ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dmres Unicode version

Theorem dmres 4963
Description: The domain of a restriction. Exercise 14 of [TakeutiZaring] p. 25. (Contributed by NM, 1-Aug-1994.)
Assertion
Ref Expression
dmres  |-  dom  ( A  |`  B )  =  ( B  i^i  dom  A )

Proof of Theorem dmres
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vex 2763 . . . . 5  |-  x  e. 
_V
21eldm2 4860 . . . 4  |-  ( x  e.  dom  ( A  |`  B )  <->  E. y <. x ,  y >.  e.  ( A  |`  B ) )
3 19.41v 1914 . . . . 5  |-  ( E. y ( <. x ,  y >.  e.  A  /\  x  e.  B
)  <->  ( E. y <. x ,  y >.  e.  A  /\  x  e.  B ) )
4 vex 2763 . . . . . . 7  |-  y  e. 
_V
54opelres 4947 . . . . . 6  |-  ( <.
x ,  y >.  e.  ( A  |`  B )  <-> 
( <. x ,  y
>.  e.  A  /\  x  e.  B ) )
65exbii 1616 . . . . 5  |-  ( E. y <. x ,  y
>.  e.  ( A  |`  B )  <->  E. y
( <. x ,  y
>.  e.  A  /\  x  e.  B ) )
71eldm2 4860 . . . . . 6  |-  ( x  e.  dom  A  <->  E. y <. x ,  y >.  e.  A )
87anbi1i 458 . . . . 5  |-  ( ( x  e.  dom  A  /\  x  e.  B
)  <->  ( E. y <. x ,  y >.  e.  A  /\  x  e.  B ) )
93, 6, 83bitr4i 212 . . . 4  |-  ( E. y <. x ,  y
>.  e.  ( A  |`  B )  <->  ( x  e.  dom  A  /\  x  e.  B ) )
102, 9bitr2i 185 . . 3  |-  ( ( x  e.  dom  A  /\  x  e.  B
)  <->  x  e.  dom  ( A  |`  B ) )
1110ineqri 3352 . 2  |-  ( dom 
A  i^i  B )  =  dom  ( A  |`  B )
12 incom 3351 . 2  |-  ( dom 
A  i^i  B )  =  ( B  i^i  dom 
A )
1311, 12eqtr3i 2216 1  |-  dom  ( A  |`  B )  =  ( B  i^i  dom  A )
Colors of variables: wff set class
Syntax hints:    /\ wa 104    = wceq 1364   E.wex 1503    e. wcel 2164    i^i cin 3152   <.cop 3621   dom cdm 4659    |` cres 4661
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-v 2762  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-br 4030  df-opab 4091  df-xp 4665  df-dm 4669  df-res 4671
This theorem is referenced by:  ssdmres  4964  dmresexg  4965  imadisj  5027  ndmima  5042  imainrect  5111  dmresv  5124  resdmres  5157  funimacnv  5330  fnresdisj  5364  fnres  5370  ssimaex  5618  fnreseql  5668  respreima  5686  ffvresb  5721  fsnunfv  5759  funfvima  5790  offres  6187  smores  6345  smores3  6346  smores2  6347  fnfi  6995  sbthlemi5  7020  sbthlem7  7022  dmaddpi  7385  dmmulpi  7386  fvsetsid  12652  setsfun  12653  setsfun0  12654  setsresg  12656  lmres  14416  metreslem  14548
  Copyright terms: Public domain W3C validator