ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iseqf1olemqk Unicode version

Theorem iseqf1olemqk 10578
Description: Lemma for seq3f1o 10588. 
Q is constant for one more position than  J is. (Contributed by Jim Kingdon, 21-Aug-2022.)
Hypotheses
Ref Expression
iseqf1olemqf.k  |-  ( ph  ->  K  e.  ( M ... N ) )
iseqf1olemqf.j  |-  ( ph  ->  J : ( M ... N ) -1-1-onto-> ( M ... N ) )
iseqf1olemqf.q  |-  Q  =  ( u  e.  ( M ... N ) 
|->  if ( u  e.  ( K ... ( `' J `  K ) ) ,  if ( u  =  K ,  K ,  ( J `  ( u  -  1 ) ) ) ,  ( J `  u
) ) )
iseqf1olemqk.const  |-  ( ph  ->  A. x  e.  ( M..^ K ) ( J `  x )  =  x )
Assertion
Ref Expression
iseqf1olemqk  |-  ( ph  ->  A. x  e.  ( M ... K ) ( Q `  x
)  =  x )
Distinct variable groups:    u, J, x   
u, K, x    u, M, x    u, N    x, Q    ph, x
Allowed substitution hints:    ph( u)    Q( u)    N( x)

Proof of Theorem iseqf1olemqk
StepHypRef Expression
1 elfzole1 10222 . . . . . . . 8  |-  ( x  e.  ( M..^ K
)  ->  M  <_  x )
21adantl 277 . . . . . . 7  |-  ( (
ph  /\  x  e.  ( M..^ K ) )  ->  M  <_  x
)
3 iseqf1olemqf.k . . . . . . . . . 10  |-  ( ph  ->  K  e.  ( M ... N ) )
4 elfzle2 10094 . . . . . . . . . 10  |-  ( K  e.  ( M ... N )  ->  K  <_  N )
53, 4syl 14 . . . . . . . . 9  |-  ( ph  ->  K  <_  N )
6 elfzolt2 10223 . . . . . . . . 9  |-  ( x  e.  ( M..^ K
)  ->  x  <  K )
75, 6anim12ci 339 . . . . . . . 8  |-  ( (
ph  /\  x  e.  ( M..^ K ) )  ->  ( x  < 
K  /\  K  <_  N ) )
8 elfzoelz 10213 . . . . . . . . . . 11  |-  ( x  e.  ( M..^ K
)  ->  x  e.  ZZ )
98adantl 277 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  ( M..^ K ) )  ->  x  e.  ZZ )
109zred 9439 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  ( M..^ K ) )  ->  x  e.  RR )
11 elfzoel2 10212 . . . . . . . . . . 11  |-  ( x  e.  ( M..^ K
)  ->  K  e.  ZZ )
1211adantl 277 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  ( M..^ K ) )  ->  K  e.  ZZ )
1312zred 9439 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  ( M..^ K ) )  ->  K  e.  RR )
14 elfzel2 10089 . . . . . . . . . . . 12  |-  ( K  e.  ( M ... N )  ->  N  e.  ZZ )
153, 14syl 14 . . . . . . . . . . 11  |-  ( ph  ->  N  e.  ZZ )
1615adantr 276 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  ( M..^ K ) )  ->  N  e.  ZZ )
1716zred 9439 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  ( M..^ K ) )  ->  N  e.  RR )
18 ltleletr 8101 . . . . . . . . 9  |-  ( ( x  e.  RR  /\  K  e.  RR  /\  N  e.  RR )  ->  (
( x  <  K  /\  K  <_  N )  ->  x  <_  N
) )
1910, 13, 17, 18syl3anc 1249 . . . . . . . 8  |-  ( (
ph  /\  x  e.  ( M..^ K ) )  ->  ( ( x  <  K  /\  K  <_  N )  ->  x  <_  N ) )
207, 19mpd 13 . . . . . . 7  |-  ( (
ph  /\  x  e.  ( M..^ K ) )  ->  x  <_  N
)
21 elfzel1 10090 . . . . . . . . . 10  |-  ( K  e.  ( M ... N )  ->  M  e.  ZZ )
223, 21syl 14 . . . . . . . . 9  |-  ( ph  ->  M  e.  ZZ )
2322adantr 276 . . . . . . . 8  |-  ( (
ph  /\  x  e.  ( M..^ K ) )  ->  M  e.  ZZ )
24 elfz 10080 . . . . . . . 8  |-  ( ( x  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  (
x  e.  ( M ... N )  <->  ( M  <_  x  /\  x  <_  N ) ) )
259, 23, 16, 24syl3anc 1249 . . . . . . 7  |-  ( (
ph  /\  x  e.  ( M..^ K ) )  ->  ( x  e.  ( M ... N
)  <->  ( M  <_  x  /\  x  <_  N
) ) )
262, 20, 25mpbir2and 946 . . . . . 6  |-  ( (
ph  /\  x  e.  ( M..^ K ) )  ->  x  e.  ( M ... N ) )
276adantl 277 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  ( M..^ K ) )  ->  x  <  K
)
28 zltnle 9363 . . . . . . . . . . . . 13  |-  ( ( x  e.  ZZ  /\  K  e.  ZZ )  ->  ( x  <  K  <->  -.  K  <_  x )
)
299, 12, 28syl2anc 411 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  ( M..^ K ) )  ->  ( x  < 
K  <->  -.  K  <_  x ) )
3027, 29mpbid 147 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  ( M..^ K ) )  ->  -.  K  <_  x )
3130intnanrd 933 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  ( M..^ K ) )  ->  -.  ( K  <_  x  /\  x  <_ 
( `' J `  K ) ) )
32 iseqf1olemqf.j . . . . . . . . . . . . . . 15  |-  ( ph  ->  J : ( M ... N ) -1-1-onto-> ( M ... N ) )
33 f1ocnv 5513 . . . . . . . . . . . . . . 15  |-  ( J : ( M ... N ) -1-1-onto-> ( M ... N
)  ->  `' J : ( M ... N ) -1-1-onto-> ( M ... N
) )
34 f1of 5500 . . . . . . . . . . . . . . 15  |-  ( `' J : ( M ... N ) -1-1-onto-> ( M ... N )  ->  `' J : ( M ... N ) --> ( M ... N ) )
3532, 33, 343syl 17 . . . . . . . . . . . . . 14  |-  ( ph  ->  `' J : ( M ... N ) --> ( M ... N ) )
3635, 3ffvelcdmd 5694 . . . . . . . . . . . . 13  |-  ( ph  ->  ( `' J `  K )  e.  ( M ... N ) )
37 elfzelz 10091 . . . . . . . . . . . . 13  |-  ( ( `' J `  K )  e.  ( M ... N )  ->  ( `' J `  K )  e.  ZZ )
3836, 37syl 14 . . . . . . . . . . . 12  |-  ( ph  ->  ( `' J `  K )  e.  ZZ )
3938adantr 276 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  ( M..^ K ) )  ->  ( `' J `  K )  e.  ZZ )
40 elfz 10080 . . . . . . . . . . 11  |-  ( ( x  e.  ZZ  /\  K  e.  ZZ  /\  ( `' J `  K )  e.  ZZ )  -> 
( x  e.  ( K ... ( `' J `  K ) )  <->  ( K  <_  x  /\  x  <_  ( `' J `  K ) ) ) )
419, 12, 39, 40syl3anc 1249 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  ( M..^ K ) )  ->  ( x  e.  ( K ... ( `' J `  K ) )  <->  ( K  <_  x  /\  x  <_  ( `' J `  K ) ) ) )
4231, 41mtbird 674 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  ( M..^ K ) )  ->  -.  x  e.  ( K ... ( `' J `  K ) ) )
4342iffalsed 3567 . . . . . . . 8  |-  ( (
ph  /\  x  e.  ( M..^ K ) )  ->  if ( x  e.  ( K ... ( `' J `  K ) ) ,  if ( x  =  K ,  K ,  ( J `  ( x  -  1 ) ) ) ,  ( J `  x
) )  =  ( J `  x ) )
44 iseqf1olemqk.const . . . . . . . . 9  |-  ( ph  ->  A. x  e.  ( M..^ K ) ( J `  x )  =  x )
4544r19.21bi 2582 . . . . . . . 8  |-  ( (
ph  /\  x  e.  ( M..^ K ) )  ->  ( J `  x )  =  x )
4643, 45eqtrd 2226 . . . . . . 7  |-  ( (
ph  /\  x  e.  ( M..^ K ) )  ->  if ( x  e.  ( K ... ( `' J `  K ) ) ,  if ( x  =  K ,  K ,  ( J `  ( x  -  1 ) ) ) ,  ( J `  x
) )  =  x )
47 simpr 110 . . . . . . 7  |-  ( (
ph  /\  x  e.  ( M..^ K ) )  ->  x  e.  ( M..^ K ) )
4846, 47eqeltrd 2270 . . . . . 6  |-  ( (
ph  /\  x  e.  ( M..^ K ) )  ->  if ( x  e.  ( K ... ( `' J `  K ) ) ,  if ( x  =  K ,  K ,  ( J `  ( x  -  1 ) ) ) ,  ( J `  x
) )  e.  ( M..^ K ) )
49 eleq1w 2254 . . . . . . . 8  |-  ( u  =  x  ->  (
u  e.  ( K ... ( `' J `  K ) )  <->  x  e.  ( K ... ( `' J `  K ) ) ) )
50 eqeq1 2200 . . . . . . . . 9  |-  ( u  =  x  ->  (
u  =  K  <->  x  =  K ) )
51 oveq1 5925 . . . . . . . . . 10  |-  ( u  =  x  ->  (
u  -  1 )  =  ( x  - 
1 ) )
5251fveq2d 5558 . . . . . . . . 9  |-  ( u  =  x  ->  ( J `  ( u  -  1 ) )  =  ( J `  ( x  -  1
) ) )
5350, 52ifbieq2d 3581 . . . . . . . 8  |-  ( u  =  x  ->  if ( u  =  K ,  K ,  ( J `
 ( u  - 
1 ) ) )  =  if ( x  =  K ,  K ,  ( J `  ( x  -  1
) ) ) )
54 fveq2 5554 . . . . . . . 8  |-  ( u  =  x  ->  ( J `  u )  =  ( J `  x ) )
5549, 53, 54ifbieq12d 3583 . . . . . . 7  |-  ( u  =  x  ->  if ( u  e.  ( K ... ( `' J `  K ) ) ,  if ( u  =  K ,  K , 
( J `  (
u  -  1 ) ) ) ,  ( J `  u ) )  =  if ( x  e.  ( K ... ( `' J `  K ) ) ,  if ( x  =  K ,  K , 
( J `  (
x  -  1 ) ) ) ,  ( J `  x ) ) )
56 iseqf1olemqf.q . . . . . . 7  |-  Q  =  ( u  e.  ( M ... N ) 
|->  if ( u  e.  ( K ... ( `' J `  K ) ) ,  if ( u  =  K ,  K ,  ( J `  ( u  -  1 ) ) ) ,  ( J `  u
) ) )
5755, 56fvmptg 5633 . . . . . 6  |-  ( ( x  e.  ( M ... N )  /\  if ( x  e.  ( K ... ( `' J `  K ) ) ,  if ( x  =  K ,  K ,  ( J `  ( x  -  1 ) ) ) ,  ( J `  x
) )  e.  ( M..^ K ) )  ->  ( Q `  x )  =  if ( x  e.  ( K ... ( `' J `  K ) ) ,  if ( x  =  K ,  K ,  ( J `  ( x  -  1 ) ) ) ,  ( J `  x
) ) )
5826, 48, 57syl2anc 411 . . . . 5  |-  ( (
ph  /\  x  e.  ( M..^ K ) )  ->  ( Q `  x )  =  if ( x  e.  ( K ... ( `' J `  K ) ) ,  if ( x  =  K ,  K ,  ( J `  ( x  -  1 ) ) ) ,  ( J `  x
) ) )
5958, 46eqtrd 2226 . . . 4  |-  ( (
ph  /\  x  e.  ( M..^ K ) )  ->  ( Q `  x )  =  x )
6059ralrimiva 2567 . . 3  |-  ( ph  ->  A. x  e.  ( M..^ K ) ( Q `  x )  =  x )
613, 32, 3, 56iseqf1olemqval 10571 . . . . 5  |-  ( ph  ->  ( Q `  K
)  =  if ( K  e.  ( K ... ( `' J `  K ) ) ,  if ( K  =  K ,  K , 
( J `  ( K  -  1 ) ) ) ,  ( J `  K ) ) )
62 elfzelz 10091 . . . . . . . . . 10  |-  ( K  e.  ( M ... N )  ->  K  e.  ZZ )
633, 62syl 14 . . . . . . . . 9  |-  ( ph  ->  K  e.  ZZ )
64 elfzuz2 10095 . . . . . . . . . . 11  |-  ( K  e.  ( M ... N )  ->  N  e.  ( ZZ>= `  M )
)
653, 64syl 14 . . . . . . . . . 10  |-  ( ph  ->  N  e.  ( ZZ>= `  M ) )
6665, 3, 32, 44iseqf1olemkle 10568 . . . . . . . . 9  |-  ( ph  ->  K  <_  ( `' J `  K )
)
67 eluz2 9598 . . . . . . . . 9  |-  ( ( `' J `  K )  e.  ( ZZ>= `  K
)  <->  ( K  e.  ZZ  /\  ( `' J `  K )  e.  ZZ  /\  K  <_  ( `' J `  K ) ) )
6863, 38, 66, 67syl3anbrc 1183 . . . . . . . 8  |-  ( ph  ->  ( `' J `  K )  e.  (
ZZ>= `  K ) )
69 eluzfz1 10097 . . . . . . . 8  |-  ( ( `' J `  K )  e.  ( ZZ>= `  K
)  ->  K  e.  ( K ... ( `' J `  K ) ) )
7068, 69syl 14 . . . . . . 7  |-  ( ph  ->  K  e.  ( K ... ( `' J `  K ) ) )
7170iftrued 3564 . . . . . 6  |-  ( ph  ->  if ( K  e.  ( K ... ( `' J `  K ) ) ,  if ( K  =  K ,  K ,  ( J `  ( K  -  1 ) ) ) ,  ( J `  K
) )  =  if ( K  =  K ,  K ,  ( J `  ( K  -  1 ) ) ) )
72 eqid 2193 . . . . . . 7  |-  K  =  K
7372iftruei 3563 . . . . . 6  |-  if ( K  =  K ,  K ,  ( J `  ( K  -  1 ) ) )  =  K
7471, 73eqtrdi 2242 . . . . 5  |-  ( ph  ->  if ( K  e.  ( K ... ( `' J `  K ) ) ,  if ( K  =  K ,  K ,  ( J `  ( K  -  1 ) ) ) ,  ( J `  K
) )  =  K )
7561, 74eqtrd 2226 . . . 4  |-  ( ph  ->  ( Q `  K
)  =  K )
76 fveq2 5554 . . . . . . 7  |-  ( x  =  K  ->  ( Q `  x )  =  ( Q `  K ) )
77 id 19 . . . . . . 7  |-  ( x  =  K  ->  x  =  K )
7876, 77eqeq12d 2208 . . . . . 6  |-  ( x  =  K  ->  (
( Q `  x
)  =  x  <->  ( Q `  K )  =  K ) )
7978ralsng 3658 . . . . 5  |-  ( K  e.  ZZ  ->  ( A. x  e.  { K }  ( Q `  x )  =  x  <-> 
( Q `  K
)  =  K ) )
803, 62, 793syl 17 . . . 4  |-  ( ph  ->  ( A. x  e. 
{ K }  ( Q `  x )  =  x  <->  ( Q `  K )  =  K ) )
8175, 80mpbird 167 . . 3  |-  ( ph  ->  A. x  e.  { K }  ( Q `  x )  =  x )
82 ralun 3341 . . 3  |-  ( ( A. x  e.  ( M..^ K ) ( Q `  x )  =  x  /\  A. x  e.  { K }  ( Q `  x )  =  x )  ->  A. x  e.  ( ( M..^ K
)  u.  { K } ) ( Q `
 x )  =  x )
8360, 81, 82syl2anc 411 . 2  |-  ( ph  ->  A. x  e.  ( ( M..^ K )  u.  { K }
) ( Q `  x )  =  x )
84 elfzuz 10087 . . . 4  |-  ( K  e.  ( M ... N )  ->  K  e.  ( ZZ>= `  M )
)
85 fzisfzounsn 10303 . . . 4  |-  ( K  e.  ( ZZ>= `  M
)  ->  ( M ... K )  =  ( ( M..^ K )  u.  { K }
) )
863, 84, 853syl 17 . . 3  |-  ( ph  ->  ( M ... K
)  =  ( ( M..^ K )  u. 
{ K } ) )
8786raleqdv 2696 . 2  |-  ( ph  ->  ( A. x  e.  ( M ... K
) ( Q `  x )  =  x  <->  A. x  e.  (
( M..^ K )  u.  { K }
) ( Q `  x )  =  x ) )
8883, 87mpbird 167 1  |-  ( ph  ->  A. x  e.  ( M ... K ) ( Q `  x
)  =  x )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1364    e. wcel 2164   A.wral 2472    u. cun 3151   ifcif 3557   {csn 3618   class class class wbr 4029    |-> cmpt 4090   `'ccnv 4658   -->wf 5250   -1-1-onto->wf1o 5253   ` cfv 5254  (class class class)co 5918   RRcr 7871   1c1 7873    < clt 8054    <_ cle 8055    - cmin 8190   ZZcz 9317   ZZ>=cuz 9592   ...cfz 10074  ..^cfzo 10208
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-cnex 7963  ax-resscn 7964  ax-1cn 7965  ax-1re 7966  ax-icn 7967  ax-addcl 7968  ax-addrcl 7969  ax-mulcl 7970  ax-addcom 7972  ax-addass 7974  ax-distr 7976  ax-i2m1 7977  ax-0lt1 7978  ax-0id 7980  ax-rnegex 7981  ax-cnre 7983  ax-pre-ltirr 7984  ax-pre-ltwlin 7985  ax-pre-lttrn 7986  ax-pre-apti 7987  ax-pre-ltadd 7988
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-if 3558  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-id 4324  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-riota 5873  df-ov 5921  df-oprab 5922  df-mpo 5923  df-1st 6193  df-2nd 6194  df-pnf 8056  df-mnf 8057  df-xr 8058  df-ltxr 8059  df-le 8060  df-sub 8192  df-neg 8193  df-inn 8983  df-n0 9241  df-z 9318  df-uz 9593  df-fz 10075  df-fzo 10209
This theorem is referenced by:  seq3f1olemstep  10585
  Copyright terms: Public domain W3C validator