ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  caucvgprprlemdisj Unicode version

Theorem caucvgprprlemdisj 7643
Description: Lemma for caucvgprpr 7653. The putative limit is disjoint. (Contributed by Jim Kingdon, 21-Dec-2020.)
Hypotheses
Ref Expression
caucvgprpr.f  |-  ( ph  ->  F : N. --> P. )
caucvgprpr.cau  |-  ( ph  ->  A. n  e.  N.  A. k  e.  N.  (
n  <N  k  ->  (
( F `  n
)  <P  ( ( F `
 k )  +P. 
<. { l  |  l 
<Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >. )  /\  ( F `  k
)  <P  ( ( F `
 n )  +P. 
<. { l  |  l 
<Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >. )
) ) )
caucvgprpr.bnd  |-  ( ph  ->  A. m  e.  N.  A  <P  ( F `  m ) )
caucvgprpr.lim  |-  L  = 
<. { l  e.  Q.  |  E. r  e.  N.  <. { p  |  p  <Q  ( l  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  )
) } ,  {
q  |  ( l  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) ) 
<Q  q } >.  <P  ( F `  r ) } ,  { u  e.  Q.  |  E. r  e.  N.  ( ( F `
 r )  +P. 
<. { p  |  p 
<Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. r ,  1o >. ]  ~Q  )  <Q  q } >. ) 
<P  <. { p  |  p  <Q  u } ,  { q  |  u 
<Q  q } >. } >.
Assertion
Ref Expression
caucvgprprlemdisj  |-  ( ph  ->  A. s  e.  Q.  -.  ( s  e.  ( 1st `  L )  /\  s  e.  ( 2nd `  L ) ) )
Distinct variable groups:    A, m    m, F    k, F, n, l    F, r, l    u, F, r    k, L    k, p, r, s    ph, r,
s    k, q, r, s   
p, l, s, q   
u, p, s, q   
u, n    n, l,
k    u, k
Allowed substitution hints:    ph( u, k, m, n, q, p, l)    A( u, k, n, s, r, q, p, l)    F( s, q, p)    L( u, m, n, s, r, q, p, l)

Proof of Theorem caucvgprprlemdisj
Dummy variables  a  b are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 caucvgprpr.lim . . . . . . . . 9  |-  L  = 
<. { l  e.  Q.  |  E. r  e.  N.  <. { p  |  p  <Q  ( l  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  )
) } ,  {
q  |  ( l  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) ) 
<Q  q } >.  <P  ( F `  r ) } ,  { u  e.  Q.  |  E. r  e.  N.  ( ( F `
 r )  +P. 
<. { p  |  p 
<Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. r ,  1o >. ]  ~Q  )  <Q  q } >. ) 
<P  <. { p  |  p  <Q  u } ,  { q  |  u 
<Q  q } >. } >.
21caucvgprprlemell 7626 . . . . . . . 8  |-  ( s  e.  ( 1st `  L
)  <->  ( s  e. 
Q.  /\  E. a  e.  N.  <. { p  |  p  <Q  ( s  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  ) ) } ,  { q  |  ( s  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  )
)  <Q  q } >.  <P 
( F `  a
) ) )
32simprbi 273 . . . . . . 7  |-  ( s  e.  ( 1st `  L
)  ->  E. a  e.  N.  <. { p  |  p  <Q  ( s  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  ) ) } ,  { q  |  ( s  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  )
)  <Q  q } >.  <P 
( F `  a
) )
41caucvgprprlemelu 7627 . . . . . . . 8  |-  ( s  e.  ( 2nd `  L
)  <->  ( s  e. 
Q.  /\  E. b  e.  N.  ( ( F `
 b )  +P. 
<. { p  |  p 
<Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. b ,  1o >. ]  ~Q  )  <Q  q } >. ) 
<P  <. { p  |  p  <Q  s } ,  { q  |  s 
<Q  q } >. )
)
54simprbi 273 . . . . . . 7  |-  ( s  e.  ( 2nd `  L
)  ->  E. b  e.  N.  ( ( F `
 b )  +P. 
<. { p  |  p 
<Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. b ,  1o >. ]  ~Q  )  <Q  q } >. ) 
<P  <. { p  |  p  <Q  s } ,  { q  |  s 
<Q  q } >. )
63, 5anim12i 336 . . . . . 6  |-  ( ( s  e.  ( 1st `  L )  /\  s  e.  ( 2nd `  L
) )  ->  ( E. a  e.  N.  <. { p  |  p  <Q  ( s  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  )
) } ,  {
q  |  ( s  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  ) ) 
<Q  q } >.  <P  ( F `  a )  /\  E. b  e.  N.  ( ( F `  b )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. b ,  1o >. ]  ~Q  )  <Q 
q } >. )  <P 
<. { p  |  p 
<Q  s } ,  {
q  |  s  <Q 
q } >. )
)
7 reeanv 2635 . . . . . 6  |-  ( E. a  e.  N.  E. b  e.  N.  ( <. { p  |  p 
<Q  ( s  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  )
) } ,  {
q  |  ( s  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  ) ) 
<Q  q } >.  <P  ( F `  a )  /\  ( ( F `  b )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. b ,  1o >. ]  ~Q  )  <Q 
q } >. )  <P 
<. { p  |  p 
<Q  s } ,  {
q  |  s  <Q 
q } >. )  <->  ( E. a  e.  N.  <. { p  |  p  <Q  ( s  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  )
) } ,  {
q  |  ( s  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  ) ) 
<Q  q } >.  <P  ( F `  a )  /\  E. b  e.  N.  ( ( F `  b )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. b ,  1o >. ]  ~Q  )  <Q 
q } >. )  <P 
<. { p  |  p 
<Q  s } ,  {
q  |  s  <Q 
q } >. )
)
86, 7sylibr 133 . . . . 5  |-  ( ( s  e.  ( 1st `  L )  /\  s  e.  ( 2nd `  L
) )  ->  E. a  e.  N.  E. b  e. 
N.  ( <. { p  |  p  <Q  ( s  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  ) ) } ,  { q  |  ( s  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  ) )  <Q 
q } >.  <P  ( F `  a )  /\  ( ( F `  b )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. b ,  1o >. ]  ~Q  )  <Q 
q } >. )  <P 
<. { p  |  p 
<Q  s } ,  {
q  |  s  <Q 
q } >. )
)
98adantl 275 . . . 4  |-  ( (
ph  /\  ( s  e.  ( 1st `  L
)  /\  s  e.  ( 2nd `  L ) ) )  ->  E. a  e.  N.  E. b  e. 
N.  ( <. { p  |  p  <Q  ( s  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  ) ) } ,  { q  |  ( s  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  ) )  <Q 
q } >.  <P  ( F `  a )  /\  ( ( F `  b )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. b ,  1o >. ]  ~Q  )  <Q 
q } >. )  <P 
<. { p  |  p 
<Q  s } ,  {
q  |  s  <Q 
q } >. )
)
10 caucvgprpr.f . . . . . . . 8  |-  ( ph  ->  F : N. --> P. )
1110ad2antrr 480 . . . . . . 7  |-  ( ( ( ph  /\  (
s  e.  ( 1st `  L )  /\  s  e.  ( 2nd `  L
) ) )  /\  ( a  e.  N.  /\  b  e.  N. )
)  ->  F : N.
--> P. )
12 caucvgprpr.cau . . . . . . . 8  |-  ( ph  ->  A. n  e.  N.  A. k  e.  N.  (
n  <N  k  ->  (
( F `  n
)  <P  ( ( F `
 k )  +P. 
<. { l  |  l 
<Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >. )  /\  ( F `  k
)  <P  ( ( F `
 n )  +P. 
<. { l  |  l 
<Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >. )
) ) )
1312ad2antrr 480 . . . . . . 7  |-  ( ( ( ph  /\  (
s  e.  ( 1st `  L )  /\  s  e.  ( 2nd `  L
) ) )  /\  ( a  e.  N.  /\  b  e.  N. )
)  ->  A. n  e.  N.  A. k  e. 
N.  ( n  <N  k  ->  ( ( F `
 n )  <P 
( ( F `  k )  +P.  <. { l  |  l  <Q 
( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >. )  /\  ( F `  k
)  <P  ( ( F `
 n )  +P. 
<. { l  |  l 
<Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >. )
) ) )
14 simprl 521 . . . . . . 7  |-  ( ( ( ph  /\  (
s  e.  ( 1st `  L )  /\  s  e.  ( 2nd `  L
) ) )  /\  ( a  e.  N.  /\  b  e.  N. )
)  ->  a  e.  N. )
15 simprr 522 . . . . . . 7  |-  ( ( ( ph  /\  (
s  e.  ( 1st `  L )  /\  s  e.  ( 2nd `  L
) ) )  /\  ( a  e.  N.  /\  b  e.  N. )
)  ->  b  e.  N. )
161caucvgprprlemell 7626 . . . . . . . . . 10  |-  ( s  e.  ( 1st `  L
)  <->  ( s  e. 
Q.  /\  E. r  e.  N.  <. { p  |  p  <Q  ( s  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) ) } ,  { q  |  ( s  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  )
)  <Q  q } >.  <P 
( F `  r
) ) )
1716simplbi 272 . . . . . . . . 9  |-  ( s  e.  ( 1st `  L
)  ->  s  e.  Q. )
1817ad2antrl 482 . . . . . . . 8  |-  ( (
ph  /\  ( s  e.  ( 1st `  L
)  /\  s  e.  ( 2nd `  L ) ) )  ->  s  e.  Q. )
1918adantr 274 . . . . . . 7  |-  ( ( ( ph  /\  (
s  e.  ( 1st `  L )  /\  s  e.  ( 2nd `  L
) ) )  /\  ( a  e.  N.  /\  b  e.  N. )
)  ->  s  e.  Q. )
2011, 13, 14, 15, 19caucvgprprlemnkj 7633 . . . . . 6  |-  ( ( ( ph  /\  (
s  e.  ( 1st `  L )  /\  s  e.  ( 2nd `  L
) ) )  /\  ( a  e.  N.  /\  b  e.  N. )
)  ->  -.  ( <. { p  |  p 
<Q  ( s  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  )
) } ,  {
q  |  ( s  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  ) ) 
<Q  q } >.  <P  ( F `  a )  /\  ( ( F `  b )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. b ,  1o >. ]  ~Q  )  <Q 
q } >. )  <P 
<. { p  |  p 
<Q  s } ,  {
q  |  s  <Q 
q } >. )
)
2120pm2.21d 609 . . . . 5  |-  ( ( ( ph  /\  (
s  e.  ( 1st `  L )  /\  s  e.  ( 2nd `  L
) ) )  /\  ( a  e.  N.  /\  b  e.  N. )
)  ->  ( ( <. { p  |  p 
<Q  ( s  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  )
) } ,  {
q  |  ( s  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  ) ) 
<Q  q } >.  <P  ( F `  a )  /\  ( ( F `  b )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. b ,  1o >. ]  ~Q  )  <Q 
q } >. )  <P 
<. { p  |  p 
<Q  s } ,  {
q  |  s  <Q 
q } >. )  -> F.  ) )
2221rexlimdvva 2591 . . . 4  |-  ( (
ph  /\  ( s  e.  ( 1st `  L
)  /\  s  e.  ( 2nd `  L ) ) )  ->  ( E. a  e.  N.  E. b  e.  N.  ( <. { p  |  p 
<Q  ( s  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  )
) } ,  {
q  |  ( s  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  ) ) 
<Q  q } >.  <P  ( F `  a )  /\  ( ( F `  b )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. b ,  1o >. ]  ~Q  )  <Q 
q } >. )  <P 
<. { p  |  p 
<Q  s } ,  {
q  |  s  <Q 
q } >. )  -> F.  ) )
239, 22mpd 13 . . 3  |-  ( (
ph  /\  ( s  e.  ( 1st `  L
)  /\  s  e.  ( 2nd `  L ) ) )  -> F.  )
2423inegd 1362 . 2  |-  ( ph  ->  -.  ( s  e.  ( 1st `  L
)  /\  s  e.  ( 2nd `  L ) ) )
2524ralrimivw 2540 1  |-  ( ph  ->  A. s  e.  Q.  -.  ( s  e.  ( 1st `  L )  /\  s  e.  ( 2nd `  L ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    = wceq 1343   F. wfal 1348    e. wcel 2136   {cab 2151   A.wral 2444   E.wrex 2445   {crab 2448   <.cop 3579   class class class wbr 3982   -->wf 5184   ` cfv 5188  (class class class)co 5842   1stc1st 6106   2ndc2nd 6107   1oc1o 6377   [cec 6499   N.cnpi 7213    <N clti 7216    ~Q ceq 7220   Q.cnq 7221    +Q cplq 7223   *Qcrq 7225    <Q cltq 7226   P.cnp 7232    +P. cpp 7234    <P cltp 7236
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-coll 4097  ax-sep 4100  ax-nul 4108  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-iinf 4565
This theorem depends on definitions:  df-bi 116  df-dc 825  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-ral 2449  df-rex 2450  df-reu 2451  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-tr 4081  df-eprel 4267  df-id 4271  df-po 4274  df-iso 4275  df-iord 4344  df-on 4346  df-suc 4349  df-iom 4568  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-ov 5845  df-oprab 5846  df-mpo 5847  df-1st 6108  df-2nd 6109  df-recs 6273  df-irdg 6338  df-1o 6384  df-2o 6385  df-oadd 6388  df-omul 6389  df-er 6501  df-ec 6503  df-qs 6507  df-ni 7245  df-pli 7246  df-mi 7247  df-lti 7248  df-plpq 7285  df-mpq 7286  df-enq 7288  df-nqqs 7289  df-plqqs 7290  df-mqqs 7291  df-1nqqs 7292  df-rq 7293  df-ltnqqs 7294  df-enq0 7365  df-nq0 7366  df-0nq0 7367  df-plq0 7368  df-mq0 7369  df-inp 7407  df-iplp 7409  df-iltp 7411
This theorem is referenced by:  caucvgprprlemcl  7645
  Copyright terms: Public domain W3C validator