ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xrrebnd Unicode version

Theorem xrrebnd 9833
Description: An extended real is real iff it is strictly bounded by infinities. (Contributed by NM, 2-Feb-2006.)
Assertion
Ref Expression
xrrebnd  |-  ( A  e.  RR*  ->  ( A  e.  RR  <->  ( -oo  <  A  /\  A  < +oo ) ) )

Proof of Theorem xrrebnd
StepHypRef Expression
1 elxr 9790 . 2  |-  ( A  e.  RR*  <->  ( A  e.  RR  \/  A  = +oo  \/  A  = -oo ) )
2 id 19 . . . 4  |-  ( A  e.  RR  ->  A  e.  RR )
3 mnflt 9797 . . . . 5  |-  ( A  e.  RR  -> -oo  <  A )
4 ltpnf 9794 . . . . 5  |-  ( A  e.  RR  ->  A  < +oo )
53, 4jca 306 . . . 4  |-  ( A  e.  RR  ->  ( -oo  <  A  /\  A  < +oo ) )
62, 52thd 175 . . 3  |-  ( A  e.  RR  ->  ( A  e.  RR  <->  ( -oo  <  A  /\  A  < +oo ) ) )
7 renepnf 8019 . . . . 5  |-  ( A  e.  RR  ->  A  =/= +oo )
87necon2bi 2412 . . . 4  |-  ( A  = +oo  ->  -.  A  e.  RR )
9 pnfxr 8024 . . . . . . 7  |- +oo  e.  RR*
10 xrltnr 9793 . . . . . . 7  |-  ( +oo  e.  RR*  ->  -. +oo  < +oo )
119, 10ax-mp 5 . . . . . 6  |-  -. +oo  < +oo
12 breq1 4018 . . . . . 6  |-  ( A  = +oo  ->  ( A  < +oo  <-> +oo  < +oo )
)
1311, 12mtbiri 676 . . . . 5  |-  ( A  = +oo  ->  -.  A  < +oo )
1413intnand 932 . . . 4  |-  ( A  = +oo  ->  -.  ( -oo  <  A  /\  A  < +oo ) )
158, 142falsed 703 . . 3  |-  ( A  = +oo  ->  ( A  e.  RR  <->  ( -oo  <  A  /\  A  < +oo ) ) )
16 renemnf 8020 . . . . 5  |-  ( A  e.  RR  ->  A  =/= -oo )
1716necon2bi 2412 . . . 4  |-  ( A  = -oo  ->  -.  A  e.  RR )
18 mnfxr 8028 . . . . . . 7  |- -oo  e.  RR*
19 xrltnr 9793 . . . . . . 7  |-  ( -oo  e.  RR*  ->  -. -oo  < -oo )
2018, 19ax-mp 5 . . . . . 6  |-  -. -oo  < -oo
21 breq2 4019 . . . . . 6  |-  ( A  = -oo  ->  ( -oo  <  A  <-> -oo  < -oo ) )
2220, 21mtbiri 676 . . . . 5  |-  ( A  = -oo  ->  -. -oo 
<  A )
2322intnanrd 933 . . . 4  |-  ( A  = -oo  ->  -.  ( -oo  <  A  /\  A  < +oo ) )
2417, 232falsed 703 . . 3  |-  ( A  = -oo  ->  ( A  e.  RR  <->  ( -oo  <  A  /\  A  < +oo ) ) )
256, 15, 243jaoi 1313 . 2  |-  ( ( A  e.  RR  \/  A  = +oo  \/  A  = -oo )  ->  ( A  e.  RR  <->  ( -oo  <  A  /\  A  < +oo ) ) )
261, 25sylbi 121 1  |-  ( A  e.  RR*  ->  ( A  e.  RR  <->  ( -oo  <  A  /\  A  < +oo ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    \/ w3o 978    = wceq 1363    e. wcel 2158   class class class wbr 4015   RRcr 7824   +oocpnf 8003   -oocmnf 8004   RR*cxr 8005    < clt 8006
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1457  ax-7 1458  ax-gen 1459  ax-ie1 1503  ax-ie2 1504  ax-8 1514  ax-10 1515  ax-11 1516  ax-i12 1517  ax-bndl 1519  ax-4 1520  ax-17 1536  ax-i9 1540  ax-ial 1544  ax-i5r 1545  ax-13 2160  ax-14 2161  ax-ext 2169  ax-sep 4133  ax-pow 4186  ax-pr 4221  ax-un 4445  ax-setind 4548  ax-cnex 7916  ax-resscn 7917  ax-pre-ltirr 7937
This theorem depends on definitions:  df-bi 117  df-3or 980  df-3an 981  df-tru 1366  df-fal 1369  df-nf 1471  df-sb 1773  df-eu 2039  df-mo 2040  df-clab 2174  df-cleq 2180  df-clel 2183  df-nfc 2318  df-ne 2358  df-nel 2453  df-ral 2470  df-rex 2471  df-rab 2474  df-v 2751  df-dif 3143  df-un 3145  df-in 3147  df-ss 3154  df-pw 3589  df-sn 3610  df-pr 3611  df-op 3613  df-uni 3822  df-br 4016  df-opab 4077  df-xp 4644  df-pnf 8008  df-mnf 8009  df-xr 8010  df-ltxr 8011
This theorem is referenced by:  xrre  9834  xrre2  9835  xrre3  9836  elioc2  9950  elico2  9951  elicc2  9952  xblpnfps  14194  xblpnf  14195
  Copyright terms: Public domain W3C validator