ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  caucvgprprlemdisj Unicode version

Theorem caucvgprprlemdisj 7814
Description: Lemma for caucvgprpr 7824. The putative limit is disjoint. (Contributed by Jim Kingdon, 21-Dec-2020.)
Hypotheses
Ref Expression
caucvgprpr.f  |-  ( ph  ->  F : N. --> P. )
caucvgprpr.cau  |-  ( ph  ->  A. n  e.  N.  A. k  e.  N.  (
n  <N  k  ->  (
( F `  n
)  <P  ( ( F `
 k )  +P. 
<. { l  |  l 
<Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >. )  /\  ( F `  k
)  <P  ( ( F `
 n )  +P. 
<. { l  |  l 
<Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >. )
) ) )
caucvgprpr.bnd  |-  ( ph  ->  A. m  e.  N.  A  <P  ( F `  m ) )
caucvgprpr.lim  |-  L  = 
<. { l  e.  Q.  |  E. r  e.  N.  <. { p  |  p  <Q  ( l  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  )
) } ,  {
q  |  ( l  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) ) 
<Q  q } >.  <P  ( F `  r ) } ,  { u  e.  Q.  |  E. r  e.  N.  ( ( F `
 r )  +P. 
<. { p  |  p 
<Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. r ,  1o >. ]  ~Q  )  <Q  q } >. ) 
<P  <. { p  |  p  <Q  u } ,  { q  |  u 
<Q  q } >. } >.
Assertion
Ref Expression
caucvgprprlemdisj  |-  ( ph  ->  A. s  e.  Q.  -.  ( s  e.  ( 1st `  L )  /\  s  e.  ( 2nd `  L ) ) )
Distinct variable groups:    A, m    m, F    k, F, n, l    F, r, l    u, F, r    k, L    k, p, r, s    ph, r,
s    k, q, r, s   
p, l, s, q   
u, p, s, q   
u, n    n, l,
k    u, k
Allowed substitution hints:    ph( u, k, m, n, q, p, l)    A( u, k, n, s, r, q, p, l)    F( s, q, p)    L( u, m, n, s, r, q, p, l)

Proof of Theorem caucvgprprlemdisj
Dummy variables  a  b are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 caucvgprpr.lim . . . . . . . . 9  |-  L  = 
<. { l  e.  Q.  |  E. r  e.  N.  <. { p  |  p  <Q  ( l  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  )
) } ,  {
q  |  ( l  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) ) 
<Q  q } >.  <P  ( F `  r ) } ,  { u  e.  Q.  |  E. r  e.  N.  ( ( F `
 r )  +P. 
<. { p  |  p 
<Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. r ,  1o >. ]  ~Q  )  <Q  q } >. ) 
<P  <. { p  |  p  <Q  u } ,  { q  |  u 
<Q  q } >. } >.
21caucvgprprlemell 7797 . . . . . . . 8  |-  ( s  e.  ( 1st `  L
)  <->  ( s  e. 
Q.  /\  E. a  e.  N.  <. { p  |  p  <Q  ( s  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  ) ) } ,  { q  |  ( s  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  )
)  <Q  q } >.  <P 
( F `  a
) ) )
32simprbi 275 . . . . . . 7  |-  ( s  e.  ( 1st `  L
)  ->  E. a  e.  N.  <. { p  |  p  <Q  ( s  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  ) ) } ,  { q  |  ( s  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  )
)  <Q  q } >.  <P 
( F `  a
) )
41caucvgprprlemelu 7798 . . . . . . . 8  |-  ( s  e.  ( 2nd `  L
)  <->  ( s  e. 
Q.  /\  E. b  e.  N.  ( ( F `
 b )  +P. 
<. { p  |  p 
<Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. b ,  1o >. ]  ~Q  )  <Q  q } >. ) 
<P  <. { p  |  p  <Q  s } ,  { q  |  s 
<Q  q } >. )
)
54simprbi 275 . . . . . . 7  |-  ( s  e.  ( 2nd `  L
)  ->  E. b  e.  N.  ( ( F `
 b )  +P. 
<. { p  |  p 
<Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. b ,  1o >. ]  ~Q  )  <Q  q } >. ) 
<P  <. { p  |  p  <Q  s } ,  { q  |  s 
<Q  q } >. )
63, 5anim12i 338 . . . . . 6  |-  ( ( s  e.  ( 1st `  L )  /\  s  e.  ( 2nd `  L
) )  ->  ( E. a  e.  N.  <. { p  |  p  <Q  ( s  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  )
) } ,  {
q  |  ( s  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  ) ) 
<Q  q } >.  <P  ( F `  a )  /\  E. b  e.  N.  ( ( F `  b )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. b ,  1o >. ]  ~Q  )  <Q 
q } >. )  <P 
<. { p  |  p 
<Q  s } ,  {
q  |  s  <Q 
q } >. )
)
7 reeanv 2675 . . . . . 6  |-  ( E. a  e.  N.  E. b  e.  N.  ( <. { p  |  p 
<Q  ( s  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  )
) } ,  {
q  |  ( s  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  ) ) 
<Q  q } >.  <P  ( F `  a )  /\  ( ( F `  b )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. b ,  1o >. ]  ~Q  )  <Q 
q } >. )  <P 
<. { p  |  p 
<Q  s } ,  {
q  |  s  <Q 
q } >. )  <->  ( E. a  e.  N.  <. { p  |  p  <Q  ( s  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  )
) } ,  {
q  |  ( s  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  ) ) 
<Q  q } >.  <P  ( F `  a )  /\  E. b  e.  N.  ( ( F `  b )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. b ,  1o >. ]  ~Q  )  <Q 
q } >. )  <P 
<. { p  |  p 
<Q  s } ,  {
q  |  s  <Q 
q } >. )
)
86, 7sylibr 134 . . . . 5  |-  ( ( s  e.  ( 1st `  L )  /\  s  e.  ( 2nd `  L
) )  ->  E. a  e.  N.  E. b  e. 
N.  ( <. { p  |  p  <Q  ( s  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  ) ) } ,  { q  |  ( s  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  ) )  <Q 
q } >.  <P  ( F `  a )  /\  ( ( F `  b )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. b ,  1o >. ]  ~Q  )  <Q 
q } >. )  <P 
<. { p  |  p 
<Q  s } ,  {
q  |  s  <Q 
q } >. )
)
98adantl 277 . . . 4  |-  ( (
ph  /\  ( s  e.  ( 1st `  L
)  /\  s  e.  ( 2nd `  L ) ) )  ->  E. a  e.  N.  E. b  e. 
N.  ( <. { p  |  p  <Q  ( s  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  ) ) } ,  { q  |  ( s  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  ) )  <Q 
q } >.  <P  ( F `  a )  /\  ( ( F `  b )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. b ,  1o >. ]  ~Q  )  <Q 
q } >. )  <P 
<. { p  |  p 
<Q  s } ,  {
q  |  s  <Q 
q } >. )
)
10 caucvgprpr.f . . . . . . . 8  |-  ( ph  ->  F : N. --> P. )
1110ad2antrr 488 . . . . . . 7  |-  ( ( ( ph  /\  (
s  e.  ( 1st `  L )  /\  s  e.  ( 2nd `  L
) ) )  /\  ( a  e.  N.  /\  b  e.  N. )
)  ->  F : N.
--> P. )
12 caucvgprpr.cau . . . . . . . 8  |-  ( ph  ->  A. n  e.  N.  A. k  e.  N.  (
n  <N  k  ->  (
( F `  n
)  <P  ( ( F `
 k )  +P. 
<. { l  |  l 
<Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >. )  /\  ( F `  k
)  <P  ( ( F `
 n )  +P. 
<. { l  |  l 
<Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >. )
) ) )
1312ad2antrr 488 . . . . . . 7  |-  ( ( ( ph  /\  (
s  e.  ( 1st `  L )  /\  s  e.  ( 2nd `  L
) ) )  /\  ( a  e.  N.  /\  b  e.  N. )
)  ->  A. n  e.  N.  A. k  e. 
N.  ( n  <N  k  ->  ( ( F `
 n )  <P 
( ( F `  k )  +P.  <. { l  |  l  <Q 
( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >. )  /\  ( F `  k
)  <P  ( ( F `
 n )  +P. 
<. { l  |  l 
<Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >. )
) ) )
14 simprl 529 . . . . . . 7  |-  ( ( ( ph  /\  (
s  e.  ( 1st `  L )  /\  s  e.  ( 2nd `  L
) ) )  /\  ( a  e.  N.  /\  b  e.  N. )
)  ->  a  e.  N. )
15 simprr 531 . . . . . . 7  |-  ( ( ( ph  /\  (
s  e.  ( 1st `  L )  /\  s  e.  ( 2nd `  L
) ) )  /\  ( a  e.  N.  /\  b  e.  N. )
)  ->  b  e.  N. )
161caucvgprprlemell 7797 . . . . . . . . . 10  |-  ( s  e.  ( 1st `  L
)  <->  ( s  e. 
Q.  /\  E. r  e.  N.  <. { p  |  p  <Q  ( s  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) ) } ,  { q  |  ( s  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  )
)  <Q  q } >.  <P 
( F `  r
) ) )
1716simplbi 274 . . . . . . . . 9  |-  ( s  e.  ( 1st `  L
)  ->  s  e.  Q. )
1817ad2antrl 490 . . . . . . . 8  |-  ( (
ph  /\  ( s  e.  ( 1st `  L
)  /\  s  e.  ( 2nd `  L ) ) )  ->  s  e.  Q. )
1918adantr 276 . . . . . . 7  |-  ( ( ( ph  /\  (
s  e.  ( 1st `  L )  /\  s  e.  ( 2nd `  L
) ) )  /\  ( a  e.  N.  /\  b  e.  N. )
)  ->  s  e.  Q. )
2011, 13, 14, 15, 19caucvgprprlemnkj 7804 . . . . . 6  |-  ( ( ( ph  /\  (
s  e.  ( 1st `  L )  /\  s  e.  ( 2nd `  L
) ) )  /\  ( a  e.  N.  /\  b  e.  N. )
)  ->  -.  ( <. { p  |  p 
<Q  ( s  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  )
) } ,  {
q  |  ( s  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  ) ) 
<Q  q } >.  <P  ( F `  a )  /\  ( ( F `  b )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. b ,  1o >. ]  ~Q  )  <Q 
q } >. )  <P 
<. { p  |  p 
<Q  s } ,  {
q  |  s  <Q 
q } >. )
)
2120pm2.21d 620 . . . . 5  |-  ( ( ( ph  /\  (
s  e.  ( 1st `  L )  /\  s  e.  ( 2nd `  L
) ) )  /\  ( a  e.  N.  /\  b  e.  N. )
)  ->  ( ( <. { p  |  p 
<Q  ( s  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  )
) } ,  {
q  |  ( s  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  ) ) 
<Q  q } >.  <P  ( F `  a )  /\  ( ( F `  b )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. b ,  1o >. ]  ~Q  )  <Q 
q } >. )  <P 
<. { p  |  p 
<Q  s } ,  {
q  |  s  <Q 
q } >. )  -> F.  ) )
2221rexlimdvva 2630 . . . 4  |-  ( (
ph  /\  ( s  e.  ( 1st `  L
)  /\  s  e.  ( 2nd `  L ) ) )  ->  ( E. a  e.  N.  E. b  e.  N.  ( <. { p  |  p 
<Q  ( s  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  )
) } ,  {
q  |  ( s  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  ) ) 
<Q  q } >.  <P  ( F `  a )  /\  ( ( F `  b )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. b ,  1o >. ]  ~Q  )  <Q 
q } >. )  <P 
<. { p  |  p 
<Q  s } ,  {
q  |  s  <Q 
q } >. )  -> F.  ) )
239, 22mpd 13 . . 3  |-  ( (
ph  /\  ( s  e.  ( 1st `  L
)  /\  s  e.  ( 2nd `  L ) ) )  -> F.  )
2423inegd 1391 . 2  |-  ( ph  ->  -.  ( s  e.  ( 1st `  L
)  /\  s  e.  ( 2nd `  L ) ) )
2524ralrimivw 2579 1  |-  ( ph  ->  A. s  e.  Q.  -.  ( s  e.  ( 1st `  L )  /\  s  e.  ( 2nd `  L ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    = wceq 1372   F. wfal 1377    e. wcel 2175   {cab 2190   A.wral 2483   E.wrex 2484   {crab 2487   <.cop 3635   class class class wbr 4043   -->wf 5266   ` cfv 5270  (class class class)co 5943   1stc1st 6223   2ndc2nd 6224   1oc1o 6494   [cec 6617   N.cnpi 7384    <N clti 7387    ~Q ceq 7391   Q.cnq 7392    +Q cplq 7394   *Qcrq 7396    <Q cltq 7397   P.cnp 7403    +P. cpp 7405    <P cltp 7407
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-coll 4158  ax-sep 4161  ax-nul 4169  ax-pow 4217  ax-pr 4252  ax-un 4479  ax-setind 4584  ax-iinf 4635
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1375  df-fal 1378  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ne 2376  df-ral 2488  df-rex 2489  df-reu 2490  df-rab 2492  df-v 2773  df-sbc 2998  df-csb 3093  df-dif 3167  df-un 3169  df-in 3171  df-ss 3178  df-nul 3460  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-int 3885  df-iun 3928  df-br 4044  df-opab 4105  df-mpt 4106  df-tr 4142  df-eprel 4335  df-id 4339  df-po 4342  df-iso 4343  df-iord 4412  df-on 4414  df-suc 4417  df-iom 4638  df-xp 4680  df-rel 4681  df-cnv 4682  df-co 4683  df-dm 4684  df-rn 4685  df-res 4686  df-ima 4687  df-iota 5231  df-fun 5272  df-fn 5273  df-f 5274  df-f1 5275  df-fo 5276  df-f1o 5277  df-fv 5278  df-ov 5946  df-oprab 5947  df-mpo 5948  df-1st 6225  df-2nd 6226  df-recs 6390  df-irdg 6455  df-1o 6501  df-2o 6502  df-oadd 6505  df-omul 6506  df-er 6619  df-ec 6621  df-qs 6625  df-ni 7416  df-pli 7417  df-mi 7418  df-lti 7419  df-plpq 7456  df-mpq 7457  df-enq 7459  df-nqqs 7460  df-plqqs 7461  df-mqqs 7462  df-1nqqs 7463  df-rq 7464  df-ltnqqs 7465  df-enq0 7536  df-nq0 7537  df-0nq0 7538  df-plq0 7539  df-mq0 7540  df-inp 7578  df-iplp 7580  df-iltp 7582
This theorem is referenced by:  caucvgprprlemcl  7816
  Copyright terms: Public domain W3C validator