ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  resqrexlemgt0 Unicode version

Theorem resqrexlemgt0 11331
Description: Lemma for resqrex 11337. A limit is nonnegative. (Contributed by Jim Kingdon, 7-Aug-2021.)
Hypotheses
Ref Expression
resqrexlemex.seq  |-  F  =  seq 1 ( ( y  e.  RR+ ,  z  e.  RR+  |->  ( ( y  +  ( A  /  y ) )  /  2 ) ) ,  ( NN  X.  { ( 1  +  A ) } ) )
resqrexlemex.a  |-  ( ph  ->  A  e.  RR )
resqrexlemex.agt0  |-  ( ph  ->  0  <_  A )
resqrexlemgt0.rr  |-  ( ph  ->  L  e.  RR )
resqrexlemgt0.lim  |-  ( ph  ->  A. e  e.  RR+  E. j  e.  NN  A. i  e.  ( ZZ>= `  j ) ( ( F `  i )  <  ( L  +  e )  /\  L  <  ( ( F `  i )  +  e ) ) )
Assertion
Ref Expression
resqrexlemgt0  |-  ( ph  ->  0  <_  L )
Distinct variable groups:    y, A, z   
e, F    e, L, i, j    ph, i, j   
z, j, ph    ph, y
Allowed substitution hints:    ph( e)    A( e,
i, j)    F( y,
z, i, j)    L( y, z)

Proof of Theorem resqrexlemgt0
StepHypRef Expression
1 oveq2 5952 . . . . . . . . 9  |-  ( e  =  -u L  ->  ( L  +  e )  =  ( L  +  -u L ) )
21breq2d 4056 . . . . . . . 8  |-  ( e  =  -u L  ->  (
( F `  i
)  <  ( L  +  e )  <->  ( F `  i )  <  ( L  +  -u L ) ) )
3 oveq2 5952 . . . . . . . . 9  |-  ( e  =  -u L  ->  (
( F `  i
)  +  e )  =  ( ( F `
 i )  + 
-u L ) )
43breq2d 4056 . . . . . . . 8  |-  ( e  =  -u L  ->  ( L  <  ( ( F `
 i )  +  e )  <->  L  <  ( ( F `  i
)  +  -u L
) ) )
52, 4anbi12d 473 . . . . . . 7  |-  ( e  =  -u L  ->  (
( ( F `  i )  <  ( L  +  e )  /\  L  <  ( ( F `  i )  +  e ) )  <-> 
( ( F `  i )  <  ( L  +  -u L )  /\  L  <  (
( F `  i
)  +  -u L
) ) ) )
65rexralbidv 2532 . . . . . 6  |-  ( e  =  -u L  ->  ( E. j  e.  NN  A. i  e.  ( ZZ>= `  j ) ( ( F `  i )  <  ( L  +  e )  /\  L  <  ( ( F `  i )  +  e ) )  <->  E. j  e.  NN  A. i  e.  ( ZZ>= `  j )
( ( F `  i )  <  ( L  +  -u L )  /\  L  <  (
( F `  i
)  +  -u L
) ) ) )
7 resqrexlemgt0.lim . . . . . . 7  |-  ( ph  ->  A. e  e.  RR+  E. j  e.  NN  A. i  e.  ( ZZ>= `  j ) ( ( F `  i )  <  ( L  +  e )  /\  L  <  ( ( F `  i )  +  e ) ) )
87adantr 276 . . . . . 6  |-  ( (
ph  /\  L  <  0 )  ->  A. e  e.  RR+  E. j  e.  NN  A. i  e.  ( ZZ>= `  j )
( ( F `  i )  <  ( L  +  e )  /\  L  <  ( ( F `  i )  +  e ) ) )
9 resqrexlemgt0.rr . . . . . . . . 9  |-  ( ph  ->  L  e.  RR )
109adantr 276 . . . . . . . 8  |-  ( (
ph  /\  L  <  0 )  ->  L  e.  RR )
1110renegcld 8452 . . . . . . 7  |-  ( (
ph  /\  L  <  0 )  ->  -u L  e.  RR )
129lt0neg1d 8588 . . . . . . . 8  |-  ( ph  ->  ( L  <  0  <->  0  <  -u L ) )
1312biimpa 296 . . . . . . 7  |-  ( (
ph  /\  L  <  0 )  ->  0  <  -u L )
1411, 13elrpd 9815 . . . . . 6  |-  ( (
ph  /\  L  <  0 )  ->  -u L  e.  RR+ )
156, 8, 14rspcdva 2882 . . . . 5  |-  ( (
ph  /\  L  <  0 )  ->  E. j  e.  NN  A. i  e.  ( ZZ>= `  j )
( ( F `  i )  <  ( L  +  -u L )  /\  L  <  (
( F `  i
)  +  -u L
) ) )
16 simpl 109 . . . . . . . 8  |-  ( ( ( F `  i
)  <  ( L  +  -u L )  /\  L  <  ( ( F `
 i )  + 
-u L ) )  ->  ( F `  i )  <  ( L  +  -u L ) )
1710recnd 8101 . . . . . . . . . 10  |-  ( (
ph  /\  L  <  0 )  ->  L  e.  CC )
1817negidd 8373 . . . . . . . . 9  |-  ( (
ph  /\  L  <  0 )  ->  ( L  +  -u L )  =  0 )
1918breq2d 4056 . . . . . . . 8  |-  ( (
ph  /\  L  <  0 )  ->  (
( F `  i
)  <  ( L  +  -u L )  <->  ( F `  i )  <  0
) )
2016, 19imbitrid 154 . . . . . . 7  |-  ( (
ph  /\  L  <  0 )  ->  (
( ( F `  i )  <  ( L  +  -u L )  /\  L  <  (
( F `  i
)  +  -u L
) )  ->  ( F `  i )  <  0 ) )
2120ralimdv 2574 . . . . . 6  |-  ( (
ph  /\  L  <  0 )  ->  ( A. i  e.  ( ZZ>=
`  j ) ( ( F `  i
)  <  ( L  +  -u L )  /\  L  <  ( ( F `
 i )  + 
-u L ) )  ->  A. i  e.  (
ZZ>= `  j ) ( F `  i )  <  0 ) )
2221reximdv 2607 . . . . 5  |-  ( (
ph  /\  L  <  0 )  ->  ( E. j  e.  NN  A. i  e.  ( ZZ>= `  j ) ( ( F `  i )  <  ( L  +  -u L )  /\  L  <  ( ( F `  i )  +  -u L ) )  ->  E. j  e.  NN  A. i  e.  ( ZZ>= `  j ) ( F `
 i )  <  0 ) )
2315, 22mpd 13 . . . 4  |-  ( (
ph  /\  L  <  0 )  ->  E. j  e.  NN  A. i  e.  ( ZZ>= `  j )
( F `  i
)  <  0 )
24 0red 8073 . . . . . . . . . . 11  |-  ( (
ph  /\  ( j  e.  NN  /\  i  e.  ( ZZ>= `  j )
) )  ->  0  e.  RR )
25 eluznn 9721 . . . . . . . . . . . . 13  |-  ( ( j  e.  NN  /\  i  e.  ( ZZ>= `  j ) )  -> 
i  e.  NN )
26 resqrexlemex.seq . . . . . . . . . . . . . . 15  |-  F  =  seq 1 ( ( y  e.  RR+ ,  z  e.  RR+  |->  ( ( y  +  ( A  /  y ) )  /  2 ) ) ,  ( NN  X.  { ( 1  +  A ) } ) )
27 resqrexlemex.a . . . . . . . . . . . . . . 15  |-  ( ph  ->  A  e.  RR )
28 resqrexlemex.agt0 . . . . . . . . . . . . . . 15  |-  ( ph  ->  0  <_  A )
2926, 27, 28resqrexlemf 11318 . . . . . . . . . . . . . 14  |-  ( ph  ->  F : NN --> RR+ )
3029ffvelcdmda 5715 . . . . . . . . . . . . 13  |-  ( (
ph  /\  i  e.  NN )  ->  ( F `
 i )  e.  RR+ )
3125, 30sylan2 286 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( j  e.  NN  /\  i  e.  ( ZZ>= `  j )
) )  ->  ( F `  i )  e.  RR+ )
3231rpred 9818 . . . . . . . . . . 11  |-  ( (
ph  /\  ( j  e.  NN  /\  i  e.  ( ZZ>= `  j )
) )  ->  ( F `  i )  e.  RR )
3331rpgt0d 9821 . . . . . . . . . . 11  |-  ( (
ph  /\  ( j  e.  NN  /\  i  e.  ( ZZ>= `  j )
) )  ->  0  <  ( F `  i
) )
3424, 32, 33ltnsymd 8192 . . . . . . . . . 10  |-  ( (
ph  /\  ( j  e.  NN  /\  i  e.  ( ZZ>= `  j )
) )  ->  -.  ( F `  i )  <  0 )
3534pm2.21d 620 . . . . . . . . 9  |-  ( (
ph  /\  ( j  e.  NN  /\  i  e.  ( ZZ>= `  j )
) )  ->  (
( F `  i
)  <  0  -> F.  ) )
3635anassrs 400 . . . . . . . 8  |-  ( ( ( ph  /\  j  e.  NN )  /\  i  e.  ( ZZ>= `  j )
)  ->  ( ( F `  i )  <  0  -> F.  )
)
3736ralimdva 2573 . . . . . . 7  |-  ( (
ph  /\  j  e.  NN )  ->  ( A. i  e.  ( ZZ>= `  j ) ( F `
 i )  <  0  ->  A. i  e.  ( ZZ>= `  j ) F.  ) )
38 nnz 9391 . . . . . . . . 9  |-  ( j  e.  NN  ->  j  e.  ZZ )
39 uzid 9662 . . . . . . . . . 10  |-  ( j  e.  ZZ  ->  j  e.  ( ZZ>= `  j )
)
40 elex2 2788 . . . . . . . . . 10  |-  ( j  e.  ( ZZ>= `  j
)  ->  E. z 
z  e.  ( ZZ>= `  j ) )
41 r19.3rmv 3551 . . . . . . . . . 10  |-  ( E. z  z  e.  (
ZZ>= `  j )  -> 
( F.  <->  A. i  e.  ( ZZ>= `  j ) F.  ) )
4239, 40, 413syl 17 . . . . . . . . 9  |-  ( j  e.  ZZ  ->  ( F. 
<-> 
A. i  e.  (
ZZ>= `  j ) F.  ) )
4338, 42syl 14 . . . . . . . 8  |-  ( j  e.  NN  ->  ( F. 
<-> 
A. i  e.  (
ZZ>= `  j ) F.  ) )
4443adantl 277 . . . . . . 7  |-  ( (
ph  /\  j  e.  NN )  ->  ( F.  <->  A. i  e.  ( ZZ>=
`  j ) F.  ) )
4537, 44sylibrd 169 . . . . . 6  |-  ( (
ph  /\  j  e.  NN )  ->  ( A. i  e.  ( ZZ>= `  j ) ( F `
 i )  <  0  -> F.  )
)
4645rexlimdva 2623 . . . . 5  |-  ( ph  ->  ( E. j  e.  NN  A. i  e.  ( ZZ>= `  j )
( F `  i
)  <  0  -> F.  ) )
4746adantr 276 . . . 4  |-  ( (
ph  /\  L  <  0 )  ->  ( E. j  e.  NN  A. i  e.  ( ZZ>= `  j ) ( F `
 i )  <  0  -> F.  )
)
4823, 47mpd 13 . . 3  |-  ( (
ph  /\  L  <  0 )  -> F.  )
4948inegd 1392 . 2  |-  ( ph  ->  -.  L  <  0
)
50 0re 8072 . . 3  |-  0  e.  RR
51 lenlt 8148 . . 3  |-  ( ( 0  e.  RR  /\  L  e.  RR )  ->  ( 0  <_  L  <->  -.  L  <  0 ) )
5250, 9, 51sylancr 414 . 2  |-  ( ph  ->  ( 0  <_  L  <->  -.  L  <  0 ) )
5349, 52mpbird 167 1  |-  ( ph  ->  0  <_  L )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1373   F. wfal 1378   E.wex 1515    e. wcel 2176   A.wral 2484   E.wrex 2485   {csn 3633   class class class wbr 4044    X. cxp 4673   ` cfv 5271  (class class class)co 5944    e. cmpo 5946   RRcr 7924   0cc0 7925   1c1 7926    + caddc 7928    < clt 8107    <_ cle 8108   -ucneg 8244    / cdiv 8745   NNcn 9036   2c2 9087   ZZcz 9372   ZZ>=cuz 9648   RR+crp 9775    seqcseq 10592
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-coll 4159  ax-sep 4162  ax-nul 4170  ax-pow 4218  ax-pr 4253  ax-un 4480  ax-setind 4585  ax-iinf 4636  ax-cnex 8016  ax-resscn 8017  ax-1cn 8018  ax-1re 8019  ax-icn 8020  ax-addcl 8021  ax-addrcl 8022  ax-mulcl 8023  ax-mulrcl 8024  ax-addcom 8025  ax-mulcom 8026  ax-addass 8027  ax-mulass 8028  ax-distr 8029  ax-i2m1 8030  ax-0lt1 8031  ax-1rid 8032  ax-0id 8033  ax-rnegex 8034  ax-precex 8035  ax-cnre 8036  ax-pre-ltirr 8037  ax-pre-ltwlin 8038  ax-pre-lttrn 8039  ax-pre-apti 8040  ax-pre-ltadd 8041  ax-pre-mulgt0 8042  ax-pre-mulext 8043
This theorem depends on definitions:  df-bi 117  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-nel 2472  df-ral 2489  df-rex 2490  df-reu 2491  df-rmo 2492  df-rab 2493  df-v 2774  df-sbc 2999  df-csb 3094  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3461  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-iun 3929  df-br 4045  df-opab 4106  df-mpt 4107  df-tr 4143  df-id 4340  df-po 4343  df-iso 4344  df-iord 4413  df-on 4415  df-ilim 4416  df-suc 4418  df-iom 4639  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-rn 4686  df-res 4687  df-ima 4688  df-iota 5232  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-riota 5899  df-ov 5947  df-oprab 5948  df-mpo 5949  df-1st 6226  df-2nd 6227  df-recs 6391  df-frec 6477  df-pnf 8109  df-mnf 8110  df-xr 8111  df-ltxr 8112  df-le 8113  df-sub 8245  df-neg 8246  df-reap 8648  df-ap 8655  df-div 8746  df-inn 9037  df-2 9095  df-n0 9296  df-z 9373  df-uz 9649  df-rp 9776  df-seqfrec 10593
This theorem is referenced by:  resqrexlemglsq  11333  resqrexlemex  11336
  Copyright terms: Public domain W3C validator