![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ineqri | GIF version |
Description: Inference from membership to intersection. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
ineqri.1 | ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵) ↔ 𝑥 ∈ 𝐶) |
Ref | Expression |
---|---|
ineqri | ⊢ (𝐴 ∩ 𝐵) = 𝐶 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elin 3333 | . . 3 ⊢ (𝑥 ∈ (𝐴 ∩ 𝐵) ↔ (𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵)) | |
2 | ineqri.1 | . . 3 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵) ↔ 𝑥 ∈ 𝐶) | |
3 | 1, 2 | bitri 184 | . 2 ⊢ (𝑥 ∈ (𝐴 ∩ 𝐵) ↔ 𝑥 ∈ 𝐶) |
4 | 3 | eqriv 2186 | 1 ⊢ (𝐴 ∩ 𝐵) = 𝐶 |
Colors of variables: wff set class |
Syntax hints: ∧ wa 104 ↔ wb 105 = wceq 1364 ∈ wcel 2160 ∩ cin 3143 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2171 |
This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2176 df-cleq 2182 df-clel 2185 df-nfc 2321 df-v 2754 df-in 3150 |
This theorem is referenced by: inidm 3359 inass 3360 indi 3397 inab 3418 in0 3472 pwin 4300 dmres 4946 |
Copyright terms: Public domain | W3C validator |