ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  caucvgprlemdisj Unicode version

Theorem caucvgprlemdisj 7734
Description: Lemma for caucvgpr 7742. The putative limit is disjoint. (Contributed by Jim Kingdon, 27-Sep-2020.)
Hypotheses
Ref Expression
caucvgpr.f  |-  ( ph  ->  F : N. --> Q. )
caucvgpr.cau  |-  ( ph  ->  A. n  e.  N.  A. k  e.  N.  (
n  <N  k  ->  (
( F `  n
)  <Q  ( ( F `
 k )  +Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) )  /\  ( F `  k ) 
<Q  ( ( F `  n )  +Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  )
) ) ) )
caucvgpr.bnd  |-  ( ph  ->  A. j  e.  N.  A  <Q  ( F `  j ) )
caucvgpr.lim  |-  L  = 
<. { l  e.  Q.  |  E. j  e.  N.  ( l  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  )
)  <Q  ( F `  j ) } ,  { u  e.  Q.  |  E. j  e.  N.  ( ( F `  j )  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  )
)  <Q  u } >.
Assertion
Ref Expression
caucvgprlemdisj  |-  ( ph  ->  A. s  e.  Q.  -.  ( s  e.  ( 1st `  L )  /\  s  e.  ( 2nd `  L ) ) )
Distinct variable groups:    A, j    j, F, k    F, l, j   
u, F, j    n, F    j, L, k    ph, j,
s, k    s, l    u, s    k, n
Allowed substitution hints:    ph( u, n, l)    A( u, k, n, s, l)    F( s)    L( u, n, s, l)

Proof of Theorem caucvgprlemdisj
StepHypRef Expression
1 oveq1 5925 . . . . . . . . . . . 12  |-  ( l  =  s  ->  (
l  +Q  ( *Q
`  [ <. j ,  1o >. ]  ~Q  )
)  =  ( s  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  ) ) )
21breq1d 4039 . . . . . . . . . . 11  |-  ( l  =  s  ->  (
( l  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  )
)  <Q  ( F `  j )  <->  ( s  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  ) )  <Q 
( F `  j
) ) )
32rexbidv 2495 . . . . . . . . . 10  |-  ( l  =  s  ->  ( E. j  e.  N.  ( l  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  )
)  <Q  ( F `  j )  <->  E. j  e.  N.  ( s  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  ) )  <Q 
( F `  j
) ) )
4 caucvgpr.lim . . . . . . . . . . . 12  |-  L  = 
<. { l  e.  Q.  |  E. j  e.  N.  ( l  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  )
)  <Q  ( F `  j ) } ,  { u  e.  Q.  |  E. j  e.  N.  ( ( F `  j )  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  )
)  <Q  u } >.
54fveq2i 5557 . . . . . . . . . . 11  |-  ( 1st `  L )  =  ( 1st `  <. { l  e.  Q.  |  E. j  e.  N.  (
l  +Q  ( *Q
`  [ <. j ,  1o >. ]  ~Q  )
)  <Q  ( F `  j ) } ,  { u  e.  Q.  |  E. j  e.  N.  ( ( F `  j )  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  )
)  <Q  u } >. )
6 nqex 7423 . . . . . . . . . . . . 13  |-  Q.  e.  _V
76rabex 4173 . . . . . . . . . . . 12  |-  { l  e.  Q.  |  E. j  e.  N.  (
l  +Q  ( *Q
`  [ <. j ,  1o >. ]  ~Q  )
)  <Q  ( F `  j ) }  e.  _V
86rabex 4173 . . . . . . . . . . . 12  |-  { u  e.  Q.  |  E. j  e.  N.  ( ( F `
 j )  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  ) )  <Q  u }  e.  _V
97, 8op1st 6199 . . . . . . . . . . 11  |-  ( 1st `  <. { l  e. 
Q.  |  E. j  e.  N.  ( l  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  ) )  <Q 
( F `  j
) } ,  {
u  e.  Q.  |  E. j  e.  N.  ( ( F `  j )  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  )
)  <Q  u } >. )  =  { l  e. 
Q.  |  E. j  e.  N.  ( l  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  ) )  <Q 
( F `  j
) }
105, 9eqtri 2214 . . . . . . . . . 10  |-  ( 1st `  L )  =  {
l  e.  Q.  |  E. j  e.  N.  ( l  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  )
)  <Q  ( F `  j ) }
113, 10elrab2 2919 . . . . . . . . 9  |-  ( s  e.  ( 1st `  L
)  <->  ( s  e. 
Q.  /\  E. j  e.  N.  ( s  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  ) )  <Q 
( F `  j
) ) )
1211simprbi 275 . . . . . . . 8  |-  ( s  e.  ( 1st `  L
)  ->  E. j  e.  N.  ( s  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  ) )  <Q 
( F `  j
) )
13 opeq1 3804 . . . . . . . . . . . . 13  |-  ( j  =  k  ->  <. j ,  1o >.  =  <. k ,  1o >. )
1413eceq1d 6623 . . . . . . . . . . . 12  |-  ( j  =  k  ->  [ <. j ,  1o >. ]  ~Q  =  [ <. k ,  1o >. ]  ~Q  )
1514fveq2d 5558 . . . . . . . . . . 11  |-  ( j  =  k  ->  ( *Q `  [ <. j ,  1o >. ]  ~Q  )  =  ( *Q `  [ <. k ,  1o >. ]  ~Q  ) )
1615oveq2d 5934 . . . . . . . . . 10  |-  ( j  =  k  ->  (
s  +Q  ( *Q
`  [ <. j ,  1o >. ]  ~Q  )
)  =  ( s  +Q  ( *Q `  [ <. k ,  1o >. ]  ~Q  ) ) )
17 fveq2 5554 . . . . . . . . . 10  |-  ( j  =  k  ->  ( F `  j )  =  ( F `  k ) )
1816, 17breq12d 4042 . . . . . . . . 9  |-  ( j  =  k  ->  (
( s  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  )
)  <Q  ( F `  j )  <->  ( s  +Q  ( *Q `  [ <. k ,  1o >. ]  ~Q  ) )  <Q 
( F `  k
) ) )
1918cbvrexv 2727 . . . . . . . 8  |-  ( E. j  e.  N.  (
s  +Q  ( *Q
`  [ <. j ,  1o >. ]  ~Q  )
)  <Q  ( F `  j )  <->  E. k  e.  N.  ( s  +Q  ( *Q `  [ <. k ,  1o >. ]  ~Q  ) )  <Q 
( F `  k
) )
2012, 19sylib 122 . . . . . . 7  |-  ( s  e.  ( 1st `  L
)  ->  E. k  e.  N.  ( s  +Q  ( *Q `  [ <. k ,  1o >. ]  ~Q  ) )  <Q 
( F `  k
) )
21 breq2 4033 . . . . . . . . . 10  |-  ( u  =  s  ->  (
( ( F `  j )  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  )
)  <Q  u  <->  ( ( F `  j )  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  ) )  <Q 
s ) )
2221rexbidv 2495 . . . . . . . . 9  |-  ( u  =  s  ->  ( E. j  e.  N.  ( ( F `  j )  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  )
)  <Q  u  <->  E. j  e.  N.  ( ( F `
 j )  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  ) )  <Q 
s ) )
234fveq2i 5557 . . . . . . . . . 10  |-  ( 2nd `  L )  =  ( 2nd `  <. { l  e.  Q.  |  E. j  e.  N.  (
l  +Q  ( *Q
`  [ <. j ,  1o >. ]  ~Q  )
)  <Q  ( F `  j ) } ,  { u  e.  Q.  |  E. j  e.  N.  ( ( F `  j )  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  )
)  <Q  u } >. )
247, 8op2nd 6200 . . . . . . . . . 10  |-  ( 2nd `  <. { l  e. 
Q.  |  E. j  e.  N.  ( l  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  ) )  <Q 
( F `  j
) } ,  {
u  e.  Q.  |  E. j  e.  N.  ( ( F `  j )  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  )
)  <Q  u } >. )  =  { u  e. 
Q.  |  E. j  e.  N.  ( ( F `
 j )  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  ) )  <Q  u }
2523, 24eqtri 2214 . . . . . . . . 9  |-  ( 2nd `  L )  =  {
u  e.  Q.  |  E. j  e.  N.  ( ( F `  j )  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  )
)  <Q  u }
2622, 25elrab2 2919 . . . . . . . 8  |-  ( s  e.  ( 2nd `  L
)  <->  ( s  e. 
Q.  /\  E. j  e.  N.  ( ( F `
 j )  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  ) )  <Q 
s ) )
2726simprbi 275 . . . . . . 7  |-  ( s  e.  ( 2nd `  L
)  ->  E. j  e.  N.  ( ( F `
 j )  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  ) )  <Q 
s )
2820, 27anim12i 338 . . . . . 6  |-  ( ( s  e.  ( 1st `  L )  /\  s  e.  ( 2nd `  L
) )  ->  ( E. k  e.  N.  ( s  +Q  ( *Q `  [ <. k ,  1o >. ]  ~Q  )
)  <Q  ( F `  k )  /\  E. j  e.  N.  (
( F `  j
)  +Q  ( *Q
`  [ <. j ,  1o >. ]  ~Q  )
)  <Q  s ) )
29 reeanv 2664 . . . . . 6  |-  ( E. k  e.  N.  E. j  e.  N.  (
( s  +Q  ( *Q `  [ <. k ,  1o >. ]  ~Q  )
)  <Q  ( F `  k )  /\  (
( F `  j
)  +Q  ( *Q
`  [ <. j ,  1o >. ]  ~Q  )
)  <Q  s )  <->  ( E. k  e.  N.  (
s  +Q  ( *Q
`  [ <. k ,  1o >. ]  ~Q  )
)  <Q  ( F `  k )  /\  E. j  e.  N.  (
( F `  j
)  +Q  ( *Q
`  [ <. j ,  1o >. ]  ~Q  )
)  <Q  s ) )
3028, 29sylibr 134 . . . . 5  |-  ( ( s  e.  ( 1st `  L )  /\  s  e.  ( 2nd `  L
) )  ->  E. k  e.  N.  E. j  e. 
N.  ( ( s  +Q  ( *Q `  [ <. k ,  1o >. ]  ~Q  ) ) 
<Q  ( F `  k
)  /\  ( ( F `  j )  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  ) )  <Q 
s ) )
3130adantl 277 . . . 4  |-  ( (
ph  /\  ( s  e.  ( 1st `  L
)  /\  s  e.  ( 2nd `  L ) ) )  ->  E. k  e.  N.  E. j  e. 
N.  ( ( s  +Q  ( *Q `  [ <. k ,  1o >. ]  ~Q  ) ) 
<Q  ( F `  k
)  /\  ( ( F `  j )  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  ) )  <Q 
s ) )
32 caucvgpr.f . . . . . . . 8  |-  ( ph  ->  F : N. --> Q. )
3332ad2antrr 488 . . . . . . 7  |-  ( ( ( ph  /\  (
s  e.  ( 1st `  L )  /\  s  e.  ( 2nd `  L
) ) )  /\  ( k  e.  N.  /\  j  e.  N. )
)  ->  F : N.
--> Q. )
34 caucvgpr.cau . . . . . . . 8  |-  ( ph  ->  A. n  e.  N.  A. k  e.  N.  (
n  <N  k  ->  (
( F `  n
)  <Q  ( ( F `
 k )  +Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) )  /\  ( F `  k ) 
<Q  ( ( F `  n )  +Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  )
) ) ) )
3534ad2antrr 488 . . . . . . 7  |-  ( ( ( ph  /\  (
s  e.  ( 1st `  L )  /\  s  e.  ( 2nd `  L
) ) )  /\  ( k  e.  N.  /\  j  e.  N. )
)  ->  A. n  e.  N.  A. k  e. 
N.  ( n  <N  k  ->  ( ( F `
 n )  <Q 
( ( F `  k )  +Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  )
)  /\  ( F `  k )  <Q  (
( F `  n
)  +Q  ( *Q
`  [ <. n ,  1o >. ]  ~Q  )
) ) ) )
36 simprl 529 . . . . . . 7  |-  ( ( ( ph  /\  (
s  e.  ( 1st `  L )  /\  s  e.  ( 2nd `  L
) ) )  /\  ( k  e.  N.  /\  j  e.  N. )
)  ->  k  e.  N. )
37 simprr 531 . . . . . . 7  |-  ( ( ( ph  /\  (
s  e.  ( 1st `  L )  /\  s  e.  ( 2nd `  L
) ) )  /\  ( k  e.  N.  /\  j  e.  N. )
)  ->  j  e.  N. )
3811simplbi 274 . . . . . . . . 9  |-  ( s  e.  ( 1st `  L
)  ->  s  e.  Q. )
3938ad2antrl 490 . . . . . . . 8  |-  ( (
ph  /\  ( s  e.  ( 1st `  L
)  /\  s  e.  ( 2nd `  L ) ) )  ->  s  e.  Q. )
4039adantr 276 . . . . . . 7  |-  ( ( ( ph  /\  (
s  e.  ( 1st `  L )  /\  s  e.  ( 2nd `  L
) ) )  /\  ( k  e.  N.  /\  j  e.  N. )
)  ->  s  e.  Q. )
4133, 35, 36, 37, 40caucvgprlemnkj 7726 . . . . . 6  |-  ( ( ( ph  /\  (
s  e.  ( 1st `  L )  /\  s  e.  ( 2nd `  L
) ) )  /\  ( k  e.  N.  /\  j  e.  N. )
)  ->  -.  (
( s  +Q  ( *Q `  [ <. k ,  1o >. ]  ~Q  )
)  <Q  ( F `  k )  /\  (
( F `  j
)  +Q  ( *Q
`  [ <. j ,  1o >. ]  ~Q  )
)  <Q  s ) )
4241pm2.21d 620 . . . . 5  |-  ( ( ( ph  /\  (
s  e.  ( 1st `  L )  /\  s  e.  ( 2nd `  L
) ) )  /\  ( k  e.  N.  /\  j  e.  N. )
)  ->  ( (
( s  +Q  ( *Q `  [ <. k ,  1o >. ]  ~Q  )
)  <Q  ( F `  k )  /\  (
( F `  j
)  +Q  ( *Q
`  [ <. j ,  1o >. ]  ~Q  )
)  <Q  s )  -> F.  ) )
4342rexlimdvva 2619 . . . 4  |-  ( (
ph  /\  ( s  e.  ( 1st `  L
)  /\  s  e.  ( 2nd `  L ) ) )  ->  ( E. k  e.  N.  E. j  e.  N.  (
( s  +Q  ( *Q `  [ <. k ,  1o >. ]  ~Q  )
)  <Q  ( F `  k )  /\  (
( F `  j
)  +Q  ( *Q
`  [ <. j ,  1o >. ]  ~Q  )
)  <Q  s )  -> F.  ) )
4431, 43mpd 13 . . 3  |-  ( (
ph  /\  ( s  e.  ( 1st `  L
)  /\  s  e.  ( 2nd `  L ) ) )  -> F.  )
4544inegd 1383 . 2  |-  ( ph  ->  -.  ( s  e.  ( 1st `  L
)  /\  s  e.  ( 2nd `  L ) ) )
4645ralrimivw 2568 1  |-  ( ph  ->  A. s  e.  Q.  -.  ( s  e.  ( 1st `  L )  /\  s  e.  ( 2nd `  L ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    = wceq 1364   F. wfal 1369    e. wcel 2164   A.wral 2472   E.wrex 2473   {crab 2476   <.cop 3621   class class class wbr 4029   -->wf 5250   ` cfv 5254  (class class class)co 5918   1stc1st 6191   2ndc2nd 6192   1oc1o 6462   [cec 6585   N.cnpi 7332    <N clti 7335    ~Q ceq 7339   Q.cnq 7340    +Q cplq 7342   *Qcrq 7344    <Q cltq 7345
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-nul 4155  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-iinf 4620
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-tr 4128  df-eprel 4320  df-id 4324  df-po 4327  df-iso 4328  df-iord 4397  df-on 4399  df-suc 4402  df-iom 4623  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-ov 5921  df-oprab 5922  df-mpo 5923  df-1st 6193  df-2nd 6194  df-recs 6358  df-irdg 6423  df-1o 6469  df-oadd 6473  df-omul 6474  df-er 6587  df-ec 6589  df-qs 6593  df-ni 7364  df-pli 7365  df-mi 7366  df-lti 7367  df-plpq 7404  df-mpq 7405  df-enq 7407  df-nqqs 7408  df-plqqs 7409  df-mqqs 7410  df-1nqqs 7411  df-rq 7412  df-ltnqqs 7413
This theorem is referenced by:  caucvgprlemcl  7736
  Copyright terms: Public domain W3C validator