ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  resqrexlemgt0 Unicode version

Theorem resqrexlemgt0 11167
Description: Lemma for resqrex 11173. A limit is nonnegative. (Contributed by Jim Kingdon, 7-Aug-2021.)
Hypotheses
Ref Expression
resqrexlemex.seq  |-  F  =  seq 1 ( ( y  e.  RR+ ,  z  e.  RR+  |->  ( ( y  +  ( A  /  y ) )  /  2 ) ) ,  ( NN  X.  { ( 1  +  A ) } ) )
resqrexlemex.a  |-  ( ph  ->  A  e.  RR )
resqrexlemex.agt0  |-  ( ph  ->  0  <_  A )
resqrexlemgt0.rr  |-  ( ph  ->  L  e.  RR )
resqrexlemgt0.lim  |-  ( ph  ->  A. e  e.  RR+  E. j  e.  NN  A. i  e.  ( ZZ>= `  j ) ( ( F `  i )  <  ( L  +  e )  /\  L  <  ( ( F `  i )  +  e ) ) )
Assertion
Ref Expression
resqrexlemgt0  |-  ( ph  ->  0  <_  L )
Distinct variable groups:    y, A, z   
e, F    e, L, i, j    ph, i, j   
z, j, ph    ph, y
Allowed substitution hints:    ph( e)    A( e,
i, j)    F( y,
z, i, j)    L( y, z)

Proof of Theorem resqrexlemgt0
StepHypRef Expression
1 oveq2 5927 . . . . . . . . 9  |-  ( e  =  -u L  ->  ( L  +  e )  =  ( L  +  -u L ) )
21breq2d 4042 . . . . . . . 8  |-  ( e  =  -u L  ->  (
( F `  i
)  <  ( L  +  e )  <->  ( F `  i )  <  ( L  +  -u L ) ) )
3 oveq2 5927 . . . . . . . . 9  |-  ( e  =  -u L  ->  (
( F `  i
)  +  e )  =  ( ( F `
 i )  + 
-u L ) )
43breq2d 4042 . . . . . . . 8  |-  ( e  =  -u L  ->  ( L  <  ( ( F `
 i )  +  e )  <->  L  <  ( ( F `  i
)  +  -u L
) ) )
52, 4anbi12d 473 . . . . . . 7  |-  ( e  =  -u L  ->  (
( ( F `  i )  <  ( L  +  e )  /\  L  <  ( ( F `  i )  +  e ) )  <-> 
( ( F `  i )  <  ( L  +  -u L )  /\  L  <  (
( F `  i
)  +  -u L
) ) ) )
65rexralbidv 2520 . . . . . 6  |-  ( e  =  -u L  ->  ( E. j  e.  NN  A. i  e.  ( ZZ>= `  j ) ( ( F `  i )  <  ( L  +  e )  /\  L  <  ( ( F `  i )  +  e ) )  <->  E. j  e.  NN  A. i  e.  ( ZZ>= `  j )
( ( F `  i )  <  ( L  +  -u L )  /\  L  <  (
( F `  i
)  +  -u L
) ) ) )
7 resqrexlemgt0.lim . . . . . . 7  |-  ( ph  ->  A. e  e.  RR+  E. j  e.  NN  A. i  e.  ( ZZ>= `  j ) ( ( F `  i )  <  ( L  +  e )  /\  L  <  ( ( F `  i )  +  e ) ) )
87adantr 276 . . . . . 6  |-  ( (
ph  /\  L  <  0 )  ->  A. e  e.  RR+  E. j  e.  NN  A. i  e.  ( ZZ>= `  j )
( ( F `  i )  <  ( L  +  e )  /\  L  <  ( ( F `  i )  +  e ) ) )
9 resqrexlemgt0.rr . . . . . . . . 9  |-  ( ph  ->  L  e.  RR )
109adantr 276 . . . . . . . 8  |-  ( (
ph  /\  L  <  0 )  ->  L  e.  RR )
1110renegcld 8401 . . . . . . 7  |-  ( (
ph  /\  L  <  0 )  ->  -u L  e.  RR )
129lt0neg1d 8536 . . . . . . . 8  |-  ( ph  ->  ( L  <  0  <->  0  <  -u L ) )
1312biimpa 296 . . . . . . 7  |-  ( (
ph  /\  L  <  0 )  ->  0  <  -u L )
1411, 13elrpd 9762 . . . . . 6  |-  ( (
ph  /\  L  <  0 )  ->  -u L  e.  RR+ )
156, 8, 14rspcdva 2870 . . . . 5  |-  ( (
ph  /\  L  <  0 )  ->  E. j  e.  NN  A. i  e.  ( ZZ>= `  j )
( ( F `  i )  <  ( L  +  -u L )  /\  L  <  (
( F `  i
)  +  -u L
) ) )
16 simpl 109 . . . . . . . 8  |-  ( ( ( F `  i
)  <  ( L  +  -u L )  /\  L  <  ( ( F `
 i )  + 
-u L ) )  ->  ( F `  i )  <  ( L  +  -u L ) )
1710recnd 8050 . . . . . . . . . 10  |-  ( (
ph  /\  L  <  0 )  ->  L  e.  CC )
1817negidd 8322 . . . . . . . . 9  |-  ( (
ph  /\  L  <  0 )  ->  ( L  +  -u L )  =  0 )
1918breq2d 4042 . . . . . . . 8  |-  ( (
ph  /\  L  <  0 )  ->  (
( F `  i
)  <  ( L  +  -u L )  <->  ( F `  i )  <  0
) )
2016, 19imbitrid 154 . . . . . . 7  |-  ( (
ph  /\  L  <  0 )  ->  (
( ( F `  i )  <  ( L  +  -u L )  /\  L  <  (
( F `  i
)  +  -u L
) )  ->  ( F `  i )  <  0 ) )
2120ralimdv 2562 . . . . . 6  |-  ( (
ph  /\  L  <  0 )  ->  ( A. i  e.  ( ZZ>=
`  j ) ( ( F `  i
)  <  ( L  +  -u L )  /\  L  <  ( ( F `
 i )  + 
-u L ) )  ->  A. i  e.  (
ZZ>= `  j ) ( F `  i )  <  0 ) )
2221reximdv 2595 . . . . 5  |-  ( (
ph  /\  L  <  0 )  ->  ( E. j  e.  NN  A. i  e.  ( ZZ>= `  j ) ( ( F `  i )  <  ( L  +  -u L )  /\  L  <  ( ( F `  i )  +  -u L ) )  ->  E. j  e.  NN  A. i  e.  ( ZZ>= `  j ) ( F `
 i )  <  0 ) )
2315, 22mpd 13 . . . 4  |-  ( (
ph  /\  L  <  0 )  ->  E. j  e.  NN  A. i  e.  ( ZZ>= `  j )
( F `  i
)  <  0 )
24 0red 8022 . . . . . . . . . . 11  |-  ( (
ph  /\  ( j  e.  NN  /\  i  e.  ( ZZ>= `  j )
) )  ->  0  e.  RR )
25 eluznn 9668 . . . . . . . . . . . . 13  |-  ( ( j  e.  NN  /\  i  e.  ( ZZ>= `  j ) )  -> 
i  e.  NN )
26 resqrexlemex.seq . . . . . . . . . . . . . . 15  |-  F  =  seq 1 ( ( y  e.  RR+ ,  z  e.  RR+  |->  ( ( y  +  ( A  /  y ) )  /  2 ) ) ,  ( NN  X.  { ( 1  +  A ) } ) )
27 resqrexlemex.a . . . . . . . . . . . . . . 15  |-  ( ph  ->  A  e.  RR )
28 resqrexlemex.agt0 . . . . . . . . . . . . . . 15  |-  ( ph  ->  0  <_  A )
2926, 27, 28resqrexlemf 11154 . . . . . . . . . . . . . 14  |-  ( ph  ->  F : NN --> RR+ )
3029ffvelcdmda 5694 . . . . . . . . . . . . 13  |-  ( (
ph  /\  i  e.  NN )  ->  ( F `
 i )  e.  RR+ )
3125, 30sylan2 286 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( j  e.  NN  /\  i  e.  ( ZZ>= `  j )
) )  ->  ( F `  i )  e.  RR+ )
3231rpred 9765 . . . . . . . . . . 11  |-  ( (
ph  /\  ( j  e.  NN  /\  i  e.  ( ZZ>= `  j )
) )  ->  ( F `  i )  e.  RR )
3331rpgt0d 9768 . . . . . . . . . . 11  |-  ( (
ph  /\  ( j  e.  NN  /\  i  e.  ( ZZ>= `  j )
) )  ->  0  <  ( F `  i
) )
3424, 32, 33ltnsymd 8141 . . . . . . . . . 10  |-  ( (
ph  /\  ( j  e.  NN  /\  i  e.  ( ZZ>= `  j )
) )  ->  -.  ( F `  i )  <  0 )
3534pm2.21d 620 . . . . . . . . 9  |-  ( (
ph  /\  ( j  e.  NN  /\  i  e.  ( ZZ>= `  j )
) )  ->  (
( F `  i
)  <  0  -> F.  ) )
3635anassrs 400 . . . . . . . 8  |-  ( ( ( ph  /\  j  e.  NN )  /\  i  e.  ( ZZ>= `  j )
)  ->  ( ( F `  i )  <  0  -> F.  )
)
3736ralimdva 2561 . . . . . . 7  |-  ( (
ph  /\  j  e.  NN )  ->  ( A. i  e.  ( ZZ>= `  j ) ( F `
 i )  <  0  ->  A. i  e.  ( ZZ>= `  j ) F.  ) )
38 nnz 9339 . . . . . . . . 9  |-  ( j  e.  NN  ->  j  e.  ZZ )
39 uzid 9609 . . . . . . . . . 10  |-  ( j  e.  ZZ  ->  j  e.  ( ZZ>= `  j )
)
40 elex2 2776 . . . . . . . . . 10  |-  ( j  e.  ( ZZ>= `  j
)  ->  E. z 
z  e.  ( ZZ>= `  j ) )
41 r19.3rmv 3538 . . . . . . . . . 10  |-  ( E. z  z  e.  (
ZZ>= `  j )  -> 
( F.  <->  A. i  e.  ( ZZ>= `  j ) F.  ) )
4239, 40, 413syl 17 . . . . . . . . 9  |-  ( j  e.  ZZ  ->  ( F. 
<-> 
A. i  e.  (
ZZ>= `  j ) F.  ) )
4338, 42syl 14 . . . . . . . 8  |-  ( j  e.  NN  ->  ( F. 
<-> 
A. i  e.  (
ZZ>= `  j ) F.  ) )
4443adantl 277 . . . . . . 7  |-  ( (
ph  /\  j  e.  NN )  ->  ( F.  <->  A. i  e.  ( ZZ>=
`  j ) F.  ) )
4537, 44sylibrd 169 . . . . . 6  |-  ( (
ph  /\  j  e.  NN )  ->  ( A. i  e.  ( ZZ>= `  j ) ( F `
 i )  <  0  -> F.  )
)
4645rexlimdva 2611 . . . . 5  |-  ( ph  ->  ( E. j  e.  NN  A. i  e.  ( ZZ>= `  j )
( F `  i
)  <  0  -> F.  ) )
4746adantr 276 . . . 4  |-  ( (
ph  /\  L  <  0 )  ->  ( E. j  e.  NN  A. i  e.  ( ZZ>= `  j ) ( F `
 i )  <  0  -> F.  )
)
4823, 47mpd 13 . . 3  |-  ( (
ph  /\  L  <  0 )  -> F.  )
4948inegd 1383 . 2  |-  ( ph  ->  -.  L  <  0
)
50 0re 8021 . . 3  |-  0  e.  RR
51 lenlt 8097 . . 3  |-  ( ( 0  e.  RR  /\  L  e.  RR )  ->  ( 0  <_  L  <->  -.  L  <  0 ) )
5250, 9, 51sylancr 414 . 2  |-  ( ph  ->  ( 0  <_  L  <->  -.  L  <  0 ) )
5349, 52mpbird 167 1  |-  ( ph  ->  0  <_  L )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1364   F. wfal 1369   E.wex 1503    e. wcel 2164   A.wral 2472   E.wrex 2473   {csn 3619   class class class wbr 4030    X. cxp 4658   ` cfv 5255  (class class class)co 5919    e. cmpo 5921   RRcr 7873   0cc0 7874   1c1 7875    + caddc 7877    < clt 8056    <_ cle 8057   -ucneg 8193    / cdiv 8693   NNcn 8984   2c2 9035   ZZcz 9320   ZZ>=cuz 9595   RR+crp 9722    seqcseq 10521
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4145  ax-sep 4148  ax-nul 4156  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-setind 4570  ax-iinf 4621  ax-cnex 7965  ax-resscn 7966  ax-1cn 7967  ax-1re 7968  ax-icn 7969  ax-addcl 7970  ax-addrcl 7971  ax-mulcl 7972  ax-mulrcl 7973  ax-addcom 7974  ax-mulcom 7975  ax-addass 7976  ax-mulass 7977  ax-distr 7978  ax-i2m1 7979  ax-0lt1 7980  ax-1rid 7981  ax-0id 7982  ax-rnegex 7983  ax-precex 7984  ax-cnre 7985  ax-pre-ltirr 7986  ax-pre-ltwlin 7987  ax-pre-lttrn 7988  ax-pre-apti 7989  ax-pre-ltadd 7990  ax-pre-mulgt0 7991  ax-pre-mulext 7992
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2987  df-csb 3082  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3448  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-int 3872  df-iun 3915  df-br 4031  df-opab 4092  df-mpt 4093  df-tr 4129  df-id 4325  df-po 4328  df-iso 4329  df-iord 4398  df-on 4400  df-ilim 4401  df-suc 4403  df-iom 4624  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-riota 5874  df-ov 5922  df-oprab 5923  df-mpo 5924  df-1st 6195  df-2nd 6196  df-recs 6360  df-frec 6446  df-pnf 8058  df-mnf 8059  df-xr 8060  df-ltxr 8061  df-le 8062  df-sub 8194  df-neg 8195  df-reap 8596  df-ap 8603  df-div 8694  df-inn 8985  df-2 9043  df-n0 9244  df-z 9321  df-uz 9596  df-rp 9723  df-seqfrec 10522
This theorem is referenced by:  resqrexlemglsq  11169  resqrexlemex  11172
  Copyright terms: Public domain W3C validator