| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > cnveq | Unicode version | ||
| Description: Equality theorem for converse. (Contributed by NM, 13-Aug-1995.) |
| Ref | Expression |
|---|---|
| cnveq |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnvss 4840 |
. . 3
| |
| 2 | cnvss 4840 |
. . 3
| |
| 3 | 1, 2 | anim12i 338 |
. 2
|
| 4 | eqss 3199 |
. 2
| |
| 5 | eqss 3199 |
. 2
| |
| 6 | 3, 4, 5 | 3imtr4i 201 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-in 3163 df-ss 3170 df-br 4035 df-opab 4096 df-cnv 4672 |
| This theorem is referenced by: cnveqi 4842 cnveqd 4843 rneq 4894 cnveqb 5126 funcnvuni 5328 f1eq1 5461 f1o00 5542 foeqcnvco 5840 tposfn2 6333 ereq1 6608 infeq3 7090 1arith 12561 isrim0 13793 psrbag 14299 psr1clfi 14316 iscn 14517 ishmeo 14624 |
| Copyright terms: Public domain | W3C validator |