ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cnveq Unicode version

Theorem cnveq 4778
Description: Equality theorem for converse. (Contributed by NM, 13-Aug-1995.)
Assertion
Ref Expression
cnveq  |-  ( A  =  B  ->  `' A  =  `' B
)

Proof of Theorem cnveq
StepHypRef Expression
1 cnvss 4777 . . 3  |-  ( A 
C_  B  ->  `' A  C_  `' B )
2 cnvss 4777 . . 3  |-  ( B 
C_  A  ->  `' B  C_  `' A )
31, 2anim12i 336 . 2  |-  ( ( A  C_  B  /\  B  C_  A )  -> 
( `' A  C_  `' B  /\  `' B  C_  `' A ) )
4 eqss 3157 . 2  |-  ( A  =  B  <->  ( A  C_  B  /\  B  C_  A ) )
5 eqss 3157 . 2  |-  ( `' A  =  `' B  <->  ( `' A  C_  `' B  /\  `' B  C_  `' A
) )
63, 4, 53imtr4i 200 1  |-  ( A  =  B  ->  `' A  =  `' B
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1343    C_ wss 3116   `'ccnv 4603
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-in 3122  df-ss 3129  df-br 3983  df-opab 4044  df-cnv 4612
This theorem is referenced by:  cnveqi  4779  cnveqd  4780  rneq  4831  cnveqb  5059  funcnvuni  5257  f1eq1  5388  f1o00  5467  foeqcnvco  5758  tposfn2  6234  ereq1  6508  infeq3  6980  1arith  12297  iscn  12837  ishmeo  12944
  Copyright terms: Public domain W3C validator