ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  caucvgprprlemdisj Unicode version

Theorem caucvgprprlemdisj 7358
Description: Lemma for caucvgprpr 7368. The putative limit is disjoint. (Contributed by Jim Kingdon, 21-Dec-2020.)
Hypotheses
Ref Expression
caucvgprpr.f  |-  ( ph  ->  F : N. --> P. )
caucvgprpr.cau  |-  ( ph  ->  A. n  e.  N.  A. k  e.  N.  (
n  <N  k  ->  (
( F `  n
)  <P  ( ( F `
 k )  +P. 
<. { l  |  l 
<Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >. )  /\  ( F `  k
)  <P  ( ( F `
 n )  +P. 
<. { l  |  l 
<Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >. )
) ) )
caucvgprpr.bnd  |-  ( ph  ->  A. m  e.  N.  A  <P  ( F `  m ) )
caucvgprpr.lim  |-  L  = 
<. { l  e.  Q.  |  E. r  e.  N.  <. { p  |  p  <Q  ( l  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  )
) } ,  {
q  |  ( l  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) ) 
<Q  q } >.  <P  ( F `  r ) } ,  { u  e.  Q.  |  E. r  e.  N.  ( ( F `
 r )  +P. 
<. { p  |  p 
<Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. r ,  1o >. ]  ~Q  )  <Q  q } >. ) 
<P  <. { p  |  p  <Q  u } ,  { q  |  u 
<Q  q } >. } >.
Assertion
Ref Expression
caucvgprprlemdisj  |-  ( ph  ->  A. s  e.  Q.  -.  ( s  e.  ( 1st `  L )  /\  s  e.  ( 2nd `  L ) ) )
Distinct variable groups:    A, m    m, F    k, F, n, l    F, r, l    u, F, r    k, L    k, p, r, s    ph, r,
s    k, q, r, s   
p, l, s, q   
u, p, s, q   
u, n    n, l,
k    u, k
Allowed substitution hints:    ph( u, k, m, n, q, p, l)    A( u, k, n, s, r, q, p, l)    F( s, q, p)    L( u, m, n, s, r, q, p, l)

Proof of Theorem caucvgprprlemdisj
Dummy variables  a  b are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 caucvgprpr.lim . . . . . . . . 9  |-  L  = 
<. { l  e.  Q.  |  E. r  e.  N.  <. { p  |  p  <Q  ( l  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  )
) } ,  {
q  |  ( l  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) ) 
<Q  q } >.  <P  ( F `  r ) } ,  { u  e.  Q.  |  E. r  e.  N.  ( ( F `
 r )  +P. 
<. { p  |  p 
<Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. r ,  1o >. ]  ~Q  )  <Q  q } >. ) 
<P  <. { p  |  p  <Q  u } ,  { q  |  u 
<Q  q } >. } >.
21caucvgprprlemell 7341 . . . . . . . 8  |-  ( s  e.  ( 1st `  L
)  <->  ( s  e. 
Q.  /\  E. a  e.  N.  <. { p  |  p  <Q  ( s  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  ) ) } ,  { q  |  ( s  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  )
)  <Q  q } >.  <P 
( F `  a
) ) )
32simprbi 270 . . . . . . 7  |-  ( s  e.  ( 1st `  L
)  ->  E. a  e.  N.  <. { p  |  p  <Q  ( s  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  ) ) } ,  { q  |  ( s  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  )
)  <Q  q } >.  <P 
( F `  a
) )
41caucvgprprlemelu 7342 . . . . . . . 8  |-  ( s  e.  ( 2nd `  L
)  <->  ( s  e. 
Q.  /\  E. b  e.  N.  ( ( F `
 b )  +P. 
<. { p  |  p 
<Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. b ,  1o >. ]  ~Q  )  <Q  q } >. ) 
<P  <. { p  |  p  <Q  s } ,  { q  |  s 
<Q  q } >. )
)
54simprbi 270 . . . . . . 7  |-  ( s  e.  ( 2nd `  L
)  ->  E. b  e.  N.  ( ( F `
 b )  +P. 
<. { p  |  p 
<Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. b ,  1o >. ]  ~Q  )  <Q  q } >. ) 
<P  <. { p  |  p  <Q  s } ,  { q  |  s 
<Q  q } >. )
63, 5anim12i 332 . . . . . 6  |-  ( ( s  e.  ( 1st `  L )  /\  s  e.  ( 2nd `  L
) )  ->  ( E. a  e.  N.  <. { p  |  p  <Q  ( s  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  )
) } ,  {
q  |  ( s  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  ) ) 
<Q  q } >.  <P  ( F `  a )  /\  E. b  e.  N.  ( ( F `  b )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. b ,  1o >. ]  ~Q  )  <Q 
q } >. )  <P 
<. { p  |  p 
<Q  s } ,  {
q  |  s  <Q 
q } >. )
)
7 reeanv 2550 . . . . . 6  |-  ( E. a  e.  N.  E. b  e.  N.  ( <. { p  |  p 
<Q  ( s  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  )
) } ,  {
q  |  ( s  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  ) ) 
<Q  q } >.  <P  ( F `  a )  /\  ( ( F `  b )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. b ,  1o >. ]  ~Q  )  <Q 
q } >. )  <P 
<. { p  |  p 
<Q  s } ,  {
q  |  s  <Q 
q } >. )  <->  ( E. a  e.  N.  <. { p  |  p  <Q  ( s  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  )
) } ,  {
q  |  ( s  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  ) ) 
<Q  q } >.  <P  ( F `  a )  /\  E. b  e.  N.  ( ( F `  b )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. b ,  1o >. ]  ~Q  )  <Q 
q } >. )  <P 
<. { p  |  p 
<Q  s } ,  {
q  |  s  <Q 
q } >. )
)
86, 7sylibr 133 . . . . 5  |-  ( ( s  e.  ( 1st `  L )  /\  s  e.  ( 2nd `  L
) )  ->  E. a  e.  N.  E. b  e. 
N.  ( <. { p  |  p  <Q  ( s  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  ) ) } ,  { q  |  ( s  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  ) )  <Q 
q } >.  <P  ( F `  a )  /\  ( ( F `  b )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. b ,  1o >. ]  ~Q  )  <Q 
q } >. )  <P 
<. { p  |  p 
<Q  s } ,  {
q  |  s  <Q 
q } >. )
)
98adantl 272 . . . 4  |-  ( (
ph  /\  ( s  e.  ( 1st `  L
)  /\  s  e.  ( 2nd `  L ) ) )  ->  E. a  e.  N.  E. b  e. 
N.  ( <. { p  |  p  <Q  ( s  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  ) ) } ,  { q  |  ( s  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  ) )  <Q 
q } >.  <P  ( F `  a )  /\  ( ( F `  b )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. b ,  1o >. ]  ~Q  )  <Q 
q } >. )  <P 
<. { p  |  p 
<Q  s } ,  {
q  |  s  <Q 
q } >. )
)
10 caucvgprpr.f . . . . . . . 8  |-  ( ph  ->  F : N. --> P. )
1110ad2antrr 473 . . . . . . 7  |-  ( ( ( ph  /\  (
s  e.  ( 1st `  L )  /\  s  e.  ( 2nd `  L
) ) )  /\  ( a  e.  N.  /\  b  e.  N. )
)  ->  F : N.
--> P. )
12 caucvgprpr.cau . . . . . . . 8  |-  ( ph  ->  A. n  e.  N.  A. k  e.  N.  (
n  <N  k  ->  (
( F `  n
)  <P  ( ( F `
 k )  +P. 
<. { l  |  l 
<Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >. )  /\  ( F `  k
)  <P  ( ( F `
 n )  +P. 
<. { l  |  l 
<Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >. )
) ) )
1312ad2antrr 473 . . . . . . 7  |-  ( ( ( ph  /\  (
s  e.  ( 1st `  L )  /\  s  e.  ( 2nd `  L
) ) )  /\  ( a  e.  N.  /\  b  e.  N. )
)  ->  A. n  e.  N.  A. k  e. 
N.  ( n  <N  k  ->  ( ( F `
 n )  <P 
( ( F `  k )  +P.  <. { l  |  l  <Q 
( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >. )  /\  ( F `  k
)  <P  ( ( F `
 n )  +P. 
<. { l  |  l 
<Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >. )
) ) )
14 simprl 499 . . . . . . 7  |-  ( ( ( ph  /\  (
s  e.  ( 1st `  L )  /\  s  e.  ( 2nd `  L
) ) )  /\  ( a  e.  N.  /\  b  e.  N. )
)  ->  a  e.  N. )
15 simprr 500 . . . . . . 7  |-  ( ( ( ph  /\  (
s  e.  ( 1st `  L )  /\  s  e.  ( 2nd `  L
) ) )  /\  ( a  e.  N.  /\  b  e.  N. )
)  ->  b  e.  N. )
161caucvgprprlemell 7341 . . . . . . . . . 10  |-  ( s  e.  ( 1st `  L
)  <->  ( s  e. 
Q.  /\  E. r  e.  N.  <. { p  |  p  <Q  ( s  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) ) } ,  { q  |  ( s  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  )
)  <Q  q } >.  <P 
( F `  r
) ) )
1716simplbi 269 . . . . . . . . 9  |-  ( s  e.  ( 1st `  L
)  ->  s  e.  Q. )
1817ad2antrl 475 . . . . . . . 8  |-  ( (
ph  /\  ( s  e.  ( 1st `  L
)  /\  s  e.  ( 2nd `  L ) ) )  ->  s  e.  Q. )
1918adantr 271 . . . . . . 7  |-  ( ( ( ph  /\  (
s  e.  ( 1st `  L )  /\  s  e.  ( 2nd `  L
) ) )  /\  ( a  e.  N.  /\  b  e.  N. )
)  ->  s  e.  Q. )
2011, 13, 14, 15, 19caucvgprprlemnkj 7348 . . . . . 6  |-  ( ( ( ph  /\  (
s  e.  ( 1st `  L )  /\  s  e.  ( 2nd `  L
) ) )  /\  ( a  e.  N.  /\  b  e.  N. )
)  ->  -.  ( <. { p  |  p 
<Q  ( s  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  )
) } ,  {
q  |  ( s  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  ) ) 
<Q  q } >.  <P  ( F `  a )  /\  ( ( F `  b )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. b ,  1o >. ]  ~Q  )  <Q 
q } >. )  <P 
<. { p  |  p 
<Q  s } ,  {
q  |  s  <Q 
q } >. )
)
2120pm2.21d 587 . . . . 5  |-  ( ( ( ph  /\  (
s  e.  ( 1st `  L )  /\  s  e.  ( 2nd `  L
) ) )  /\  ( a  e.  N.  /\  b  e.  N. )
)  ->  ( ( <. { p  |  p 
<Q  ( s  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  )
) } ,  {
q  |  ( s  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  ) ) 
<Q  q } >.  <P  ( F `  a )  /\  ( ( F `  b )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. b ,  1o >. ]  ~Q  )  <Q 
q } >. )  <P 
<. { p  |  p 
<Q  s } ,  {
q  |  s  <Q 
q } >. )  -> F.  ) )
2221rexlimdvva 2510 . . . 4  |-  ( (
ph  /\  ( s  e.  ( 1st `  L
)  /\  s  e.  ( 2nd `  L ) ) )  ->  ( E. a  e.  N.  E. b  e.  N.  ( <. { p  |  p 
<Q  ( s  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  )
) } ,  {
q  |  ( s  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  ) ) 
<Q  q } >.  <P  ( F `  a )  /\  ( ( F `  b )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. b ,  1o >. ]  ~Q  )  <Q 
q } >. )  <P 
<. { p  |  p 
<Q  s } ,  {
q  |  s  <Q 
q } >. )  -> F.  ) )
239, 22mpd 13 . . 3  |-  ( (
ph  /\  ( s  e.  ( 1st `  L
)  /\  s  e.  ( 2nd `  L ) ) )  -> F.  )
2423inegd 1315 . 2  |-  ( ph  ->  -.  ( s  e.  ( 1st `  L
)  /\  s  e.  ( 2nd `  L ) ) )
2524ralrimivw 2459 1  |-  ( ph  ->  A. s  e.  Q.  -.  ( s  e.  ( 1st `  L )  /\  s  e.  ( 2nd `  L ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    = wceq 1296   F. wfal 1301    e. wcel 1445   {cab 2081   A.wral 2370   E.wrex 2371   {crab 2374   <.cop 3469   class class class wbr 3867   -->wf 5045   ` cfv 5049  (class class class)co 5690   1stc1st 5947   2ndc2nd 5948   1oc1o 6212   [cec 6330   N.cnpi 6928    <N clti 6931    ~Q ceq 6935   Q.cnq 6936    +Q cplq 6938   *Qcrq 6940    <Q cltq 6941   P.cnp 6947    +P. cpp 6949    <P cltp 6951
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 582  ax-in2 583  ax-io 668  ax-5 1388  ax-7 1389  ax-gen 1390  ax-ie1 1434  ax-ie2 1435  ax-8 1447  ax-10 1448  ax-11 1449  ax-i12 1450  ax-bndl 1451  ax-4 1452  ax-13 1456  ax-14 1457  ax-17 1471  ax-i9 1475  ax-ial 1479  ax-i5r 1480  ax-ext 2077  ax-coll 3975  ax-sep 3978  ax-nul 3986  ax-pow 4030  ax-pr 4060  ax-un 4284  ax-setind 4381  ax-iinf 4431
This theorem depends on definitions:  df-bi 116  df-dc 784  df-3or 928  df-3an 929  df-tru 1299  df-fal 1302  df-nf 1402  df-sb 1700  df-eu 1958  df-mo 1959  df-clab 2082  df-cleq 2088  df-clel 2091  df-nfc 2224  df-ne 2263  df-ral 2375  df-rex 2376  df-reu 2377  df-rab 2379  df-v 2635  df-sbc 2855  df-csb 2948  df-dif 3015  df-un 3017  df-in 3019  df-ss 3026  df-nul 3303  df-pw 3451  df-sn 3472  df-pr 3473  df-op 3475  df-uni 3676  df-int 3711  df-iun 3754  df-br 3868  df-opab 3922  df-mpt 3923  df-tr 3959  df-eprel 4140  df-id 4144  df-po 4147  df-iso 4148  df-iord 4217  df-on 4219  df-suc 4222  df-iom 4434  df-xp 4473  df-rel 4474  df-cnv 4475  df-co 4476  df-dm 4477  df-rn 4478  df-res 4479  df-ima 4480  df-iota 5014  df-fun 5051  df-fn 5052  df-f 5053  df-f1 5054  df-fo 5055  df-f1o 5056  df-fv 5057  df-ov 5693  df-oprab 5694  df-mpt2 5695  df-1st 5949  df-2nd 5950  df-recs 6108  df-irdg 6173  df-1o 6219  df-2o 6220  df-oadd 6223  df-omul 6224  df-er 6332  df-ec 6334  df-qs 6338  df-ni 6960  df-pli 6961  df-mi 6962  df-lti 6963  df-plpq 7000  df-mpq 7001  df-enq 7003  df-nqqs 7004  df-plqqs 7005  df-mqqs 7006  df-1nqqs 7007  df-rq 7008  df-ltnqqs 7009  df-enq0 7080  df-nq0 7081  df-0nq0 7082  df-plq0 7083  df-mq0 7084  df-inp 7122  df-iplp 7124  df-iltp 7126
This theorem is referenced by:  caucvgprprlemcl  7360
  Copyright terms: Public domain W3C validator