ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fzpreddisj Unicode version

Theorem fzpreddisj 9966
Description: A finite set of sequential integers is disjoint with its predecessor. (Contributed by AV, 24-Aug-2019.)
Assertion
Ref Expression
fzpreddisj  |-  ( N  e.  ( ZZ>= `  M
)  ->  ( { M }  i^i  (
( M  +  1 ) ... N ) )  =  (/) )

Proof of Theorem fzpreddisj
StepHypRef Expression
1 incom 3299 . 2  |-  ( ( ( M  +  1 ) ... N )  i^i  { M }
)  =  ( { M }  i^i  (
( M  +  1 ) ... N ) )
2 0lt1 7996 . . . . . . . 8  |-  0  <  1
3 0z 9172 . . . . . . . . 9  |-  0  e.  ZZ
4 1z 9187 . . . . . . . . 9  |-  1  e.  ZZ
5 zltnle 9207 . . . . . . . . 9  |-  ( ( 0  e.  ZZ  /\  1  e.  ZZ )  ->  ( 0  <  1  <->  -.  1  <_  0 ) )
63, 4, 5mp2an 423 . . . . . . . 8  |-  ( 0  <  1  <->  -.  1  <_  0 )
72, 6mpbi 144 . . . . . . 7  |-  -.  1  <_  0
8 eluzel2 9438 . . . . . . . . 9  |-  ( N  e.  ( ZZ>= `  M
)  ->  M  e.  ZZ )
98zred 9280 . . . . . . . 8  |-  ( N  e.  ( ZZ>= `  M
)  ->  M  e.  RR )
10 1re 7871 . . . . . . . 8  |-  1  e.  RR
11 leaddle0 8346 . . . . . . . 8  |-  ( ( M  e.  RR  /\  1  e.  RR )  ->  ( ( M  + 
1 )  <_  M  <->  1  <_  0 ) )
129, 10, 11sylancl 410 . . . . . . 7  |-  ( N  e.  ( ZZ>= `  M
)  ->  ( ( M  +  1 )  <_  M  <->  1  <_  0 ) )
137, 12mtbiri 665 . . . . . 6  |-  ( N  e.  ( ZZ>= `  M
)  ->  -.  ( M  +  1 )  <_  M )
1413intnanrd 918 . . . . 5  |-  ( N  e.  ( ZZ>= `  M
)  ->  -.  (
( M  +  1 )  <_  M  /\  M  <_  N ) )
1514intnand 917 . . . 4  |-  ( N  e.  ( ZZ>= `  M
)  ->  -.  (
( ( M  + 
1 )  e.  ZZ  /\  N  e.  ZZ  /\  M  e.  ZZ )  /\  ( ( M  + 
1 )  <_  M  /\  M  <_  N ) ) )
16 elfz2 9912 . . . 4  |-  ( M  e.  ( ( M  +  1 ) ... N )  <->  ( (
( M  +  1 )  e.  ZZ  /\  N  e.  ZZ  /\  M  e.  ZZ )  /\  (
( M  +  1 )  <_  M  /\  M  <_  N ) ) )
1715, 16sylnibr 667 . . 3  |-  ( N  e.  ( ZZ>= `  M
)  ->  -.  M  e.  ( ( M  + 
1 ) ... N
) )
18 disjsn 3621 . . 3  |-  ( ( ( ( M  + 
1 ) ... N
)  i^i  { M } )  =  (/)  <->  -.  M  e.  ( ( M  +  1 ) ... N ) )
1917, 18sylibr 133 . 2  |-  ( N  e.  ( ZZ>= `  M
)  ->  ( (
( M  +  1 ) ... N )  i^i  { M }
)  =  (/) )
201, 19eqtr3id 2204 1  |-  ( N  e.  ( ZZ>= `  M
)  ->  ( { M }  i^i  (
( M  +  1 ) ... N ) )  =  (/) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    <-> wb 104    /\ w3a 963    = wceq 1335    e. wcel 2128    i^i cin 3101   (/)c0 3394   {csn 3560   class class class wbr 3965   ` cfv 5169  (class class class)co 5821   RRcr 7725   0cc0 7726   1c1 7727    + caddc 7729    < clt 7906    <_ cle 7907   ZZcz 9161   ZZ>=cuz 9433   ...cfz 9905
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-13 2130  ax-14 2131  ax-ext 2139  ax-sep 4082  ax-pow 4135  ax-pr 4169  ax-un 4393  ax-setind 4495  ax-cnex 7817  ax-resscn 7818  ax-1cn 7819  ax-1re 7820  ax-icn 7821  ax-addcl 7822  ax-addrcl 7823  ax-mulcl 7824  ax-addcom 7826  ax-addass 7828  ax-distr 7830  ax-i2m1 7831  ax-0lt1 7832  ax-0id 7834  ax-rnegex 7835  ax-cnre 7837  ax-pre-ltirr 7838  ax-pre-ltwlin 7839  ax-pre-lttrn 7840  ax-pre-ltadd 7842
This theorem depends on definitions:  df-bi 116  df-3or 964  df-3an 965  df-tru 1338  df-fal 1341  df-nf 1441  df-sb 1743  df-eu 2009  df-mo 2010  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-ne 2328  df-nel 2423  df-ral 2440  df-rex 2441  df-reu 2442  df-rab 2444  df-v 2714  df-sbc 2938  df-dif 3104  df-un 3106  df-in 3108  df-ss 3115  df-nul 3395  df-pw 3545  df-sn 3566  df-pr 3567  df-op 3569  df-uni 3773  df-int 3808  df-br 3966  df-opab 4026  df-mpt 4027  df-id 4253  df-xp 4591  df-rel 4592  df-cnv 4593  df-co 4594  df-dm 4595  df-rn 4596  df-res 4597  df-ima 4598  df-iota 5134  df-fun 5171  df-fn 5172  df-f 5173  df-fv 5177  df-riota 5777  df-ov 5824  df-oprab 5825  df-mpo 5826  df-pnf 7908  df-mnf 7909  df-xr 7910  df-ltxr 7911  df-le 7912  df-sub 8042  df-neg 8043  df-inn 8828  df-n0 9085  df-z 9162  df-uz 9434  df-fz 9906
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator