph  /\  ( ( x  e.  ( A [,] B
)  /\  y  e.  ( A [,] B ) )  /\  ( A. q  e.  L  q  <  x  /\  A. r  e.  U  x  <  r ) ) )  /\  ( A. q  e.  L  q  <  y  /\  A. r  e.  U  y  <  r ) )  /\  x #  y )  /\  x  <  y )  ->  U  C_  ( A [,] B
) )
175ad4antr 494 . . . . . . . . . 10  |-  ( ( ( ( ( ph  /\  ( ( x  e.  ( A [,] B
)  /\  y  e.  ( A [,] B ) )  /\  ( A. q  e.  L  q  <  x  /\  A. r  e.  U  x  <  r ) ) )  /\  ( A. q  e.  L  q  <  y  /\  A. r  e.  U  y  <  r ) )  /\  x #  y )  /\  x  <  y )  ->  E. q  e.  ( A [,] B
) q  e.  L
)
186ad4antr 494 . . . . . . . . . 10  |-  ( ( ( ( ( ph  /\  ( ( x  e.  ( A [,] B
)  /\  y  e.  ( A [,] B ) )  /\  ( A. q  e.  L  q  <  x  /\  A. r  e.  U  x  <  r ) ) )  /\  ( A. q  e.  L  q  <  y  /\  A. r  e.  U  y  <  r ) )  /\  x #  y )  /\  x  <  y )  ->  E. r  e.  ( A [,] B
) r  e.  U
)
197ad4antr 494 . . . . . . . . . 10  |-  ( ( ( ( ( ph  /\  ( ( x  e.  ( A [,] B
)  /\  y  e.  ( A [,] B ) )  /\  ( A. q  e.  L  q  <  x  /\  A. r  e.  U  x  <  r ) ) )  /\  ( A. q  e.  L  q  <  y  /\  A. r  e.  U  y  <  r ) )  /\  x #  y )  /\  x  <  y )  ->  A. q  e.  ( A [,] B
) ( q  e.  L  <->  E. r  e.  L  q  <  r ) )
208ad4antr 494 . . . . . . . . . 10  |-  ( ( ( ( ( ph  /\  ( ( x  e.  ( A [,] B
)  /\  y  e.  ( A [,] B ) )  /\  ( A. q  e.  L  q  <  x  /\  A. r  e.  U  x  <  r ) ) )  /\  ( A. q  e.  L  q  <  y  /\  A. r  e.  U  y  <  r ) )  /\  x #  y )  /\  x  <  y )  ->  A. r  e.  ( A [,] B
) ( r  e.  U  <->  E. q  e.  U  q  <  r ) )
219ad4antr 494 . . . . . . . . . 10  |-  ( ( ( ( ( ph  /\  ( ( x  e.  ( A [,] B
)  /\  y  e.  ( A [,] B ) )  /\  ( A. q  e.  L  q  <  x  /\  A. r  e.  U  x  <  r ) ) )  /\  ( A. q  e.  L  q  <  y  /\  A. r  e.  U  y  <  r ) )  /\  x #  y )  /\  x  <  y )  ->  ( L  i^i  U )  =  (/) )
2210ad4antr 494 . . . . . . . . . 10  |-  ( ( ( ( ( ph  /\  ( ( x  e.  ( A [,] B
)  /\  y  e.  ( A [,] B ) )  /\  ( A. q  e.  L  q  <  x  /\  A. r  e.  U  x  <  r ) ) )  /\  ( A. q  e.  L  q  <  y  /\  A. r  e.  U  y  <  r ) )  /\  x #  y )  /\  x  <  y )  ->  A. q  e.  ( A [,] B
) A. r  e.  ( A [,] B
) ( q  < 
r  ->  ( q  e.  L  \/  r  e.  U ) ) )
2311ad4antr 494 . . . . . . . . . 10  |-  ( ( ( ( ( ph  /\  ( ( x  e.  ( A [,] B
)  /\  y  e.  ( A [,] B ) )  /\  ( A. q  e.  L  q  <  x  /\  A. r  e.  U  x  <  r ) ) )  /\  ( A. q  e.  L  q  <  y  /\  A. r  e.  U  y  <  r ) )  /\  x #  y )  /\  x  <  y )  ->  A  <  B )
24 simprll 537 . . . . . . . . . . 11  |-  ( (
ph  /\  ( (
x  e.  ( A [,] B )  /\  y  e.  ( A [,] B ) )  /\  ( A. q  e.  L  q  <  x  /\  A. r  e.  U  x  <  r ) ) )  ->  x  e.  ( A [,] B ) )
2524ad3antrrr 492 . . . . . . . . . 10  |-  ( ( ( ( ( ph  /\  ( ( x  e.  ( A [,] B
)  /\  y  e.  ( A [,] B ) )  /\  ( A. q  e.  L  q  <  x  /\  A. r  e.  U  x  <  r ) ) )  /\  ( A. q  e.  L  q  <  y  /\  A. r  e.  U  y  <  r ) )  /\  x #  y )  /\  x  <  y )  ->  x  e.  ( A [,] B
) )
26 simprr 531 . . . . . . . . . . 11  |-  ( (
ph  /\  ( (
x  e.  ( A [,] B )  /\  y  e.  ( A [,] B ) )  /\  ( A. q  e.  L  q  <  x  /\  A. r  e.  U  x  <  r ) ) )  ->  ( A. q  e.  L  q  <  x  /\  A. r  e.  U  x  <  r
) )
2726ad3antrrr 492 . . . . . . . . . 10  |-  ( ( ( ( ( ph  /\  ( ( x  e.  ( A [,] B
)  /\  y  e.  ( A [,] B ) )  /\  ( A. q  e.  L  q  <  x  /\  A. r  e.  U  x  <  r ) ) )  /\  ( A. q  e.  L  q  <  y  /\  A. r  e.  U  y  <  r ) )  /\  x #  y )  /\  x  <  y )  ->  ( A. q  e.  L  q  <  x  /\  A. r  e.  U  x  <  r ) )
28 simprlr 538 . . . . . . . . . . 11  |-  ( (
ph  /\  ( (
x  e.  ( A [,] B )  /\  y  e.  ( A [,] B ) )  /\  ( A. q  e.  L  q  <  x  /\  A. r  e.  U  x  <  r ) ) )  ->  y  e.  ( A [,] B ) )
2928ad3antrrr 492 . . . . . . . . . 10  |-  ( ( ( ( ( ph  /\  ( ( x  e.  ( A [,] B
)  /\  y  e.  ( A [,] B ) )  /\  ( A. q  e.  L  q  <  x  /\  A. r  e.  U  x  <  r ) ) )  /\  ( A. q  e.  L  q  <  y  /\  A. r  e.  U  y  <  r ) )  /\  x #  y )  /\  x  <  y )  ->  y  e.  ( A [,] B
) )
30 simpllr 534 . . . . . . . . . 10  |-  ( ( ( ( ( ph  /\  ( ( x  e.  ( A [,] B
)  /\  y  e.  ( A [,] B ) )  /\  ( A. q  e.  L  q  <  x  /\  A. r  e.  U  x  <  r ) ) )  /\  ( A. q  e.  L  q  <  y  /\  A. r  e.  U  y  <  r ) )  /\  x #  y )  /\  x  <  y )  ->  ( A. q  e.  L  q  <  y  /\  A. r  e.  U  y  <  r ) )
31 simpr 110 . . . . . . . . . 10  |-  ( ( ( ( ( ph  /\  ( ( x  e.  ( A [,] B
)  /\  y  e.  ( A [,] B ) )  /\  ( A. q  e.  L  q  <  x  /\  A. r  e.  U  x  <  r ) ) )  /\  ( A. q  e.  L  q  <  y  /\  A. r  e.  U  y  <  r ) )  /\  x #  y )  /\  x  <  y )  ->  x  <  y )
3213, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 25, 27, 29, 30, 31dedekindicclemeu 14569 . . . . . . . . 9  |-  ( ( ( ( ( ph  /\  ( ( x  e.  ( A [,] B
)  /\  y  e.  ( A [,] B ) )  /\  ( A. q  e.  L  q  <  x  /\  A. r  e.  U  x  <  r ) ) )  /\  ( A. q  e.  L  q  <  y  /\  A. r  e.  U  y  <  r ) )  /\  x #  y )  /\  x  <  y )  -> F.  )
331ad4antr 494 . . . . . . . . . 10  |-  ( ( ( ( ( ph  /\  ( ( x  e.  ( A [,] B
)  /\  y  e.  ( A [,] B ) )  /\  ( A. q  e.  L  q  <  x  /\  A. r  e.  U  x  <  r ) ) )  /\  ( A. q  e.  L  q  <  y  /\  A. r  e.  U  y  <  r ) )  /\  x #  y )  /\  y  <  x )  ->  A  e.  RR )
342ad4antr 494 . . . . . . . . . 10  |-  ( ( ( ( ( ph  /\  ( ( x  e.  ( A [,] B
)  /\  y  e.  ( A [,] B ) )  /\  ( A. q  e.  L  q  <  x  /\  A. r  e.  U  x  <  r ) ) )  /\  ( A. q  e.  L  q  <  y  /\  A. r  e.  U  y  <  r ) )  /\  x #  y )  /\  y  <  x )  ->  B  e.  RR )
353ad4antr 494 . . . . . . . . . 10  |-  ( ( ( ( ( ph  /\  ( ( x  e.  ( A [,] B
)  /\  y  e.  ( A [,] B ) )  /\  ( A. q  e.  L  q  <  x  /\  A. r  e.  U  x  <  r ) ) )  /\  ( A. q  e.  L  q  <  y  /\  A. r  e.  U  y  <  r ) )  /\  x #  y )  /\  y  <  x )  ->  L  C_  ( A [,] B
) )
364ad4antr 494 . . . . . . . . . 10  |-  ( ( ( ( ( ph  /\  ( ( x  e.  ( A [,] B
)  /\  y  e.  ( A [,] B ) )  /\  ( A. q  e.  L  q  <  x  /\  A. r  e.  U  x  <  r ) ) )  /\  ( A. q  e.  L  q  <  y  /\  A. r  e.  U  y  <  r ) )  /\  x #  y )  /\  y  <  x )  ->  U  C_  ( A [,] B
) )
375ad4antr 494 . . . . . . . . . 10  |-  ( ( ( ( ( ph  /\  ( ( x  e.  ( A [,] B
)  /\  y  e.  ( A [,] B ) )  /\  ( A. q  e.  L  q  <  x  /\  A. r  e.  U  x  <  r ) ) )  /\  ( A. q  e.  L  q  <  y  /\  A. r  e.  U  y  <  r ) )  /\  x #  y )  /\  y  <  x )  ->  E. q  e.  ( A [,] B
) q  e.  L
)
386ad4antr 494 . . . . . . . . . 10  |-  ( ( ( ( ( ph  /\  ( ( x  e.  ( A [,] B
)  /\  y  e.  ( A [,] B ) )  /\  ( A. q  e.  L  q  <  x  /\  A. r  e.  U  x  <  r ) ) )  /\  ( A. q  e.  L  q  <  y  /\  A. r  e.  U  y  <  r ) )  /\  x #  y )  /\  y  <  x )  ->  E. r  e.  ( A [,] B
) r  e.  U
)
397ad4antr 494 . . . . . . . . . 10  |-  ( ( ( ( ( ph  /\  ( ( x  e.  ( A [,] B
)  /\  y  e.  ( A [,] B ) )  /\  ( A. q  e.  L  q  <  x  /\  A. r  e.  U  x  <  r ) ) )  /\  ( A. q  e.  L  q  <  y  /\  A. r  e.  U  y  <  r ) )  /\  x #  y )  /\  y  <  x )  ->  A. q  e.  ( A [,] B
) ( q  e.  L  <->  E. r  e.  L  q  <  r ) )
408ad4antr 494 . . . . . . . . . 10  |-  ( ( ( ( ( ph  /\  ( ( x  e.  ( A [,] B
)  /\  y  e.  ( A [,] B ) )  /\  ( A. q  e.  L  q  <  x  /\  A. r  e.  U  x  <  r ) ) )  /\  ( A. q  e.  L  q  <  y  /\  A. r  e.  U  y  <  r ) )  /\  x #  y )  /\  y  <  x )  ->  A. r  e.  ( A [,] B
) ( r  e.  U  <->  E. q  e.  U  q  <  r ) )
419ad4antr 494 . . . . . . . . . 10  |-  ( ( ( ( ( ph  /\  ( ( x  e.  ( A [,] B
)  /\  y  e.  ( A [,] B ) )  /\  ( A. q  e.  L  q  <  x  /\  A. r  e.  U  x  <  r ) ) )  /\  ( A. q  e.  L  q  <  y  /\  A. r  e.  U  y  <  r ) )  /\  x #  y )  /\  y  <  x )  ->  ( L  i^i  U )  =  (/) )
4210ad4antr 494 . . . . . . . . . 10  |-  ( ( ( ( ( ph  /\  ( ( x  e.  ( A [,] B
)  /\  y  e.  ( A [,] B ) )  /\  ( A. q  e.  L  q  <  x  /\  A. r  e.  U  x  <  r ) ) )  /\  ( A. q  e.  L  q  <  y  /\  A. r  e.  U  y  <  r ) )  /\  x #  y )  /\  y  <  x )  ->  A. q  e.  ( A [,] B
) A. r  e.  ( A [,] B
) ( q  < 
r  ->  ( q  e.  L  \/  r  e.  U ) ) )
4311ad4antr 494 . . . . . . . . . 10  |-  ( ( ( ( ( ph  /\  ( ( x  e.  ( A [,] B
)  /\  y  e.  ( A [,] B ) )  /\  ( A. q  e.  L  q  <  x  /\  A. r  e.  U  x  <  r ) ) )  /\  ( A. q  e.  L  q  <  y  /\  A. r  e.  U  y  <  r ) )  /\  x #  y )  /\  y  <  x )  ->  A  <  B )
4428ad3antrrr 492 . . . . . . . . . 10  |-  ( ( ( ( ( ph  /\  ( ( x  e.  ( A [,] B
)  /\  y  e.  ( A [,] B ) )  /\  ( A. q  e.  L  q  <  x  /\  A. r  e.  U  x  <  r ) ) )  /\  ( A. q  e.  L  q  <  y  /\  A. r  e.  U  y  <  r ) )  /\  x #  y )  /\  y  <  x )  ->  y  e.  ( A [,] B
) )
45 simpllr 534 . . . . . . . . . 10  |-  ( ( ( ( ( ph  /\  ( ( x  e.  ( A [,] B
)  /\  y  e.  ( A [,] B ) )  /\  ( A. q  e.  L  q  <  x  /\  A. r  e.  U  x  <  r ) ) )  /\  ( A. q  e.  L  q  <  y  /\  A. r  e.  U  y  <  r ) )  /\  x #  y )  /\  y  <  x )  ->  ( A. q  e.  L  q  <  y  /\  A. r  e.  U  y  <  r ) )
4624ad3antrrr 492 . . . . . . . . . 10  |-  ( ( ( ( ( ph  /\  ( ( x  e.  ( A [,] B
)  /\  y  e.  ( A [,] B ) )  /\  ( A. q  e.  L  q  <  x  /\  A. r  e.  U  x  <  r ) ) )  /\  ( A. q  e.  L  q  <  y  /\  A. r  e.  U  y  <  r ) )  /\  x #  y )  /\  y  <  x )  ->  x  e.  ( A [,] B
) )
4726ad3antrrr 492 . . . . . . . . . 10  |-  ( ( ( ( ( ph  /\  ( ( x  e.  ( A [,] B
)  /\  y  e.  ( A [,] B ) )  /\  ( A. q  e.  L  q  <  x  /\  A. r  e.  U  x  <  r ) ) )  /\  ( A. q  e.  L  q  <  y  /\  A. r  e.  U  y  <  r ) )  /\  x #  y )  /\  y  <  x )  ->  ( A. q  e.  L  q  <  x  /\  A. r  e.  U  x  <  r ) )
48 simpr 110 . . . . . . . . . 10  |-  ( ( ( ( ( ph  /\  ( ( x  e.  ( A [,] B
)  /\  y  e.  ( A [,] B ) )  /\  ( A. q  e.  L  q  <  x  /\  A. r  e.  U  x  <  r ) ) )  /\  ( A. q  e.  L  q  <  y  /\  A. r  e.  U  y  <  r ) )  /\  x #  y )  /\  y  <  x )  ->  y  <  x )
4933, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48dedekindicclemeu 14569 . . . . . . . . 9  |-  ( ( ( ( ( ph  /\  ( ( x  e.  ( A [,] B
)  /\  y  e.  ( A [,] B ) )  /\  ( A. q  e.  L  q  <  x  /\  A. r  e.  U  x  <  r ) ) )  /\  ( A. q  e.  L  q  <  y  /\  A. r  e.  U  y  <  r ) )  /\  x #  y )  /\  y  <  x )  -> F.  )
50 simpr 110 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  ( ( x  e.  ( A [,] B
)  /\  y  e.  ( A [,] B ) )  /\  ( A. q  e.  L  q  <  x  /\  A. r  e.  U  x  <  r ) ) )  /\  ( A. q  e.  L  q  <  y  /\  A. r  e.  U  y  <  r ) )  /\  x #  y )  ->  x #  y )
51 iccssre 9985 . . . . . . . . . . . . . 14  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A [,] B
)  C_  RR )
521, 2, 51syl2anc 411 . . . . . . . . . . . . 13  |-  ( ph  ->  ( A [,] B
)  C_  RR )
5352ad3antrrr 492 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  ( ( x  e.  ( A [,] B
)  /\  y  e.  ( A [,] B ) )  /\  ( A. q  e.  L  q  <  x  /\  A. r  e.  U  x  <  r ) ) )  /\  ( A. q  e.  L  q  <  y  /\  A. r  e.  U  y  <  r ) )  /\  x #  y )  ->  ( A [,] B )  C_  RR )
5424ad2antrr 488 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  ( ( x  e.  ( A [,] B
)  /\  y  e.  ( A [,] B ) )  /\  ( A. q  e.  L  q  <  x  /\  A. r  e.  U  x  <  r ) ) )  /\  ( A. q  e.  L  q  <  y  /\  A. r  e.  U  y  <  r ) )  /\  x #  y )  ->  x  e.  ( A [,] B
) )
5553, 54sseldd 3171 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  ( ( x  e.  ( A [,] B
)  /\  y  e.  ( A [,] B ) )  /\  ( A. q  e.  L  q  <  x  /\  A. r  e.  U  x  <  r ) ) )  /\  ( A. q  e.  L  q  <  y  /\  A. r  e.  U  y  <  r ) )  /\  x #  y )  ->  x  e.  RR )
5628ad2antrr 488 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  ( ( x  e.  ( A [,] B
)  /\  y  e.  ( A [,] B ) )  /\  ( A. q  e.  L  q  <  x  /\  A. r  e.  U  x  <  r ) ) )  /\  ( A. q  e.  L  q  <  y  /\  A. r  e.  U  y  <  r ) )  /\  x #  y )  ->  y  e.  ( A [,] B
) )
5753, 56sseldd 3171 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  ( ( x  e.  ( A [,] B
)  /\  y  e.  ( A [,] B ) )  /\  ( A. q  e.  L  q  <  x  /\  A. r  e.  U  x  <  r ) ) )  /\  ( A. q  e.  L  q  <  y  /\  A. r  e.  U  y  <  r ) )  /\  x #  y )  ->  y  e.  RR )
58 reaplt 8575 . . . . . . . . . . 11  |-  ( ( x  e.  RR  /\  y  e.  RR )  ->  ( x #  y  <->  ( x  <  y  \/  y  < 
x ) ) )
5955, 57, 58syl2anc 411 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  ( ( x  e.  ( A [,] B
)  /\  y  e.  ( A [,] B ) )  /\  ( A. q  e.  L  q  <  x  /\  A. r  e.  U  x  <  r ) ) )  /\  ( A. q  e.  L  q  <  y  /\  A. r  e.  U  y  <  r ) )  /\  x #  y )  ->  (
x #  y  <->  ( x  <  y  \/  y  < 
x ) ) )
6050, 59mpbid 147 . . . . . . . . 9  |-  ( ( ( ( ph  /\  ( ( x  e.  ( A [,] B
)  /\  y  e.  ( A [,] B ) )  /\  ( A. q  e.  L  q  <  x  /\  A. r  e.  U  x  <  r ) ) )  /\  ( A. q  e.  L  q  <  y  /\  A. r  e.  U  y  <  r ) )  /\  x #  y )  ->  (
x  <  y  \/  y  <  x ) )
6132, 49, 60mpjaodan 799 . . . . . . . 8  |-  ( ( ( ( ph  /\  ( ( x  e.  ( A [,] B
)  /\  y  e.  ( A [,] B ) )  /\  ( A. q  e.  L  q  <  x  /\  A. r  e.  U  x  <  r ) ) )  /\  ( A. q  e.  L  q  <  y  /\  A. r  e.  U  y  <  r ) )  /\  x #  y )  -> F.  )
6261inegd 1383 . . . . . . 7  |-  ( ( ( ph  /\  (
( x  e.  ( A [,] B )  /\  y  e.  ( A [,] B ) )  /\  ( A. q  e.  L  q  <  x  /\  A. r  e.  U  x  <  r ) ) )  /\  ( A. q  e.  L  q  <  y  /\  A. r  e.  U  y  <  r ) )  ->  -.  x #  y )
6352ad2antrr 488 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
( x  e.  ( A [,] B )  /\  y  e.  ( A [,] B ) )  /\  ( A. q  e.  L  q  <  x  /\  A. r  e.  U  x  <  r ) ) )  /\  ( A. q  e.  L  q  <  y  /\  A. r  e.  U  y  <  r ) )  -> 
( A [,] B
)  C_  RR )
6424adantr 276 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
( x  e.  ( A [,] B )  /\  y  e.  ( A [,] B ) )  /\  ( A. q  e.  L  q  <  x  /\  A. r  e.  U  x  <  r ) ) )  /\  ( A. q  e.  L  q  <  y  /\  A. r  e.  U  y  <  r ) )  ->  x  e.  ( A [,] B ) )
6563, 64sseldd 3171 . . . . . . . . 9  |-  ( ( ( ph  /\  (
( x  e.  ( A [,] B )  /\  y  e.  ( A [,] B ) )  /\  ( A. q  e.  L  q  <  x  /\  A. r  e.  U  x  <  r ) ) )  /\  ( A. q  e.  L  q  <  y  /\  A. r  e.  U  y  <  r ) )  ->  x  e.  RR )
6665recnd 8016 . . . . . . . 8  |-  ( ( ( ph  /\  (
( x  e.  ( A [,] B )  /\  y  e.  ( A [,] B ) )  /\  ( A. q  e.  L  q  <  x  /\  A. r  e.  U  x  <  r ) ) )  /\  ( A. q  e.  L  q  <  y  /\  A. r  e.  U  y  <  r ) )  ->  x  e.  CC )
6728adantr 276 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
( x  e.  ( A [,] B )  /\  y  e.  ( A [,] B ) )  /\  ( A. q  e.  L  q  <  x  /\  A. r  e.  U  x  <  r ) ) )  /\  ( A. q  e.  L  q  <  y  /\  A. r  e.  U  y  <  r ) )  -> 
y  e.  ( A [,] B ) )
6863, 67sseldd 3171 . . . . . . . . 9  |-  ( ( ( ph  /\  (
( x  e.  ( A [,] B )  /\  y  e.  ( A [,] B ) )  /\  ( A. q  e.  L  q  <  x  /\  A. r  e.  U  x  <  r ) ) )  /\  ( A. q  e.  L  q  <  y  /\  A. r  e.  U  y  <  r ) )  -> 
y  e.  RR )
6968recnd 8016 . . . . . . . 8  |-  ( ( ( ph  /\  (
( x  e.  ( A [,] B )  /\  y  e.  ( A [,] B ) )  /\  ( A. q  e.  L  q  <  x  /\  A. r  e.  U  x  <  r ) ) )  /\  ( A. q  e.  L  q  <  y  /\  A. r  e.  U  y  <  r ) )  -> 
y  e.  CC )
70 apti 8609 . . . . . . . 8  |-  ( ( x  e.  CC  /\  y  e.  CC )  ->  ( x  =  y  <->  -.  x #  y )
)
7166, 69, 70syl2anc 411 . . . . . . 7  |-  ( ( ( ph  /\  (
( x  e.  ( A [,] B )  /\  y  e.  ( A [,] B ) )  /\  ( A. q  e.  L  q  <  x  /\  A. r  e.  U  x  <  r ) ) )  /\  ( A. q  e.  L  q  <  y  /\  A. r  e.  U  y  <  r ) )  -> 
( x  =  y  <->  -.  x #  y )
)
7262, 71mpbird 167 . . . . . 6  |-  ( ( ( ph  /\  (
( x  e.  ( A [,] B )  /\  y  e.  ( A [,] B ) )  /\  ( A. q  e.  L  q  <  x  /\  A. r  e.  U  x  <  r ) ) )  /\  ( A. q  e.  L  q  <  y  /\  A. r  e.  U  y  <  r ) )  ->  x  =  y )
73 ancom 266 . . . . . . . . . . . . . . 15  |-  ( ( A. q  e.  L  q  <  x  /\  A. r  e.  U  x  <  r )  <->  ( A. r  e.  U  x  <  r  /\  A. q  e.  L  q  <  x ) )
7473anbi2i 457 . . . . . . . . . . . . . 14  |-  ( ( ( x  e.  ( A [,] B )  /\  y  e.  ( A [,] B ) )  /\  ( A. q  e.  L  q  <  x  /\  A. r  e.  U  x  <  r ) )  <->  ( (
x  e.  ( A [,] B )  /\  y  e.  ( A [,] B ) )  /\  ( A. r  e.  U  x  <  r  /\  A. q  e.  L  q  <  x ) ) )
75 anass 401 . . . . . . . . . . . . . 14  |-  ( ( ( ( x  e.  ( A [,] B
)  /\  y  e.  ( A [,] B ) )  /\  A. r  e.  U  x  <  r )  /\  A. q  e.  L  q  <  x )  <->  ( ( x  e.  ( A [,] B )  /\  y  e.  ( A [,] B
) )  /\  ( A. r  e.  U  x  <  r  /\  A. q  e.  L  q  <  x ) ) )
7674, 75bitr4i 187 . . . . . . . . . . . . 13  |-  ( ( ( x  e.  ( A [,] B )  /\  y  e.  ( A [,] B ) )  /\  ( A. q  e.  L  q  <  x  /\  A. r  e.  U  x  <  r ) )  <->  ( (
( x  e.  ( A [,] B )  /\  y  e.  ( A [,] B ) )  /\  A. r  e.  U  x  <  r )  /\  A. q  e.  L  q  <  x ) )
7776anbi2i 457 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( (
x  e.  ( A [,] B )  /\  y  e.  ( A [,] B ) )  /\  ( A. q  e.  L  q  <  x  /\  A. r  e.  U  x  <  r ) ) )  <-> 
( ph  /\  (
( ( x  e.  ( A [,] B
)  /\  y  e.  ( A [,] B ) )  /\  A. r  e.  U  x  <  r )  /\  A. q  e.  L  q  <  x ) ) )
78 anass 401 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
( x  e.  ( A [,] B )  /\  y  e.  ( A [,] B ) )  /\  A. r  e.  U  x  <  r ) )  /\  A. q  e.  L  q  <  x )  <->  ( ph  /\  ( ( ( x  e.  ( A [,] B )  /\  y  e.  ( A [,] B
) )  /\  A. r  e.  U  x  <  r )  /\  A. q  e.  L  q  <  x ) ) )
7977, 78bitr4i 187 . . . . . . . . . . 11  |-  ( (
ph  /\  ( (
x  e.  ( A [,] B )  /\  y  e.  ( A [,] B ) )  /\  ( A. q  e.  L  q  <  x  /\  A. r  e.  U  x  <  r ) ) )  <-> 
( ( ph  /\  ( ( x  e.  ( A [,] B
)  /\  y  e.  ( A [,] B ) )  /\  A. r  e.  U  x  <  r ) )  /\  A. q  e.  L  q  <  x ) )
8079anbi1i 458 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
( x  e.  ( A [,] B )  /\  y  e.  ( A [,] B ) )  /\  ( A. q  e.  L  q  <  x  /\  A. r  e.  U  x  <  r ) ) )  /\  ( A. q  e.  L  q  <  y  /\  A. r  e.  U  y  <  r ) )  <->  ( (
( ph  /\  (
( x  e.  ( A [,] B )  /\  y  e.  ( A [,] B ) )  /\  A. r  e.  U  x  <  r ) )  /\  A. q  e.  L  q  <  x )  /\  ( A. q  e.  L  q  <  y  /\  A. r  e.  U  y  <  r ) ) )
81 anass 401 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  ( ( x  e.  ( A [,] B
)  /\  y  e.  ( A [,] B ) )  /\  A. r  e.  U  x  <  r ) )  /\  A. q  e.  L  q  <  x )  /\  ( A. q  e.  L  q  <  y  /\  A. r  e.  U  y  <  r ) )  <->  ( ( ph  /\  ( ( x  e.  ( A [,] B )  /\  y  e.  ( A [,] B
) )  /\  A. r  e.  U  x  <  r ) )  /\  ( A. q  e.  L  q  <  x  /\  ( A. q  e.  L  q  <  y  /\  A. r  e.  U  y  <  r ) ) ) )
8280, 81bitri 184 . . . . . . . . 9  |-  ( ( ( ph  /\  (
( x  e.  ( A [,] B )  /\  y  e.  ( A [,] B ) )  /\  ( A. q  e.  L  q  <  x  /\  A. r  e.  U  x  <  r ) ) )  /\  ( A. q  e.  L  q  <  y  /\  A. r  e.  U  y  <  r ) )  <->  ( ( ph  /\  ( ( x  e.  ( A [,] B )  /\  y  e.  ( A [,] B
) )  /\  A. r  e.  U  x  <  r ) )  /\  ( A. q  e.  L  q  <  x  /\  ( A. q  e.  L  q  <  y  /\  A. r  e.  U  y  <  r ) ) ) )
83 anass 401 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
x  e.  ( A [,] B )  /\  y  e.  ( A [,] B ) ) )  /\  A. r  e.  U  x  <  r
)  <->  ( ph  /\  ( ( x  e.  ( A [,] B
)  /\  y  e.  ( A [,] B ) )  /\  A. r  e.  U  x  <  r ) ) )
8483bicomi 132 . . . . . . . . . . 11  |-  ( (
ph  /\  ( (
x  e.  ( A [,] B )  /\  y  e.  ( A [,] B ) )  /\  A. r  e.  U  x  <  r ) )  <-> 
( ( ph  /\  ( x  e.  ( A [,] B )  /\  y  e.  ( A [,] B ) ) )  /\  A. r  e.  U  x  <  r
) )
8584anbi1i 458 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
( x  e.  ( A [,] B )  /\  y  e.  ( A [,] B ) )  /\  A. r  e.  U  x  <  r ) )  /\  ( A. q  e.  L  q  <  x  /\  ( A. q  e.  L  q  <  y  /\  A. r  e.  U  y  <  r ) ) )  <-> 
( ( ( ph  /\  ( x  e.  ( A [,] B )  /\  y  e.  ( A [,] B ) ) )  /\  A. r  e.  U  x  <  r )  /\  ( A. q  e.  L  q  <  x  /\  ( A. q  e.  L  q  <  y  /\  A. r  e.  U  y  <  r ) ) ) )
86 anass 401 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  ( x  e.  ( A [,] B )  /\  y  e.  ( A [,] B ) ) )  /\  A. r  e.  U  x  <  r
)  /\  ( A. q  e.  L  q  <  x  /\  ( A. q  e.  L  q  <  y  /\  A. r  e.  U  y  <  r ) ) )  <->  ( ( ph  /\  ( x  e.  ( A [,] B
)  /\  y  e.  ( A [,] B ) ) )  /\  ( A. r  e.  U  x  <  r  /\  ( A. q  e.  L  q  <  x  /\  ( A. q  e.  L  q  <  y  /\  A. r  e.  U  y  <  r ) ) ) ) )
8785, 86bitri 184 . . . . . . . . 9  |-  ( ( ( ph  /\  (
( x  e.  ( A [,] B )  /\  y  e.  ( A [,] B ) )  /\  A. r  e.  U  x  <  r ) )  /\  ( A. q  e.  L  q  <  x  /\  ( A. q  e.  L  q  <  y  /\  A. r  e.  U  y  <  r ) ) )  <-> 
( ( ph  /\  ( x  e.  ( A [,] B )  /\  y  e.  ( A [,] B ) ) )  /\  ( A. r  e.  U  x  <  r  /\  ( A. q  e.  L  q  <  x  /\  ( A. q  e.  L  q  <  y  /\  A. r  e.  U  y  <  r
) ) ) ) )
8882, 87bitri 184 . . . . . . . 8  |-  ( ( ( ph  /\  (
( x  e.  ( A [,] B )  /\  y  e.  ( A [,] B ) )  /\  ( A. q  e.  L  q  <  x  /\  A. r  e.  U  x  <  r ) ) )  /\  ( A. q  e.  L  q  <  y  /\  A. r  e.  U  y  <  r ) )  <->  ( ( ph  /\  ( x  e.  ( A [,] B
)  /\  y  e.  ( A [,] B ) ) )  /\  ( A. r  e.  U  x  <  r  /\  ( A. q  e.  L  q  <  x  /\  ( A. q  e.  L  q  <  y  /\  A. r  e.  U  y  <  r ) ) ) ) )
89 anass 401 . . . . . . . . . 10  |-  ( ( ( A. r  e.  U  x  <  r  /\  A. q  e.  L  q  <  x )  /\  ( A. q  e.  L  q  <  y  /\  A. r  e.  U  y  <  r ) )  <->  ( A. r  e.  U  x  <  r  /\  ( A. q  e.  L  q  <  x  /\  ( A. q  e.  L  q  <  y  /\  A. r  e.  U  y  <  r ) ) ) )
90 ancom 266 . . . . . . . . . . 11  |-  ( ( A. r  e.  U  x  <  r  /\  A. q  e.  L  q  <  x )  <->  ( A. q  e.  L  q  <  x  /\  A. r  e.  U  x  <  r ) )
9190anbi1i 458 . . . . . . . . . 10  |-  ( ( ( A. r  e.  U  x  <  r  /\  A. q  e.  L  q  <  x )  /\  ( A. q  e.  L  q  <  y  /\  A. r  e.  U  y  <  r ) )  <->  ( ( A. q  e.  L  q  <  x  /\  A. r  e.  U  x  <  r )  /\  ( A. q  e.  L  q  <  y  /\  A. r  e.  U  y  <  r ) ) )
9289, 91bitr3i 186 . . . . . . . . 9  |-  ( ( A. r  e.  U  x  <  r  /\  ( A. q  e.  L  q  <  x  /\  ( A. q  e.  L  q  <  y  /\  A. r  e.  U  y  <  r ) ) )  <-> 
( ( A. q  e.  L  q  <  x  /\  A. r  e.  U  x  <  r
)  /\  ( A. q  e.  L  q  <  y  /\  A. r  e.  U  y  <  r ) ) )
9392anbi2i 457 . . . . . . . 8  |-  ( ( ( ph  /\  (
x  e.  ( A [,] B )  /\  y  e.  ( A [,] B ) ) )  /\  ( A. r  e.  U  x  <  r  /\  ( A. q  e.  L  q  <  x  /\  ( A. q  e.  L  q  <  y  /\  A. r  e.  U  y  <  r
) ) ) )  <-> 
( ( ph  /\  ( x  e.  ( A [,] B )  /\  y  e.  ( A [,] B ) ) )  /\  ( ( A. q  e.  L  q  <  x  /\  A. r  e.  U  x  <  r )  /\  ( A. q  e.  L  q  <  y  /\  A. r  e.  U  y  <  r ) ) ) )
9488, 93bitri 184 . . . . . . 7  |-  ( ( ( ph  /\  (
( x  e.  ( A [,] B )  /\  y  e.  ( A [,] B ) )  /\  ( A. q  e.  L  q  <  x  /\  A. r  e.  U  x  <  r ) ) )  /\  ( A. q  e.  L  q  <  y  /\  A. r  e.  U  y  <  r ) )  <->  ( ( ph  /\  ( x  e.  ( A [,] B
)  /\  y  e.  ( A [,] B ) ) )  /\  (
( A. q  e.  L  q  <  x  /\  A. r  e.  U  x  <  r )  /\  ( A. q  e.  L  q  <  y  /\  A. r  e.  U  y  <  r ) ) ) )
9594imbi1i 238 . . . . . 6  |-  ( ( ( ( ph  /\  ( ( x  e.  ( A [,] B
)  /\  y  e.  ( A [,] B ) )  /\  ( A. q  e.  L  q  <  x  /\  A. r  e.  U  x  <  r ) ) )  /\  ( A. q  e.  L  q  <  y  /\  A. r  e.  U  y  <  r ) )  ->  x  =  y )  <->  ( ( ( ph  /\  ( x  e.  ( A [,] B )  /\  y  e.  ( A [,] B ) ) )  /\  ( ( A. q  e.  L  q  <  x  /\  A. r  e.  U  x  <  r )  /\  ( A. q  e.  L  q  <  y  /\  A. r  e.  U  y  <  r ) ) )  ->  x  =  y )
)
9672, 95mpbi 145 . . . . 5  |-  ( ( ( ph  /\  (
x  e.  ( A [,] B )  /\  y  e.  ( A [,] B ) ) )  /\  ( ( A. q  e.  L  q  <  x  /\  A. r  e.  U  x  <  r )  /\  ( A. q  e.  L  q  <  y  /\  A. r  e.  U  y  <  r ) ) )  ->  x  =  y )
9796ex 115 . . . 4  |-  ( (
ph  /\  ( x  e.  ( A [,] B
)  /\  y  e.  ( A [,] B ) ) )  ->  (
( ( A. q  e.  L  q  <  x  /\  A. r  e.  U  x  <  r
)  /\  ( A. q  e.  L  q  <  y  /\  A. r  e.  U  y  <  r ) )  ->  x  =  y ) )
9897ralrimivva 2572 . . 3  |-  ( ph  ->  A. x  e.  ( A [,] B ) A. y  e.  ( A [,] B ) ( ( ( A. q  e.  L  q  <  x  /\  A. r  e.  U  x  <  r )  /\  ( A. q  e.  L  q  <  y  /\  A. r  e.  U  y  <  r ) )  ->  x  =  y ) )
99 breq2 4022 . . . . . 6  |-  ( x  =  y  ->  (
q  <  x  <->  q  <  y ) )
10099ralbidv 2490 . . . . 5  |-  ( x  =  y  ->  ( A. q  e.  L  q  <  x  <->  A. q  e.  L  q  <  y ) )
101 breq1 4021 . . . . . 6  |-  ( x  =  y  ->  (
x  <  r  <->  y  <  r ) )
102101ralbidv 2490 . . . . 5  |-  ( x  =  y  ->  ( A. r  e.  U  x  <  r  <->  A. r  e.  U  y  <  r ) )
103100, 102anbi12d 473 . . . 4  |-  ( x  =  y  ->  (
( A. q  e.  L  q  <  x  /\  A. r  e.  U  x  <  r )  <->  ( A. q  e.  L  q  <  y  /\  A. r  e.  U  y  <  r ) ) )
104103rmo4 2945 . . 3  |-  ( E* x  e.  ( A [,] B ) ( A. q  e.  L  q  <  x  /\  A. r  e.  U  x  <  r )  <->  A. x  e.  ( A [,] B
) A. y  e.  ( A [,] B
) ( ( ( A. q  e.  L  q  <  x  /\  A. r  e.  U  x  <  r )  /\  ( A. q  e.  L  q  <  y  /\  A. r  e.  U  y  <  r ) )  ->  x  =  y )
)
10598, 104sylibr 134 . 2  |-  ( ph  ->  E* x  e.  ( A [,] B ) ( A. q  e.  L  q  <  x  /\  A. r  e.  U  x  <  r ) )
106 reu5 2703 . 2  |-  ( E! x  e.  ( A [,] B ) ( A. q  e.  L  q  <  x  /\  A. r  e.  U  x  <  r )  <->  ( E. x  e.  ( A [,] B ) ( A. q  e.  L  q  <  x  /\  A. r  e.  U  x  <  r )  /\  E* x  e.  ( A [,] B
) ( A. q  e.  L  q  <  x  /\  A. r  e.  U  x  <  r
) ) )
10712, 105, 106sylanbrc 417 1  |-  ( ph  ->  E! x  e.  ( A [,] B ) ( A. q  e.  L  q  <  x  /\  A. r  e.  U  x  <  r ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 709    = wceq 1364   F. wfal 1369    e. wcel 2160   A.wral 2468   E.wrex 2469   E!wreu 2470   E*wrmo 2471    i^i cin 3143    C_ wss 3144   (/)c0 3437   class class class wbr 4018  (class class class)co 5896   CCcc 7839   RRcr 7840    < clt 8022   # cap 8568   [,]cicc 9921
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-coll 4133  ax-sep 4136  ax-nul 4144  ax-pow 4192  ax-pr 4227  ax-un 4451  ax-setind 4554  ax-iinf 4605  ax-cnex 7932  ax-resscn 7933  ax-1cn 7934  ax-1re 7935  ax-icn 7936  ax-addcl 7937  ax-addrcl 7938  ax-mulcl 7939  ax-mulrcl 7940  ax-addcom 7941  ax-mulcom 7942  ax-addass 7943  ax-mulass 7944  ax-distr 7945  ax-i2m1 7946  ax-0lt1 7947  ax-1rid 7948  ax-0id 7949  ax-rnegex 7950  ax-precex 7951  ax-cnre 7952  ax-pre-ltirr 7953  ax-pre-ltwlin 7954  ax-pre-lttrn 7955  ax-pre-apti 7956  ax-pre-ltadd 7957  ax-pre-mulgt0 7958  ax-pre-mulext 7959  ax-arch 7960  ax-caucvg 7961  ax-pre-suploc 7962
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ne 2361  df-nel 2456  df-ral 2473  df-rex 2474  df-reu 2475  df-rmo 2476  df-rab 2477  df-v 2754  df-sbc 2978  df-csb 3073  df-dif 3146  df-un 3148  df-in 3150  df-ss 3157  df-nul 3438  df-if 3550  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-uni 3825  df-int 3860  df-iun 3903  df-br 4019  df-opab 4080  df-mpt 4081  df-tr 4117  df-id 4311  df-po 4314  df-iso 4315  df-iord 4384  df-on 4386  df-ilim 4387  df-suc 4389  df-iom 4608  df-xp 4650  df-rel 4651  df-cnv 4652  df-co 4653  df-dm 4654  df-rn 4655  df-res 4656  df-ima 4657  df-iota 5196  df-fun 5237  df-fn 5238  df-f 5239  df-f1 5240  df-fo 5241  df-f1o 5242  df-fv 5243  df-isom 5244  df-riota 5852  df-ov 5899  df-oprab 5900  df-mpo 5901  df-1st 6165  df-2nd 6166  df-recs 6330  df-frec 6416  df-sup 7013  df-inf 7014  df-pnf 8024  df-mnf 8025  df-xr 8026  df-ltxr 8027  df-le 8028  df-sub 8160  df-neg 8161  df-reap 8562  df-ap 8569  df-div 8660  df-inn 8950  df-2 9008  df-3 9009  df-4 9010  df-n0 9207  df-z 9284  df-uz 9559  df-rp 9684  df-icc 9925  df-seqfrec 10477  df-exp 10551  df-cj 10883  df-re 10884  df-im 10885  df-rsqrt 11039  df-abs 11040
This theorem is referenced by:  dedekindicc  14571
  Copyright terms: Public domain W3C validator