ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cnveq Unicode version

Theorem cnveq 4837
Description: Equality theorem for converse. (Contributed by NM, 13-Aug-1995.)
Assertion
Ref Expression
cnveq  |-  ( A  =  B  ->  `' A  =  `' B
)

Proof of Theorem cnveq
StepHypRef Expression
1 cnvss 4836 . . 3  |-  ( A 
C_  B  ->  `' A  C_  `' B )
2 cnvss 4836 . . 3  |-  ( B 
C_  A  ->  `' B  C_  `' A )
31, 2anim12i 338 . 2  |-  ( ( A  C_  B  /\  B  C_  A )  -> 
( `' A  C_  `' B  /\  `' B  C_  `' A ) )
4 eqss 3195 . 2  |-  ( A  =  B  <->  ( A  C_  B  /\  B  C_  A ) )
5 eqss 3195 . 2  |-  ( `' A  =  `' B  <->  ( `' A  C_  `' B  /\  `' B  C_  `' A
) )
63, 4, 53imtr4i 201 1  |-  ( A  =  B  ->  `' A  =  `' B
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1364    C_ wss 3154   `'ccnv 4659
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-in 3160  df-ss 3167  df-br 4031  df-opab 4092  df-cnv 4668
This theorem is referenced by:  cnveqi  4838  cnveqd  4839  rneq  4890  cnveqb  5122  funcnvuni  5324  f1eq1  5455  f1o00  5536  foeqcnvco  5834  tposfn2  6321  ereq1  6596  infeq3  7076  1arith  12508  isrim0  13660  psrbag  14166  iscn  14376  ishmeo  14483
  Copyright terms: Public domain W3C validator