Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > supeq3 | Unicode version |
Description: Equality theorem for supremum. (Contributed by Scott Fenton, 13-Jun-2018.) |
Ref | Expression |
---|---|
supeq3 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | breq 3991 | . . . . . . 7 | |
2 | 1 | notbid 662 | . . . . . 6 |
3 | 2 | ralbidv 2470 | . . . . 5 |
4 | breq 3991 | . . . . . . 7 | |
5 | breq 3991 | . . . . . . . 8 | |
6 | 5 | rexbidv 2471 | . . . . . . 7 |
7 | 4, 6 | imbi12d 233 | . . . . . 6 |
8 | 7 | ralbidv 2470 | . . . . 5 |
9 | 3, 8 | anbi12d 470 | . . . 4 |
10 | 9 | rabbidv 2719 | . . 3 |
11 | 10 | unieqd 3807 | . 2 |
12 | df-sup 6961 | . 2 | |
13 | df-sup 6961 | . 2 | |
14 | 11, 12, 13 | 3eqtr4g 2228 | 1 |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wa 103 wceq 1348 wral 2448 wrex 2449 crab 2452 cuni 3796 class class class wbr 3989 csup 6959 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-rab 2457 df-uni 3797 df-br 3990 df-sup 6961 |
This theorem is referenced by: infeq3 6992 |
Copyright terms: Public domain | W3C validator |