ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xrrebnd Unicode version

Theorem xrrebnd 9819
Description: An extended real is real iff it is strictly bounded by infinities. (Contributed by NM, 2-Feb-2006.)
Assertion
Ref Expression
xrrebnd  |-  ( A  e.  RR*  ->  ( A  e.  RR  <->  ( -oo  <  A  /\  A  < +oo ) ) )

Proof of Theorem xrrebnd
StepHypRef Expression
1 elxr 9776 . 2  |-  ( A  e.  RR*  <->  ( A  e.  RR  \/  A  = +oo  \/  A  = -oo ) )
2 id 19 . . . 4  |-  ( A  e.  RR  ->  A  e.  RR )
3 mnflt 9783 . . . . 5  |-  ( A  e.  RR  -> -oo  <  A )
4 ltpnf 9780 . . . . 5  |-  ( A  e.  RR  ->  A  < +oo )
53, 4jca 306 . . . 4  |-  ( A  e.  RR  ->  ( -oo  <  A  /\  A  < +oo ) )
62, 52thd 175 . . 3  |-  ( A  e.  RR  ->  ( A  e.  RR  <->  ( -oo  <  A  /\  A  < +oo ) ) )
7 renepnf 8005 . . . . 5  |-  ( A  e.  RR  ->  A  =/= +oo )
87necon2bi 2402 . . . 4  |-  ( A  = +oo  ->  -.  A  e.  RR )
9 pnfxr 8010 . . . . . . 7  |- +oo  e.  RR*
10 xrltnr 9779 . . . . . . 7  |-  ( +oo  e.  RR*  ->  -. +oo  < +oo )
119, 10ax-mp 5 . . . . . 6  |-  -. +oo  < +oo
12 breq1 4007 . . . . . 6  |-  ( A  = +oo  ->  ( A  < +oo  <-> +oo  < +oo )
)
1311, 12mtbiri 675 . . . . 5  |-  ( A  = +oo  ->  -.  A  < +oo )
1413intnand 931 . . . 4  |-  ( A  = +oo  ->  -.  ( -oo  <  A  /\  A  < +oo ) )
158, 142falsed 702 . . 3  |-  ( A  = +oo  ->  ( A  e.  RR  <->  ( -oo  <  A  /\  A  < +oo ) ) )
16 renemnf 8006 . . . . 5  |-  ( A  e.  RR  ->  A  =/= -oo )
1716necon2bi 2402 . . . 4  |-  ( A  = -oo  ->  -.  A  e.  RR )
18 mnfxr 8014 . . . . . . 7  |- -oo  e.  RR*
19 xrltnr 9779 . . . . . . 7  |-  ( -oo  e.  RR*  ->  -. -oo  < -oo )
2018, 19ax-mp 5 . . . . . 6  |-  -. -oo  < -oo
21 breq2 4008 . . . . . 6  |-  ( A  = -oo  ->  ( -oo  <  A  <-> -oo  < -oo ) )
2220, 21mtbiri 675 . . . . 5  |-  ( A  = -oo  ->  -. -oo 
<  A )
2322intnanrd 932 . . . 4  |-  ( A  = -oo  ->  -.  ( -oo  <  A  /\  A  < +oo ) )
2417, 232falsed 702 . . 3  |-  ( A  = -oo  ->  ( A  e.  RR  <->  ( -oo  <  A  /\  A  < +oo ) ) )
256, 15, 243jaoi 1303 . 2  |-  ( ( A  e.  RR  \/  A  = +oo  \/  A  = -oo )  ->  ( A  e.  RR  <->  ( -oo  <  A  /\  A  < +oo ) ) )
261, 25sylbi 121 1  |-  ( A  e.  RR*  ->  ( A  e.  RR  <->  ( -oo  <  A  /\  A  < +oo ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    \/ w3o 977    = wceq 1353    e. wcel 2148   class class class wbr 4004   RRcr 7810   +oocpnf 7989   -oocmnf 7990   RR*cxr 7991    < clt 7992
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4122  ax-pow 4175  ax-pr 4210  ax-un 4434  ax-setind 4537  ax-cnex 7902  ax-resscn 7903  ax-pre-ltirr 7923
This theorem depends on definitions:  df-bi 117  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-rab 2464  df-v 2740  df-dif 3132  df-un 3134  df-in 3136  df-ss 3143  df-pw 3578  df-sn 3599  df-pr 3600  df-op 3602  df-uni 3811  df-br 4005  df-opab 4066  df-xp 4633  df-pnf 7994  df-mnf 7995  df-xr 7996  df-ltxr 7997
This theorem is referenced by:  xrre  9820  xrre2  9821  xrre3  9822  elioc2  9936  elico2  9937  elicc2  9938  xblpnfps  13901  xblpnf  13902
  Copyright terms: Public domain W3C validator