ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  infeq123d Unicode version

Theorem infeq123d 7015
Description: Equality deduction for infimum. (Contributed by AV, 2-Sep-2020.)
Hypotheses
Ref Expression
infeq123d.a  |-  ( ph  ->  A  =  D )
infeq123d.b  |-  ( ph  ->  B  =  E )
infeq123d.c  |-  ( ph  ->  C  =  F )
Assertion
Ref Expression
infeq123d  |-  ( ph  -> inf ( A ,  B ,  C )  = inf ( D ,  E ,  F ) )

Proof of Theorem infeq123d
StepHypRef Expression
1 infeq123d.a . . 3  |-  ( ph  ->  A  =  D )
2 infeq123d.b . . 3  |-  ( ph  ->  B  =  E )
3 infeq123d.c . . . 4  |-  ( ph  ->  C  =  F )
43cnveqd 4804 . . 3  |-  ( ph  ->  `' C  =  `' F )
51, 2, 4supeq123d 6990 . 2  |-  ( ph  ->  sup ( A ,  B ,  `' C
)  =  sup ( D ,  E ,  `' F ) )
6 df-inf 6984 . 2  |- inf ( A ,  B ,  C
)  =  sup ( A ,  B ,  `' C )
7 df-inf 6984 . 2  |- inf ( D ,  E ,  F
)  =  sup ( D ,  E ,  `' F )
85, 6, 73eqtr4g 2235 1  |-  ( ph  -> inf ( A ,  B ,  C )  = inf ( D ,  E ,  F ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1353   `'ccnv 4626   supcsup 6981  infcinf 6982
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159
This theorem depends on definitions:  df-bi 117  df-tru 1356  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-rab 2464  df-in 3136  df-ss 3143  df-uni 3811  df-br 4005  df-opab 4066  df-cnv 4635  df-sup 6983  df-inf 6984
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator