| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > xrrebnd | Unicode version | ||
| Description: An extended real is real iff it is strictly bounded by infinities. (Contributed by NM, 2-Feb-2006.) |
| Ref | Expression |
|---|---|
| xrrebnd |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elxr 9868 |
. 2
| |
| 2 | id 19 |
. . . 4
| |
| 3 | mnflt 9875 |
. . . . 5
| |
| 4 | ltpnf 9872 |
. . . . 5
| |
| 5 | 3, 4 | jca 306 |
. . . 4
|
| 6 | 2, 5 | 2thd 175 |
. . 3
|
| 7 | renepnf 8091 |
. . . . 5
| |
| 8 | 7 | necon2bi 2422 |
. . . 4
|
| 9 | pnfxr 8096 |
. . . . . . 7
| |
| 10 | xrltnr 9871 |
. . . . . . 7
| |
| 11 | 9, 10 | ax-mp 5 |
. . . . . 6
|
| 12 | breq1 4037 |
. . . . . 6
| |
| 13 | 11, 12 | mtbiri 676 |
. . . . 5
|
| 14 | 13 | intnand 932 |
. . . 4
|
| 15 | 8, 14 | 2falsed 703 |
. . 3
|
| 16 | renemnf 8092 |
. . . . 5
| |
| 17 | 16 | necon2bi 2422 |
. . . 4
|
| 18 | mnfxr 8100 |
. . . . . . 7
| |
| 19 | xrltnr 9871 |
. . . . . . 7
| |
| 20 | 18, 19 | ax-mp 5 |
. . . . . 6
|
| 21 | breq2 4038 |
. . . . . 6
| |
| 22 | 20, 21 | mtbiri 676 |
. . . . 5
|
| 23 | 22 | intnanrd 933 |
. . . 4
|
| 24 | 17, 23 | 2falsed 703 |
. . 3
|
| 25 | 6, 15, 24 | 3jaoi 1314 |
. 2
|
| 26 | 1, 25 | sylbi 121 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-setind 4574 ax-cnex 7987 ax-resscn 7988 ax-pre-ltirr 8008 |
| This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-rab 2484 df-v 2765 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-br 4035 df-opab 4096 df-xp 4670 df-pnf 8080 df-mnf 8081 df-xr 8082 df-ltxr 8083 |
| This theorem is referenced by: xrre 9912 xrre2 9913 xrre3 9914 elioc2 10028 elico2 10029 elicc2 10030 xblpnfps 14718 xblpnf 14719 |
| Copyright terms: Public domain | W3C validator |