| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > dedekindeu | Unicode version | ||
| Description: A Dedekind cut identifies a unique real number. Similar to df-inp 7578 except that the the Dedekind cut is formed by sets of reals (rather than positive rationals). But in both cases the defining property of a Dedekind cut is that it is inhabited (bounded), rounded, disjoint, and located. (Contributed by Jim Kingdon, 5-Jan-2024.) |
| Ref | Expression |
|---|---|
| dedekindeu.lss |
|
| dedekindeu.uss |
|
| dedekindeu.lm |
|
| dedekindeu.um |
|
| dedekindeu.lr |
|
| dedekindeu.ur |
|
| dedekindeu.disj |
|
| dedekindeu.loc |
|
| Ref | Expression |
|---|---|
| dedekindeu |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dedekindeu.lss |
. . 3
| |
| 2 | dedekindeu.uss |
. . 3
| |
| 3 | dedekindeu.lm |
. . 3
| |
| 4 | dedekindeu.um |
. . 3
| |
| 5 | dedekindeu.lr |
. . 3
| |
| 6 | dedekindeu.ur |
. . 3
| |
| 7 | dedekindeu.disj |
. . 3
| |
| 8 | dedekindeu.loc |
. . 3
| |
| 9 | 1, 2, 3, 4, 5, 6, 7, 8 | dedekindeulemlu 15064 |
. 2
|
| 10 | 1 | ad4antr 494 |
. . . . . . . . 9
|
| 11 | 2 | ad4antr 494 |
. . . . . . . . 9
|
| 12 | 3 | ad4antr 494 |
. . . . . . . . 9
|
| 13 | 4 | ad4antr 494 |
. . . . . . . . 9
|
| 14 | 5 | ad4antr 494 |
. . . . . . . . 9
|
| 15 | 6 | ad4antr 494 |
. . . . . . . . 9
|
| 16 | 7 | ad4antr 494 |
. . . . . . . . 9
|
| 17 | 8 | ad4antr 494 |
. . . . . . . . 9
|
| 18 | simprl 529 |
. . . . . . . . . . 11
| |
| 19 | 18 | ad2antrr 488 |
. . . . . . . . . 10
|
| 20 | 19 | adantr 276 |
. . . . . . . . 9
|
| 21 | simprl 529 |
. . . . . . . . . 10
| |
| 22 | 21 | ad2antrr 488 |
. . . . . . . . 9
|
| 23 | simprr 531 |
. . . . . . . . . . 11
| |
| 24 | 23 | ad2antrr 488 |
. . . . . . . . . 10
|
| 25 | 24 | adantr 276 |
. . . . . . . . 9
|
| 26 | simprr 531 |
. . . . . . . . . 10
| |
| 27 | 26 | ad2antrr 488 |
. . . . . . . . 9
|
| 28 | simpr 110 |
. . . . . . . . 9
| |
| 29 | 10, 11, 12, 13, 14, 15, 16, 17, 20, 22, 25, 27, 28 | dedekindeulemeu 15065 |
. . . . . . . 8
|
| 30 | 1 | ad4antr 494 |
. . . . . . . . 9
|
| 31 | 2 | ad4antr 494 |
. . . . . . . . 9
|
| 32 | 3 | ad4antr 494 |
. . . . . . . . 9
|
| 33 | 4 | ad4antr 494 |
. . . . . . . . 9
|
| 34 | 5 | ad4antr 494 |
. . . . . . . . 9
|
| 35 | 6 | ad4antr 494 |
. . . . . . . . 9
|
| 36 | 7 | ad4antr 494 |
. . . . . . . . 9
|
| 37 | 8 | ad4antr 494 |
. . . . . . . . 9
|
| 38 | 24 | adantr 276 |
. . . . . . . . 9
|
| 39 | 26 | ad2antrr 488 |
. . . . . . . . 9
|
| 40 | 19 | adantr 276 |
. . . . . . . . 9
|
| 41 | 21 | ad2antrr 488 |
. . . . . . . . 9
|
| 42 | simpr 110 |
. . . . . . . . 9
| |
| 43 | 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42 | dedekindeulemeu 15065 |
. . . . . . . 8
|
| 44 | simpr 110 |
. . . . . . . . 9
| |
| 45 | reaplt 8660 |
. . . . . . . . . 10
| |
| 46 | 19, 24, 45 | syl2anc 411 |
. . . . . . . . 9
|
| 47 | 44, 46 | mpbid 147 |
. . . . . . . 8
|
| 48 | 29, 43, 47 | mpjaodan 799 |
. . . . . . 7
|
| 49 | 48 | inegd 1391 |
. . . . . 6
|
| 50 | simplrl 535 |
. . . . . . . 8
| |
| 51 | 50 | recnd 8100 |
. . . . . . 7
|
| 52 | simplrr 536 |
. . . . . . . 8
| |
| 53 | 52 | recnd 8100 |
. . . . . . 7
|
| 54 | apti 8694 |
. . . . . . 7
| |
| 55 | 51, 53, 54 | syl2anc 411 |
. . . . . 6
|
| 56 | 49, 55 | mpbird 167 |
. . . . 5
|
| 57 | 56 | ex 115 |
. . . 4
|
| 58 | 57 | ralrimivva 2587 |
. . 3
|
| 59 | breq2 4047 |
. . . . . 6
| |
| 60 | 59 | ralbidv 2505 |
. . . . 5
|
| 61 | breq1 4046 |
. . . . . 6
| |
| 62 | 61 | ralbidv 2505 |
. . . . 5
|
| 63 | 60, 62 | anbi12d 473 |
. . . 4
|
| 64 | 63 | rmo4 2965 |
. . 3
|
| 65 | 58, 64 | sylibr 134 |
. 2
|
| 66 | reu5 2722 |
. 2
| |
| 67 | 9, 65, 66 | sylanbrc 417 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-13 2177 ax-14 2178 ax-ext 2186 ax-sep 4161 ax-pow 4217 ax-pr 4252 ax-un 4479 ax-setind 4584 ax-cnex 8015 ax-resscn 8016 ax-1cn 8017 ax-1re 8018 ax-icn 8019 ax-addcl 8020 ax-addrcl 8021 ax-mulcl 8022 ax-mulrcl 8023 ax-addcom 8024 ax-mulcom 8025 ax-addass 8026 ax-mulass 8027 ax-distr 8028 ax-i2m1 8029 ax-0lt1 8030 ax-1rid 8031 ax-0id 8032 ax-rnegex 8033 ax-precex 8034 ax-cnre 8035 ax-pre-ltirr 8036 ax-pre-ltwlin 8037 ax-pre-lttrn 8038 ax-pre-apti 8039 ax-pre-ltadd 8040 ax-pre-mulgt0 8041 ax-pre-suploc 8045 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1375 df-fal 1378 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ne 2376 df-nel 2471 df-ral 2488 df-rex 2489 df-reu 2490 df-rmo 2491 df-rab 2492 df-v 2773 df-sbc 2998 df-dif 3167 df-un 3169 df-in 3171 df-ss 3178 df-nul 3460 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-br 4044 df-opab 4105 df-id 4339 df-xp 4680 df-rel 4681 df-cnv 4682 df-co 4683 df-dm 4684 df-iota 5231 df-fun 5272 df-fv 5278 df-riota 5898 df-ov 5946 df-oprab 5947 df-mpo 5948 df-pnf 8108 df-mnf 8109 df-xr 8110 df-ltxr 8111 df-le 8112 df-sub 8244 df-neg 8245 df-reap 8647 df-ap 8654 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |