ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  caucvgprlemdisj Unicode version

Theorem caucvgprlemdisj 7741
Description: Lemma for caucvgpr 7749. The putative limit is disjoint. (Contributed by Jim Kingdon, 27-Sep-2020.)
Hypotheses
Ref Expression
caucvgpr.f  |-  ( ph  ->  F : N. --> Q. )
caucvgpr.cau  |-  ( ph  ->  A. n  e.  N.  A. k  e.  N.  (
n  <N  k  ->  (
( F `  n
)  <Q  ( ( F `
 k )  +Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) )  /\  ( F `  k ) 
<Q  ( ( F `  n )  +Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  )
) ) ) )
caucvgpr.bnd  |-  ( ph  ->  A. j  e.  N.  A  <Q  ( F `  j ) )
caucvgpr.lim  |-  L  = 
<. { l  e.  Q.  |  E. j  e.  N.  ( l  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  )
)  <Q  ( F `  j ) } ,  { u  e.  Q.  |  E. j  e.  N.  ( ( F `  j )  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  )
)  <Q  u } >.
Assertion
Ref Expression
caucvgprlemdisj  |-  ( ph  ->  A. s  e.  Q.  -.  ( s  e.  ( 1st `  L )  /\  s  e.  ( 2nd `  L ) ) )
Distinct variable groups:    A, j    j, F, k    F, l, j   
u, F, j    n, F    j, L, k    ph, j,
s, k    s, l    u, s    k, n
Allowed substitution hints:    ph( u, n, l)    A( u, k, n, s, l)    F( s)    L( u, n, s, l)

Proof of Theorem caucvgprlemdisj
StepHypRef Expression
1 oveq1 5929 . . . . . . . . . . . 12  |-  ( l  =  s  ->  (
l  +Q  ( *Q
`  [ <. j ,  1o >. ]  ~Q  )
)  =  ( s  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  ) ) )
21breq1d 4043 . . . . . . . . . . 11  |-  ( l  =  s  ->  (
( l  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  )
)  <Q  ( F `  j )  <->  ( s  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  ) )  <Q 
( F `  j
) ) )
32rexbidv 2498 . . . . . . . . . 10  |-  ( l  =  s  ->  ( E. j  e.  N.  ( l  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  )
)  <Q  ( F `  j )  <->  E. j  e.  N.  ( s  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  ) )  <Q 
( F `  j
) ) )
4 caucvgpr.lim . . . . . . . . . . . 12  |-  L  = 
<. { l  e.  Q.  |  E. j  e.  N.  ( l  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  )
)  <Q  ( F `  j ) } ,  { u  e.  Q.  |  E. j  e.  N.  ( ( F `  j )  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  )
)  <Q  u } >.
54fveq2i 5561 . . . . . . . . . . 11  |-  ( 1st `  L )  =  ( 1st `  <. { l  e.  Q.  |  E. j  e.  N.  (
l  +Q  ( *Q
`  [ <. j ,  1o >. ]  ~Q  )
)  <Q  ( F `  j ) } ,  { u  e.  Q.  |  E. j  e.  N.  ( ( F `  j )  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  )
)  <Q  u } >. )
6 nqex 7430 . . . . . . . . . . . . 13  |-  Q.  e.  _V
76rabex 4177 . . . . . . . . . . . 12  |-  { l  e.  Q.  |  E. j  e.  N.  (
l  +Q  ( *Q
`  [ <. j ,  1o >. ]  ~Q  )
)  <Q  ( F `  j ) }  e.  _V
86rabex 4177 . . . . . . . . . . . 12  |-  { u  e.  Q.  |  E. j  e.  N.  ( ( F `
 j )  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  ) )  <Q  u }  e.  _V
97, 8op1st 6204 . . . . . . . . . . 11  |-  ( 1st `  <. { l  e. 
Q.  |  E. j  e.  N.  ( l  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  ) )  <Q 
( F `  j
) } ,  {
u  e.  Q.  |  E. j  e.  N.  ( ( F `  j )  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  )
)  <Q  u } >. )  =  { l  e. 
Q.  |  E. j  e.  N.  ( l  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  ) )  <Q 
( F `  j
) }
105, 9eqtri 2217 . . . . . . . . . 10  |-  ( 1st `  L )  =  {
l  e.  Q.  |  E. j  e.  N.  ( l  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  )
)  <Q  ( F `  j ) }
113, 10elrab2 2923 . . . . . . . . 9  |-  ( s  e.  ( 1st `  L
)  <->  ( s  e. 
Q.  /\  E. j  e.  N.  ( s  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  ) )  <Q 
( F `  j
) ) )
1211simprbi 275 . . . . . . . 8  |-  ( s  e.  ( 1st `  L
)  ->  E. j  e.  N.  ( s  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  ) )  <Q 
( F `  j
) )
13 opeq1 3808 . . . . . . . . . . . . 13  |-  ( j  =  k  ->  <. j ,  1o >.  =  <. k ,  1o >. )
1413eceq1d 6628 . . . . . . . . . . . 12  |-  ( j  =  k  ->  [ <. j ,  1o >. ]  ~Q  =  [ <. k ,  1o >. ]  ~Q  )
1514fveq2d 5562 . . . . . . . . . . 11  |-  ( j  =  k  ->  ( *Q `  [ <. j ,  1o >. ]  ~Q  )  =  ( *Q `  [ <. k ,  1o >. ]  ~Q  ) )
1615oveq2d 5938 . . . . . . . . . 10  |-  ( j  =  k  ->  (
s  +Q  ( *Q
`  [ <. j ,  1o >. ]  ~Q  )
)  =  ( s  +Q  ( *Q `  [ <. k ,  1o >. ]  ~Q  ) ) )
17 fveq2 5558 . . . . . . . . . 10  |-  ( j  =  k  ->  ( F `  j )  =  ( F `  k ) )
1816, 17breq12d 4046 . . . . . . . . 9  |-  ( j  =  k  ->  (
( s  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  )
)  <Q  ( F `  j )  <->  ( s  +Q  ( *Q `  [ <. k ,  1o >. ]  ~Q  ) )  <Q 
( F `  k
) ) )
1918cbvrexv 2730 . . . . . . . 8  |-  ( E. j  e.  N.  (
s  +Q  ( *Q
`  [ <. j ,  1o >. ]  ~Q  )
)  <Q  ( F `  j )  <->  E. k  e.  N.  ( s  +Q  ( *Q `  [ <. k ,  1o >. ]  ~Q  ) )  <Q 
( F `  k
) )
2012, 19sylib 122 . . . . . . 7  |-  ( s  e.  ( 1st `  L
)  ->  E. k  e.  N.  ( s  +Q  ( *Q `  [ <. k ,  1o >. ]  ~Q  ) )  <Q 
( F `  k
) )
21 breq2 4037 . . . . . . . . . 10  |-  ( u  =  s  ->  (
( ( F `  j )  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  )
)  <Q  u  <->  ( ( F `  j )  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  ) )  <Q 
s ) )
2221rexbidv 2498 . . . . . . . . 9  |-  ( u  =  s  ->  ( E. j  e.  N.  ( ( F `  j )  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  )
)  <Q  u  <->  E. j  e.  N.  ( ( F `
 j )  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  ) )  <Q 
s ) )
234fveq2i 5561 . . . . . . . . . 10  |-  ( 2nd `  L )  =  ( 2nd `  <. { l  e.  Q.  |  E. j  e.  N.  (
l  +Q  ( *Q
`  [ <. j ,  1o >. ]  ~Q  )
)  <Q  ( F `  j ) } ,  { u  e.  Q.  |  E. j  e.  N.  ( ( F `  j )  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  )
)  <Q  u } >. )
247, 8op2nd 6205 . . . . . . . . . 10  |-  ( 2nd `  <. { l  e. 
Q.  |  E. j  e.  N.  ( l  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  ) )  <Q 
( F `  j
) } ,  {
u  e.  Q.  |  E. j  e.  N.  ( ( F `  j )  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  )
)  <Q  u } >. )  =  { u  e. 
Q.  |  E. j  e.  N.  ( ( F `
 j )  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  ) )  <Q  u }
2523, 24eqtri 2217 . . . . . . . . 9  |-  ( 2nd `  L )  =  {
u  e.  Q.  |  E. j  e.  N.  ( ( F `  j )  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  )
)  <Q  u }
2622, 25elrab2 2923 . . . . . . . 8  |-  ( s  e.  ( 2nd `  L
)  <->  ( s  e. 
Q.  /\  E. j  e.  N.  ( ( F `
 j )  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  ) )  <Q 
s ) )
2726simprbi 275 . . . . . . 7  |-  ( s  e.  ( 2nd `  L
)  ->  E. j  e.  N.  ( ( F `
 j )  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  ) )  <Q 
s )
2820, 27anim12i 338 . . . . . 6  |-  ( ( s  e.  ( 1st `  L )  /\  s  e.  ( 2nd `  L
) )  ->  ( E. k  e.  N.  ( s  +Q  ( *Q `  [ <. k ,  1o >. ]  ~Q  )
)  <Q  ( F `  k )  /\  E. j  e.  N.  (
( F `  j
)  +Q  ( *Q
`  [ <. j ,  1o >. ]  ~Q  )
)  <Q  s ) )
29 reeanv 2667 . . . . . 6  |-  ( E. k  e.  N.  E. j  e.  N.  (
( s  +Q  ( *Q `  [ <. k ,  1o >. ]  ~Q  )
)  <Q  ( F `  k )  /\  (
( F `  j
)  +Q  ( *Q
`  [ <. j ,  1o >. ]  ~Q  )
)  <Q  s )  <->  ( E. k  e.  N.  (
s  +Q  ( *Q
`  [ <. k ,  1o >. ]  ~Q  )
)  <Q  ( F `  k )  /\  E. j  e.  N.  (
( F `  j
)  +Q  ( *Q
`  [ <. j ,  1o >. ]  ~Q  )
)  <Q  s ) )
3028, 29sylibr 134 . . . . 5  |-  ( ( s  e.  ( 1st `  L )  /\  s  e.  ( 2nd `  L
) )  ->  E. k  e.  N.  E. j  e. 
N.  ( ( s  +Q  ( *Q `  [ <. k ,  1o >. ]  ~Q  ) ) 
<Q  ( F `  k
)  /\  ( ( F `  j )  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  ) )  <Q 
s ) )
3130adantl 277 . . . 4  |-  ( (
ph  /\  ( s  e.  ( 1st `  L
)  /\  s  e.  ( 2nd `  L ) ) )  ->  E. k  e.  N.  E. j  e. 
N.  ( ( s  +Q  ( *Q `  [ <. k ,  1o >. ]  ~Q  ) ) 
<Q  ( F `  k
)  /\  ( ( F `  j )  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  ) )  <Q 
s ) )
32 caucvgpr.f . . . . . . . 8  |-  ( ph  ->  F : N. --> Q. )
3332ad2antrr 488 . . . . . . 7  |-  ( ( ( ph  /\  (
s  e.  ( 1st `  L )  /\  s  e.  ( 2nd `  L
) ) )  /\  ( k  e.  N.  /\  j  e.  N. )
)  ->  F : N.
--> Q. )
34 caucvgpr.cau . . . . . . . 8  |-  ( ph  ->  A. n  e.  N.  A. k  e.  N.  (
n  <N  k  ->  (
( F `  n
)  <Q  ( ( F `
 k )  +Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) )  /\  ( F `  k ) 
<Q  ( ( F `  n )  +Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  )
) ) ) )
3534ad2antrr 488 . . . . . . 7  |-  ( ( ( ph  /\  (
s  e.  ( 1st `  L )  /\  s  e.  ( 2nd `  L
) ) )  /\  ( k  e.  N.  /\  j  e.  N. )
)  ->  A. n  e.  N.  A. k  e. 
N.  ( n  <N  k  ->  ( ( F `
 n )  <Q 
( ( F `  k )  +Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  )
)  /\  ( F `  k )  <Q  (
( F `  n
)  +Q  ( *Q
`  [ <. n ,  1o >. ]  ~Q  )
) ) ) )
36 simprl 529 . . . . . . 7  |-  ( ( ( ph  /\  (
s  e.  ( 1st `  L )  /\  s  e.  ( 2nd `  L
) ) )  /\  ( k  e.  N.  /\  j  e.  N. )
)  ->  k  e.  N. )
37 simprr 531 . . . . . . 7  |-  ( ( ( ph  /\  (
s  e.  ( 1st `  L )  /\  s  e.  ( 2nd `  L
) ) )  /\  ( k  e.  N.  /\  j  e.  N. )
)  ->  j  e.  N. )
3811simplbi 274 . . . . . . . . 9  |-  ( s  e.  ( 1st `  L
)  ->  s  e.  Q. )
3938ad2antrl 490 . . . . . . . 8  |-  ( (
ph  /\  ( s  e.  ( 1st `  L
)  /\  s  e.  ( 2nd `  L ) ) )  ->  s  e.  Q. )
4039adantr 276 . . . . . . 7  |-  ( ( ( ph  /\  (
s  e.  ( 1st `  L )  /\  s  e.  ( 2nd `  L
) ) )  /\  ( k  e.  N.  /\  j  e.  N. )
)  ->  s  e.  Q. )
4133, 35, 36, 37, 40caucvgprlemnkj 7733 . . . . . 6  |-  ( ( ( ph  /\  (
s  e.  ( 1st `  L )  /\  s  e.  ( 2nd `  L
) ) )  /\  ( k  e.  N.  /\  j  e.  N. )
)  ->  -.  (
( s  +Q  ( *Q `  [ <. k ,  1o >. ]  ~Q  )
)  <Q  ( F `  k )  /\  (
( F `  j
)  +Q  ( *Q
`  [ <. j ,  1o >. ]  ~Q  )
)  <Q  s ) )
4241pm2.21d 620 . . . . 5  |-  ( ( ( ph  /\  (
s  e.  ( 1st `  L )  /\  s  e.  ( 2nd `  L
) ) )  /\  ( k  e.  N.  /\  j  e.  N. )
)  ->  ( (
( s  +Q  ( *Q `  [ <. k ,  1o >. ]  ~Q  )
)  <Q  ( F `  k )  /\  (
( F `  j
)  +Q  ( *Q
`  [ <. j ,  1o >. ]  ~Q  )
)  <Q  s )  -> F.  ) )
4342rexlimdvva 2622 . . . 4  |-  ( (
ph  /\  ( s  e.  ( 1st `  L
)  /\  s  e.  ( 2nd `  L ) ) )  ->  ( E. k  e.  N.  E. j  e.  N.  (
( s  +Q  ( *Q `  [ <. k ,  1o >. ]  ~Q  )
)  <Q  ( F `  k )  /\  (
( F `  j
)  +Q  ( *Q
`  [ <. j ,  1o >. ]  ~Q  )
)  <Q  s )  -> F.  ) )
4431, 43mpd 13 . . 3  |-  ( (
ph  /\  ( s  e.  ( 1st `  L
)  /\  s  e.  ( 2nd `  L ) ) )  -> F.  )
4544inegd 1383 . 2  |-  ( ph  ->  -.  ( s  e.  ( 1st `  L
)  /\  s  e.  ( 2nd `  L ) ) )
4645ralrimivw 2571 1  |-  ( ph  ->  A. s  e.  Q.  -.  ( s  e.  ( 1st `  L )  /\  s  e.  ( 2nd `  L ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    = wceq 1364   F. wfal 1369    e. wcel 2167   A.wral 2475   E.wrex 2476   {crab 2479   <.cop 3625   class class class wbr 4033   -->wf 5254   ` cfv 5258  (class class class)co 5922   1stc1st 6196   2ndc2nd 6197   1oc1o 6467   [cec 6590   N.cnpi 7339    <N clti 7342    ~Q ceq 7346   Q.cnq 7347    +Q cplq 7349   *Qcrq 7351    <Q cltq 7352
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-nul 4159  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-iinf 4624
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-tr 4132  df-eprel 4324  df-id 4328  df-po 4331  df-iso 4332  df-iord 4401  df-on 4403  df-suc 4406  df-iom 4627  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-ov 5925  df-oprab 5926  df-mpo 5927  df-1st 6198  df-2nd 6199  df-recs 6363  df-irdg 6428  df-1o 6474  df-oadd 6478  df-omul 6479  df-er 6592  df-ec 6594  df-qs 6598  df-ni 7371  df-pli 7372  df-mi 7373  df-lti 7374  df-plpq 7411  df-mpq 7412  df-enq 7414  df-nqqs 7415  df-plqqs 7416  df-mqqs 7417  df-1nqqs 7418  df-rq 7419  df-ltnqqs 7420
This theorem is referenced by:  caucvgprlemcl  7743
  Copyright terms: Public domain W3C validator