| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > xrrebnd | Unicode version | ||
| Description: An extended real is real iff it is strictly bounded by infinities. (Contributed by NM, 2-Feb-2006.) |
| Ref | Expression |
|---|---|
| xrrebnd |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elxr 9968 |
. 2
| |
| 2 | id 19 |
. . . 4
| |
| 3 | mnflt 9975 |
. . . . 5
| |
| 4 | ltpnf 9972 |
. . . . 5
| |
| 5 | 3, 4 | jca 306 |
. . . 4
|
| 6 | 2, 5 | 2thd 175 |
. . 3
|
| 7 | renepnf 8190 |
. . . . 5
| |
| 8 | 7 | necon2bi 2455 |
. . . 4
|
| 9 | pnfxr 8195 |
. . . . . . 7
| |
| 10 | xrltnr 9971 |
. . . . . . 7
| |
| 11 | 9, 10 | ax-mp 5 |
. . . . . 6
|
| 12 | breq1 4085 |
. . . . . 6
| |
| 13 | 11, 12 | mtbiri 679 |
. . . . 5
|
| 14 | 13 | intnand 936 |
. . . 4
|
| 15 | 8, 14 | 2falsed 707 |
. . 3
|
| 16 | renemnf 8191 |
. . . . 5
| |
| 17 | 16 | necon2bi 2455 |
. . . 4
|
| 18 | mnfxr 8199 |
. . . . . . 7
| |
| 19 | xrltnr 9971 |
. . . . . . 7
| |
| 20 | 18, 19 | ax-mp 5 |
. . . . . 6
|
| 21 | breq2 4086 |
. . . . . 6
| |
| 22 | 20, 21 | mtbiri 679 |
. . . . 5
|
| 23 | 22 | intnanrd 937 |
. . . 4
|
| 24 | 17, 23 | 2falsed 707 |
. . 3
|
| 25 | 6, 15, 24 | 3jaoi 1337 |
. 2
|
| 26 | 1, 25 | sylbi 121 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-pow 4257 ax-pr 4292 ax-un 4523 ax-setind 4628 ax-cnex 8086 ax-resscn 8087 ax-pre-ltirr 8107 |
| This theorem depends on definitions: df-bi 117 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-rab 2517 df-v 2801 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-br 4083 df-opab 4145 df-xp 4724 df-pnf 8179 df-mnf 8180 df-xr 8181 df-ltxr 8182 |
| This theorem is referenced by: xrre 10012 xrre2 10013 xrre3 10014 elioc2 10128 elico2 10129 elicc2 10130 xblpnfps 15066 xblpnf 15067 |
| Copyright terms: Public domain | W3C validator |