ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ineqri GIF version

Theorem ineqri 3366
Description: Inference from membership to intersection. (Contributed by NM, 5-Aug-1993.)
Hypothesis
Ref Expression
ineqri.1 ((𝑥𝐴𝑥𝐵) ↔ 𝑥𝐶)
Assertion
Ref Expression
ineqri (𝐴𝐵) = 𝐶
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐶

Proof of Theorem ineqri
StepHypRef Expression
1 elin 3356 . . 3 (𝑥 ∈ (𝐴𝐵) ↔ (𝑥𝐴𝑥𝐵))
2 ineqri.1 . . 3 ((𝑥𝐴𝑥𝐵) ↔ 𝑥𝐶)
31, 2bitri 184 . 2 (𝑥 ∈ (𝐴𝐵) ↔ 𝑥𝐶)
43eqriv 2202 1 (𝐴𝐵) = 𝐶
Colors of variables: wff set class
Syntax hints:  wa 104  wb 105   = wceq 1373  wcel 2176  cin 3165
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-ext 2187
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-v 2774  df-in 3172
This theorem is referenced by:  inidm  3382  inass  3383  indi  3420  inab  3441  in0  3495  pwin  4329  dmres  4980
  Copyright terms: Public domain W3C validator