ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfinf Unicode version

Theorem nfinf 7016
Description: Hypothesis builder for infimum. (Contributed by AV, 2-Sep-2020.)
Hypotheses
Ref Expression
nfinf.1  |-  F/_ x A
nfinf.2  |-  F/_ x B
nfinf.3  |-  F/_ x R
Assertion
Ref Expression
nfinf  |-  F/_ xinf ( A ,  B ,  R )

Proof of Theorem nfinf
StepHypRef Expression
1 df-inf 6984 . 2  |- inf ( A ,  B ,  R
)  =  sup ( A ,  B ,  `' R )
2 nfinf.1 . . 3  |-  F/_ x A
3 nfinf.2 . . 3  |-  F/_ x B
4 nfinf.3 . . . 4  |-  F/_ x R
54nfcnv 4807 . . 3  |-  F/_ x `' R
62, 3, 5nfsup 6991 . 2  |-  F/_ x sup ( A ,  B ,  `' R )
71, 6nfcxfr 2316 1  |-  F/_ xinf ( A ,  B ,  R )
Colors of variables: wff set class
Syntax hints:   F/_wnfc 2306   `'ccnv 4626   supcsup 6981  infcinf 6982
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-rab 2464  df-v 2740  df-un 3134  df-sn 3599  df-pr 3600  df-op 3602  df-uni 3811  df-br 4005  df-opab 4066  df-cnv 4635  df-sup 6983  df-inf 6984
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator