ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfinf Unicode version

Theorem nfinf 7118
Description: Hypothesis builder for infimum. (Contributed by AV, 2-Sep-2020.)
Hypotheses
Ref Expression
nfinf.1  |-  F/_ x A
nfinf.2  |-  F/_ x B
nfinf.3  |-  F/_ x R
Assertion
Ref Expression
nfinf  |-  F/_ xinf ( A ,  B ,  R )

Proof of Theorem nfinf
StepHypRef Expression
1 df-inf 7086 . 2  |- inf ( A ,  B ,  R
)  =  sup ( A ,  B ,  `' R )
2 nfinf.1 . . 3  |-  F/_ x A
3 nfinf.2 . . 3  |-  F/_ x B
4 nfinf.3 . . . 4  |-  F/_ x R
54nfcnv 4856 . . 3  |-  F/_ x `' R
62, 3, 5nfsup 7093 . 2  |-  F/_ x sup ( A ,  B ,  `' R )
71, 6nfcxfr 2344 1  |-  F/_ xinf ( A ,  B ,  R )
Colors of variables: wff set class
Syntax hints:   F/_wnfc 2334   `'ccnv 4673   supcsup 7083  infcinf 7084
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-ext 2186
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1375  df-fal 1378  df-nf 1483  df-sb 1785  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ral 2488  df-rex 2489  df-rab 2492  df-v 2773  df-un 3169  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-br 4044  df-opab 4105  df-cnv 4682  df-sup 7085  df-inf 7086
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator