ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cnveq Unicode version

Theorem cnveq 4803
Description: Equality theorem for converse. (Contributed by NM, 13-Aug-1995.)
Assertion
Ref Expression
cnveq  |-  ( A  =  B  ->  `' A  =  `' B
)

Proof of Theorem cnveq
StepHypRef Expression
1 cnvss 4802 . . 3  |-  ( A 
C_  B  ->  `' A  C_  `' B )
2 cnvss 4802 . . 3  |-  ( B 
C_  A  ->  `' B  C_  `' A )
31, 2anim12i 338 . 2  |-  ( ( A  C_  B  /\  B  C_  A )  -> 
( `' A  C_  `' B  /\  `' B  C_  `' A ) )
4 eqss 3172 . 2  |-  ( A  =  B  <->  ( A  C_  B  /\  B  C_  A ) )
5 eqss 3172 . 2  |-  ( `' A  =  `' B  <->  ( `' A  C_  `' B  /\  `' B  C_  `' A
) )
63, 4, 53imtr4i 201 1  |-  ( A  =  B  ->  `' A  =  `' B
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1353    C_ wss 3131   `'ccnv 4627
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159
This theorem depends on definitions:  df-bi 117  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-in 3137  df-ss 3144  df-br 4006  df-opab 4067  df-cnv 4636
This theorem is referenced by:  cnveqi  4804  cnveqd  4805  rneq  4856  cnveqb  5086  funcnvuni  5287  f1eq1  5418  f1o00  5498  foeqcnvco  5793  tposfn2  6269  ereq1  6544  infeq3  7016  1arith  12367  iscn  13736  ishmeo  13843
  Copyright terms: Public domain W3C validator