| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ineqri | GIF version | ||
| Description: Inference from membership to intersection. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| ineqri.1 | ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵) ↔ 𝑥 ∈ 𝐶) |
| Ref | Expression |
|---|---|
| ineqri | ⊢ (𝐴 ∩ 𝐵) = 𝐶 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elin 3364 | . . 3 ⊢ (𝑥 ∈ (𝐴 ∩ 𝐵) ↔ (𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵)) | |
| 2 | ineqri.1 | . . 3 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵) ↔ 𝑥 ∈ 𝐶) | |
| 3 | 1, 2 | bitri 184 | . 2 ⊢ (𝑥 ∈ (𝐴 ∩ 𝐵) ↔ 𝑥 ∈ 𝐶) |
| 4 | 3 | eqriv 2204 | 1 ⊢ (𝐴 ∩ 𝐵) = 𝐶 |
| Colors of variables: wff set class |
| Syntax hints: ∧ wa 104 ↔ wb 105 = wceq 1373 ∈ wcel 2178 ∩ cin 3173 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2189 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-v 2778 df-in 3180 |
| This theorem is referenced by: inidm 3390 inass 3391 indi 3428 inab 3449 in0 3503 pwin 4347 dmres 4999 |
| Copyright terms: Public domain | W3C validator |