ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ineqri GIF version

Theorem ineqri 3320
Description: Inference from membership to intersection. (Contributed by NM, 5-Aug-1993.)
Hypothesis
Ref Expression
ineqri.1 ((𝑥𝐴𝑥𝐵) ↔ 𝑥𝐶)
Assertion
Ref Expression
ineqri (𝐴𝐵) = 𝐶
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐶

Proof of Theorem ineqri
StepHypRef Expression
1 elin 3310 . . 3 (𝑥 ∈ (𝐴𝐵) ↔ (𝑥𝐴𝑥𝐵))
2 ineqri.1 . . 3 ((𝑥𝐴𝑥𝐵) ↔ 𝑥𝐶)
31, 2bitri 183 . 2 (𝑥 ∈ (𝐴𝐵) ↔ 𝑥𝐶)
43eqriv 2167 1 (𝐴𝐵) = 𝐶
Colors of variables: wff set class
Syntax hints:  wa 103  wb 104   = wceq 1348  wcel 2141  cin 3120
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-v 2732  df-in 3127
This theorem is referenced by:  inidm  3336  inass  3337  indi  3374  inab  3395  in0  3449  pwin  4267  dmres  4912
  Copyright terms: Public domain W3C validator