| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > dmres | Unicode version | ||
| Description: The domain of a restriction. Exercise 14 of [TakeutiZaring] p. 25. (Contributed by NM, 1-Aug-1994.) | 
| Ref | Expression | 
|---|---|
| dmres | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | vex 2766 | 
. . . . 5
 | |
| 2 | 1 | eldm2 4864 | 
. . . 4
 | 
| 3 | 19.41v 1917 | 
. . . . 5
 | |
| 4 | vex 2766 | 
. . . . . . 7
 | |
| 5 | 4 | opelres 4951 | 
. . . . . 6
 | 
| 6 | 5 | exbii 1619 | 
. . . . 5
 | 
| 7 | 1 | eldm2 4864 | 
. . . . . 6
 | 
| 8 | 7 | anbi1i 458 | 
. . . . 5
 | 
| 9 | 3, 6, 8 | 3bitr4i 212 | 
. . . 4
 | 
| 10 | 2, 9 | bitr2i 185 | 
. . 3
 | 
| 11 | 10 | ineqri 3356 | 
. 2
 | 
| 12 | incom 3355 | 
. 2
 | |
| 13 | 11, 12 | eqtr3i 2219 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-br 4034 df-opab 4095 df-xp 4669 df-dm 4673 df-res 4675 | 
| This theorem is referenced by: ssdmres 4968 dmresexg 4969 imadisj 5031 ndmima 5046 imainrect 5115 dmresv 5128 resdmres 5161 funimacnv 5334 fnresdisj 5368 fnres 5374 ssimaex 5622 fnreseql 5672 respreima 5690 ffvresb 5725 fsnunfv 5763 funfvima 5794 offres 6192 smores 6350 smores3 6351 smores2 6352 fnfi 7002 sbthlemi5 7027 sbthlem7 7029 dmaddpi 7392 dmmulpi 7393 fvsetsid 12712 setsfun 12713 setsfun0 12714 setsresg 12716 lmres 14484 metreslem 14616 | 
| Copyright terms: Public domain | W3C validator |