ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfinf Unicode version

Theorem nfinf 7119
Description: Hypothesis builder for infimum. (Contributed by AV, 2-Sep-2020.)
Hypotheses
Ref Expression
nfinf.1  |-  F/_ x A
nfinf.2  |-  F/_ x B
nfinf.3  |-  F/_ x R
Assertion
Ref Expression
nfinf  |-  F/_ xinf ( A ,  B ,  R )

Proof of Theorem nfinf
StepHypRef Expression
1 df-inf 7087 . 2  |- inf ( A ,  B ,  R
)  =  sup ( A ,  B ,  `' R )
2 nfinf.1 . . 3  |-  F/_ x A
3 nfinf.2 . . 3  |-  F/_ x B
4 nfinf.3 . . . 4  |-  F/_ x R
54nfcnv 4857 . . 3  |-  F/_ x `' R
62, 3, 5nfsup 7094 . 2  |-  F/_ x sup ( A ,  B ,  `' R )
71, 6nfcxfr 2345 1  |-  F/_ xinf ( A ,  B ,  R )
Colors of variables: wff set class
Syntax hints:   F/_wnfc 2335   `'ccnv 4674   supcsup 7084  infcinf 7085
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-ext 2187
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ral 2489  df-rex 2490  df-rab 2493  df-v 2774  df-un 3170  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-br 4045  df-opab 4106  df-cnv 4683  df-sup 7086  df-inf 7087
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator