| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > cnveq | Unicode version | ||
| Description: Equality theorem for converse. (Contributed by NM, 13-Aug-1995.) |
| Ref | Expression |
|---|---|
| cnveq |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnvss 4852 |
. . 3
| |
| 2 | cnvss 4852 |
. . 3
| |
| 3 | 1, 2 | anim12i 338 |
. 2
|
| 4 | eqss 3208 |
. 2
| |
| 5 | eqss 3208 |
. 2
| |
| 6 | 3, 4, 5 | 3imtr4i 201 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-in 3172 df-ss 3179 df-br 4046 df-opab 4107 df-cnv 4684 |
| This theorem is referenced by: cnveqi 4854 cnveqd 4855 rneq 4906 cnveqb 5139 funcnvuni 5344 f1eq1 5478 f1o00 5559 foeqcnvco 5861 tposfn2 6354 ereq1 6629 infeq3 7119 1arith 12723 isrim0 13956 psrbag 14464 psr1clfi 14483 iscn 14702 ishmeo 14809 |
| Copyright terms: Public domain | W3C validator |