ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xrrebnd Unicode version

Theorem xrrebnd 10011
Description: An extended real is real iff it is strictly bounded by infinities. (Contributed by NM, 2-Feb-2006.)
Assertion
Ref Expression
xrrebnd  |-  ( A  e.  RR*  ->  ( A  e.  RR  <->  ( -oo  <  A  /\  A  < +oo ) ) )

Proof of Theorem xrrebnd
StepHypRef Expression
1 elxr 9968 . 2  |-  ( A  e.  RR*  <->  ( A  e.  RR  \/  A  = +oo  \/  A  = -oo ) )
2 id 19 . . . 4  |-  ( A  e.  RR  ->  A  e.  RR )
3 mnflt 9975 . . . . 5  |-  ( A  e.  RR  -> -oo  <  A )
4 ltpnf 9972 . . . . 5  |-  ( A  e.  RR  ->  A  < +oo )
53, 4jca 306 . . . 4  |-  ( A  e.  RR  ->  ( -oo  <  A  /\  A  < +oo ) )
62, 52thd 175 . . 3  |-  ( A  e.  RR  ->  ( A  e.  RR  <->  ( -oo  <  A  /\  A  < +oo ) ) )
7 renepnf 8190 . . . . 5  |-  ( A  e.  RR  ->  A  =/= +oo )
87necon2bi 2455 . . . 4  |-  ( A  = +oo  ->  -.  A  e.  RR )
9 pnfxr 8195 . . . . . . 7  |- +oo  e.  RR*
10 xrltnr 9971 . . . . . . 7  |-  ( +oo  e.  RR*  ->  -. +oo  < +oo )
119, 10ax-mp 5 . . . . . 6  |-  -. +oo  < +oo
12 breq1 4085 . . . . . 6  |-  ( A  = +oo  ->  ( A  < +oo  <-> +oo  < +oo )
)
1311, 12mtbiri 679 . . . . 5  |-  ( A  = +oo  ->  -.  A  < +oo )
1413intnand 936 . . . 4  |-  ( A  = +oo  ->  -.  ( -oo  <  A  /\  A  < +oo ) )
158, 142falsed 707 . . 3  |-  ( A  = +oo  ->  ( A  e.  RR  <->  ( -oo  <  A  /\  A  < +oo ) ) )
16 renemnf 8191 . . . . 5  |-  ( A  e.  RR  ->  A  =/= -oo )
1716necon2bi 2455 . . . 4  |-  ( A  = -oo  ->  -.  A  e.  RR )
18 mnfxr 8199 . . . . . . 7  |- -oo  e.  RR*
19 xrltnr 9971 . . . . . . 7  |-  ( -oo  e.  RR*  ->  -. -oo  < -oo )
2018, 19ax-mp 5 . . . . . 6  |-  -. -oo  < -oo
21 breq2 4086 . . . . . 6  |-  ( A  = -oo  ->  ( -oo  <  A  <-> -oo  < -oo ) )
2220, 21mtbiri 679 . . . . 5  |-  ( A  = -oo  ->  -. -oo 
<  A )
2322intnanrd 937 . . . 4  |-  ( A  = -oo  ->  -.  ( -oo  <  A  /\  A  < +oo ) )
2417, 232falsed 707 . . 3  |-  ( A  = -oo  ->  ( A  e.  RR  <->  ( -oo  <  A  /\  A  < +oo ) ) )
256, 15, 243jaoi 1337 . 2  |-  ( ( A  e.  RR  \/  A  = +oo  \/  A  = -oo )  ->  ( A  e.  RR  <->  ( -oo  <  A  /\  A  < +oo ) ) )
261, 25sylbi 121 1  |-  ( A  e.  RR*  ->  ( A  e.  RR  <->  ( -oo  <  A  /\  A  < +oo ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    \/ w3o 1001    = wceq 1395    e. wcel 2200   class class class wbr 4082   RRcr 7994   +oocpnf 8174   -oocmnf 8175   RR*cxr 8176    < clt 8177
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-setind 4628  ax-cnex 8086  ax-resscn 8087  ax-pre-ltirr 8107
This theorem depends on definitions:  df-bi 117  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-rab 2517  df-v 2801  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-br 4083  df-opab 4145  df-xp 4724  df-pnf 8179  df-mnf 8180  df-xr 8181  df-ltxr 8182
This theorem is referenced by:  xrre  10012  xrre2  10013  xrre3  10014  elioc2  10128  elico2  10129  elicc2  10130  xblpnfps  15066  xblpnf  15067
  Copyright terms: Public domain W3C validator