ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dmres Unicode version

Theorem dmres 4964
Description: The domain of a restriction. Exercise 14 of [TakeutiZaring] p. 25. (Contributed by NM, 1-Aug-1994.)
Assertion
Ref Expression
dmres  |-  dom  ( A  |`  B )  =  ( B  i^i  dom  A )

Proof of Theorem dmres
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vex 2763 . . . . 5  |-  x  e. 
_V
21eldm2 4861 . . . 4  |-  ( x  e.  dom  ( A  |`  B )  <->  E. y <. x ,  y >.  e.  ( A  |`  B ) )
3 19.41v 1914 . . . . 5  |-  ( E. y ( <. x ,  y >.  e.  A  /\  x  e.  B
)  <->  ( E. y <. x ,  y >.  e.  A  /\  x  e.  B ) )
4 vex 2763 . . . . . . 7  |-  y  e. 
_V
54opelres 4948 . . . . . 6  |-  ( <.
x ,  y >.  e.  ( A  |`  B )  <-> 
( <. x ,  y
>.  e.  A  /\  x  e.  B ) )
65exbii 1616 . . . . 5  |-  ( E. y <. x ,  y
>.  e.  ( A  |`  B )  <->  E. y
( <. x ,  y
>.  e.  A  /\  x  e.  B ) )
71eldm2 4861 . . . . . 6  |-  ( x  e.  dom  A  <->  E. y <. x ,  y >.  e.  A )
87anbi1i 458 . . . . 5  |-  ( ( x  e.  dom  A  /\  x  e.  B
)  <->  ( E. y <. x ,  y >.  e.  A  /\  x  e.  B ) )
93, 6, 83bitr4i 212 . . . 4  |-  ( E. y <. x ,  y
>.  e.  ( A  |`  B )  <->  ( x  e.  dom  A  /\  x  e.  B ) )
102, 9bitr2i 185 . . 3  |-  ( ( x  e.  dom  A  /\  x  e.  B
)  <->  x  e.  dom  ( A  |`  B ) )
1110ineqri 3353 . 2  |-  ( dom 
A  i^i  B )  =  dom  ( A  |`  B )
12 incom 3352 . 2  |-  ( dom 
A  i^i  B )  =  ( B  i^i  dom 
A )
1311, 12eqtr3i 2216 1  |-  dom  ( A  |`  B )  =  ( B  i^i  dom  A )
Colors of variables: wff set class
Syntax hints:    /\ wa 104    = wceq 1364   E.wex 1503    e. wcel 2164    i^i cin 3153   <.cop 3622   dom cdm 4660    |` cres 4662
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2167  ax-ext 2175  ax-sep 4148  ax-pow 4204  ax-pr 4239
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-v 2762  df-un 3158  df-in 3160  df-ss 3167  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-br 4031  df-opab 4092  df-xp 4666  df-dm 4670  df-res 4672
This theorem is referenced by:  ssdmres  4965  dmresexg  4966  imadisj  5028  ndmima  5043  imainrect  5112  dmresv  5125  resdmres  5158  funimacnv  5331  fnresdisj  5365  fnres  5371  ssimaex  5619  fnreseql  5669  respreima  5687  ffvresb  5722  fsnunfv  5760  funfvima  5791  offres  6189  smores  6347  smores3  6348  smores2  6349  fnfi  6997  sbthlemi5  7022  sbthlem7  7024  dmaddpi  7387  dmmulpi  7388  fvsetsid  12655  setsfun  12656  setsfun0  12657  setsresg  12659  lmres  14427  metreslem  14559
  Copyright terms: Public domain W3C validator