ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mincom Unicode version

Theorem mincom 11655
Description: The minimum of two reals is commutative. (Contributed by Jim Kingdon, 8-Feb-2021.)
Assertion
Ref Expression
mincom  |- inf ( { A ,  B } ,  RR ,  <  )  = inf ( { B ,  A } ,  RR ,  <  )

Proof of Theorem mincom
StepHypRef Expression
1 prcom 3719 . 2  |-  { A ,  B }  =  { B ,  A }
21infeq1i 7141 1  |- inf ( { A ,  B } ,  RR ,  <  )  = inf ( { B ,  A } ,  RR ,  <  )
Colors of variables: wff set class
Syntax hints:    = wceq 1373   {cpr 3644  infcinf 7111   RRcr 7959    < clt 8142
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2189
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ral 2491  df-rex 2492  df-rab 2495  df-v 2778  df-un 3178  df-pr 3650  df-uni 3865  df-sup 7112  df-inf 7113
This theorem is referenced by:  mingeb  11668  2zinfmin  11669  hovergt0  15237
  Copyright terms: Public domain W3C validator