ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  infeq1i GIF version

Theorem infeq1i 7176
Description: Equality inference for infimum. (Contributed by AV, 2-Sep-2020.)
Hypothesis
Ref Expression
infeq1i.1 𝐵 = 𝐶
Assertion
Ref Expression
infeq1i inf(𝐵, 𝐴, 𝑅) = inf(𝐶, 𝐴, 𝑅)

Proof of Theorem infeq1i
StepHypRef Expression
1 infeq1i.1 . 2 𝐵 = 𝐶
2 infeq1 7174 . 2 (𝐵 = 𝐶 → inf(𝐵, 𝐴, 𝑅) = inf(𝐶, 𝐴, 𝑅))
31, 2ax-mp 5 1 inf(𝐵, 𝐴, 𝑅) = inf(𝐶, 𝐴, 𝑅)
Colors of variables: wff set class
Syntax hints:   = wceq 1395  infcinf 7146
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-rab 2517  df-uni 3888  df-sup 7147  df-inf 7148
This theorem is referenced by:  mincom  11735  xrbdtri  11782  nninfctlemfo  12556  lcmcom  12581  lcmass  12602
  Copyright terms: Public domain W3C validator