ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iseqf1olemqk Unicode version

Theorem iseqf1olemqk 10429
Description: Lemma for seq3f1o 10439. 
Q is constant for one more position than  J is. (Contributed by Jim Kingdon, 21-Aug-2022.)
Hypotheses
Ref Expression
iseqf1olemqf.k  |-  ( ph  ->  K  e.  ( M ... N ) )
iseqf1olemqf.j  |-  ( ph  ->  J : ( M ... N ) -1-1-onto-> ( M ... N ) )
iseqf1olemqf.q  |-  Q  =  ( u  e.  ( M ... N ) 
|->  if ( u  e.  ( K ... ( `' J `  K ) ) ,  if ( u  =  K ,  K ,  ( J `  ( u  -  1 ) ) ) ,  ( J `  u
) ) )
iseqf1olemqk.const  |-  ( ph  ->  A. x  e.  ( M..^ K ) ( J `  x )  =  x )
Assertion
Ref Expression
iseqf1olemqk  |-  ( ph  ->  A. x  e.  ( M ... K ) ( Q `  x
)  =  x )
Distinct variable groups:    u, J, x   
u, K, x    u, M, x    u, N    x, Q    ph, x
Allowed substitution hints:    ph( u)    Q( u)    N( x)

Proof of Theorem iseqf1olemqk
StepHypRef Expression
1 elfzole1 10090 . . . . . . . 8  |-  ( x  e.  ( M..^ K
)  ->  M  <_  x )
21adantl 275 . . . . . . 7  |-  ( (
ph  /\  x  e.  ( M..^ K ) )  ->  M  <_  x
)
3 iseqf1olemqf.k . . . . . . . . . 10  |-  ( ph  ->  K  e.  ( M ... N ) )
4 elfzle2 9963 . . . . . . . . . 10  |-  ( K  e.  ( M ... N )  ->  K  <_  N )
53, 4syl 14 . . . . . . . . 9  |-  ( ph  ->  K  <_  N )
6 elfzolt2 10091 . . . . . . . . 9  |-  ( x  e.  ( M..^ K
)  ->  x  <  K )
75, 6anim12ci 337 . . . . . . . 8  |-  ( (
ph  /\  x  e.  ( M..^ K ) )  ->  ( x  < 
K  /\  K  <_  N ) )
8 elfzoelz 10082 . . . . . . . . . . 11  |-  ( x  e.  ( M..^ K
)  ->  x  e.  ZZ )
98adantl 275 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  ( M..^ K ) )  ->  x  e.  ZZ )
109zred 9313 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  ( M..^ K ) )  ->  x  e.  RR )
11 elfzoel2 10081 . . . . . . . . . . 11  |-  ( x  e.  ( M..^ K
)  ->  K  e.  ZZ )
1211adantl 275 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  ( M..^ K ) )  ->  K  e.  ZZ )
1312zred 9313 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  ( M..^ K ) )  ->  K  e.  RR )
14 elfzel2 9958 . . . . . . . . . . . 12  |-  ( K  e.  ( M ... N )  ->  N  e.  ZZ )
153, 14syl 14 . . . . . . . . . . 11  |-  ( ph  ->  N  e.  ZZ )
1615adantr 274 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  ( M..^ K ) )  ->  N  e.  ZZ )
1716zred 9313 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  ( M..^ K ) )  ->  N  e.  RR )
18 ltleletr 7980 . . . . . . . . 9  |-  ( ( x  e.  RR  /\  K  e.  RR  /\  N  e.  RR )  ->  (
( x  <  K  /\  K  <_  N )  ->  x  <_  N
) )
1910, 13, 17, 18syl3anc 1228 . . . . . . . 8  |-  ( (
ph  /\  x  e.  ( M..^ K ) )  ->  ( ( x  <  K  /\  K  <_  N )  ->  x  <_  N ) )
207, 19mpd 13 . . . . . . 7  |-  ( (
ph  /\  x  e.  ( M..^ K ) )  ->  x  <_  N
)
21 elfzel1 9959 . . . . . . . . . 10  |-  ( K  e.  ( M ... N )  ->  M  e.  ZZ )
223, 21syl 14 . . . . . . . . 9  |-  ( ph  ->  M  e.  ZZ )
2322adantr 274 . . . . . . . 8  |-  ( (
ph  /\  x  e.  ( M..^ K ) )  ->  M  e.  ZZ )
24 elfz 9950 . . . . . . . 8  |-  ( ( x  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  (
x  e.  ( M ... N )  <->  ( M  <_  x  /\  x  <_  N ) ) )
259, 23, 16, 24syl3anc 1228 . . . . . . 7  |-  ( (
ph  /\  x  e.  ( M..^ K ) )  ->  ( x  e.  ( M ... N
)  <->  ( M  <_  x  /\  x  <_  N
) ) )
262, 20, 25mpbir2and 934 . . . . . 6  |-  ( (
ph  /\  x  e.  ( M..^ K ) )  ->  x  e.  ( M ... N ) )
276adantl 275 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  ( M..^ K ) )  ->  x  <  K
)
28 zltnle 9237 . . . . . . . . . . . . 13  |-  ( ( x  e.  ZZ  /\  K  e.  ZZ )  ->  ( x  <  K  <->  -.  K  <_  x )
)
299, 12, 28syl2anc 409 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  ( M..^ K ) )  ->  ( x  < 
K  <->  -.  K  <_  x ) )
3027, 29mpbid 146 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  ( M..^ K ) )  ->  -.  K  <_  x )
3130intnanrd 922 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  ( M..^ K ) )  ->  -.  ( K  <_  x  /\  x  <_ 
( `' J `  K ) ) )
32 iseqf1olemqf.j . . . . . . . . . . . . . . 15  |-  ( ph  ->  J : ( M ... N ) -1-1-onto-> ( M ... N ) )
33 f1ocnv 5445 . . . . . . . . . . . . . . 15  |-  ( J : ( M ... N ) -1-1-onto-> ( M ... N
)  ->  `' J : ( M ... N ) -1-1-onto-> ( M ... N
) )
34 f1of 5432 . . . . . . . . . . . . . . 15  |-  ( `' J : ( M ... N ) -1-1-onto-> ( M ... N )  ->  `' J : ( M ... N ) --> ( M ... N ) )
3532, 33, 343syl 17 . . . . . . . . . . . . . 14  |-  ( ph  ->  `' J : ( M ... N ) --> ( M ... N ) )
3635, 3ffvelrnd 5621 . . . . . . . . . . . . 13  |-  ( ph  ->  ( `' J `  K )  e.  ( M ... N ) )
37 elfzelz 9960 . . . . . . . . . . . . 13  |-  ( ( `' J `  K )  e.  ( M ... N )  ->  ( `' J `  K )  e.  ZZ )
3836, 37syl 14 . . . . . . . . . . . 12  |-  ( ph  ->  ( `' J `  K )  e.  ZZ )
3938adantr 274 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  ( M..^ K ) )  ->  ( `' J `  K )  e.  ZZ )
40 elfz 9950 . . . . . . . . . . 11  |-  ( ( x  e.  ZZ  /\  K  e.  ZZ  /\  ( `' J `  K )  e.  ZZ )  -> 
( x  e.  ( K ... ( `' J `  K ) )  <->  ( K  <_  x  /\  x  <_  ( `' J `  K ) ) ) )
419, 12, 39, 40syl3anc 1228 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  ( M..^ K ) )  ->  ( x  e.  ( K ... ( `' J `  K ) )  <->  ( K  <_  x  /\  x  <_  ( `' J `  K ) ) ) )
4231, 41mtbird 663 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  ( M..^ K ) )  ->  -.  x  e.  ( K ... ( `' J `  K ) ) )
4342iffalsed 3530 . . . . . . . 8  |-  ( (
ph  /\  x  e.  ( M..^ K ) )  ->  if ( x  e.  ( K ... ( `' J `  K ) ) ,  if ( x  =  K ,  K ,  ( J `  ( x  -  1 ) ) ) ,  ( J `  x
) )  =  ( J `  x ) )
44 iseqf1olemqk.const . . . . . . . . 9  |-  ( ph  ->  A. x  e.  ( M..^ K ) ( J `  x )  =  x )
4544r19.21bi 2554 . . . . . . . 8  |-  ( (
ph  /\  x  e.  ( M..^ K ) )  ->  ( J `  x )  =  x )
4643, 45eqtrd 2198 . . . . . . 7  |-  ( (
ph  /\  x  e.  ( M..^ K ) )  ->  if ( x  e.  ( K ... ( `' J `  K ) ) ,  if ( x  =  K ,  K ,  ( J `  ( x  -  1 ) ) ) ,  ( J `  x
) )  =  x )
47 simpr 109 . . . . . . 7  |-  ( (
ph  /\  x  e.  ( M..^ K ) )  ->  x  e.  ( M..^ K ) )
4846, 47eqeltrd 2243 . . . . . 6  |-  ( (
ph  /\  x  e.  ( M..^ K ) )  ->  if ( x  e.  ( K ... ( `' J `  K ) ) ,  if ( x  =  K ,  K ,  ( J `  ( x  -  1 ) ) ) ,  ( J `  x
) )  e.  ( M..^ K ) )
49 eleq1w 2227 . . . . . . . 8  |-  ( u  =  x  ->  (
u  e.  ( K ... ( `' J `  K ) )  <->  x  e.  ( K ... ( `' J `  K ) ) ) )
50 eqeq1 2172 . . . . . . . . 9  |-  ( u  =  x  ->  (
u  =  K  <->  x  =  K ) )
51 oveq1 5849 . . . . . . . . . 10  |-  ( u  =  x  ->  (
u  -  1 )  =  ( x  - 
1 ) )
5251fveq2d 5490 . . . . . . . . 9  |-  ( u  =  x  ->  ( J `  ( u  -  1 ) )  =  ( J `  ( x  -  1
) ) )
5350, 52ifbieq2d 3544 . . . . . . . 8  |-  ( u  =  x  ->  if ( u  =  K ,  K ,  ( J `
 ( u  - 
1 ) ) )  =  if ( x  =  K ,  K ,  ( J `  ( x  -  1
) ) ) )
54 fveq2 5486 . . . . . . . 8  |-  ( u  =  x  ->  ( J `  u )  =  ( J `  x ) )
5549, 53, 54ifbieq12d 3546 . . . . . . 7  |-  ( u  =  x  ->  if ( u  e.  ( K ... ( `' J `  K ) ) ,  if ( u  =  K ,  K , 
( J `  (
u  -  1 ) ) ) ,  ( J `  u ) )  =  if ( x  e.  ( K ... ( `' J `  K ) ) ,  if ( x  =  K ,  K , 
( J `  (
x  -  1 ) ) ) ,  ( J `  x ) ) )
56 iseqf1olemqf.q . . . . . . 7  |-  Q  =  ( u  e.  ( M ... N ) 
|->  if ( u  e.  ( K ... ( `' J `  K ) ) ,  if ( u  =  K ,  K ,  ( J `  ( u  -  1 ) ) ) ,  ( J `  u
) ) )
5755, 56fvmptg 5562 . . . . . 6  |-  ( ( x  e.  ( M ... N )  /\  if ( x  e.  ( K ... ( `' J `  K ) ) ,  if ( x  =  K ,  K ,  ( J `  ( x  -  1 ) ) ) ,  ( J `  x
) )  e.  ( M..^ K ) )  ->  ( Q `  x )  =  if ( x  e.  ( K ... ( `' J `  K ) ) ,  if ( x  =  K ,  K ,  ( J `  ( x  -  1 ) ) ) ,  ( J `  x
) ) )
5826, 48, 57syl2anc 409 . . . . 5  |-  ( (
ph  /\  x  e.  ( M..^ K ) )  ->  ( Q `  x )  =  if ( x  e.  ( K ... ( `' J `  K ) ) ,  if ( x  =  K ,  K ,  ( J `  ( x  -  1 ) ) ) ,  ( J `  x
) ) )
5958, 46eqtrd 2198 . . . 4  |-  ( (
ph  /\  x  e.  ( M..^ K ) )  ->  ( Q `  x )  =  x )
6059ralrimiva 2539 . . 3  |-  ( ph  ->  A. x  e.  ( M..^ K ) ( Q `  x )  =  x )
613, 32, 3, 56iseqf1olemqval 10422 . . . . 5  |-  ( ph  ->  ( Q `  K
)  =  if ( K  e.  ( K ... ( `' J `  K ) ) ,  if ( K  =  K ,  K , 
( J `  ( K  -  1 ) ) ) ,  ( J `  K ) ) )
62 elfzelz 9960 . . . . . . . . . 10  |-  ( K  e.  ( M ... N )  ->  K  e.  ZZ )
633, 62syl 14 . . . . . . . . 9  |-  ( ph  ->  K  e.  ZZ )
64 elfzuz2 9964 . . . . . . . . . . 11  |-  ( K  e.  ( M ... N )  ->  N  e.  ( ZZ>= `  M )
)
653, 64syl 14 . . . . . . . . . 10  |-  ( ph  ->  N  e.  ( ZZ>= `  M ) )
6665, 3, 32, 44iseqf1olemkle 10419 . . . . . . . . 9  |-  ( ph  ->  K  <_  ( `' J `  K )
)
67 eluz2 9472 . . . . . . . . 9  |-  ( ( `' J `  K )  e.  ( ZZ>= `  K
)  <->  ( K  e.  ZZ  /\  ( `' J `  K )  e.  ZZ  /\  K  <_  ( `' J `  K ) ) )
6863, 38, 66, 67syl3anbrc 1171 . . . . . . . 8  |-  ( ph  ->  ( `' J `  K )  e.  (
ZZ>= `  K ) )
69 eluzfz1 9966 . . . . . . . 8  |-  ( ( `' J `  K )  e.  ( ZZ>= `  K
)  ->  K  e.  ( K ... ( `' J `  K ) ) )
7068, 69syl 14 . . . . . . 7  |-  ( ph  ->  K  e.  ( K ... ( `' J `  K ) ) )
7170iftrued 3527 . . . . . 6  |-  ( ph  ->  if ( K  e.  ( K ... ( `' J `  K ) ) ,  if ( K  =  K ,  K ,  ( J `  ( K  -  1 ) ) ) ,  ( J `  K
) )  =  if ( K  =  K ,  K ,  ( J `  ( K  -  1 ) ) ) )
72 eqid 2165 . . . . . . 7  |-  K  =  K
7372iftruei 3526 . . . . . 6  |-  if ( K  =  K ,  K ,  ( J `  ( K  -  1 ) ) )  =  K
7471, 73eqtrdi 2215 . . . . 5  |-  ( ph  ->  if ( K  e.  ( K ... ( `' J `  K ) ) ,  if ( K  =  K ,  K ,  ( J `  ( K  -  1 ) ) ) ,  ( J `  K
) )  =  K )
7561, 74eqtrd 2198 . . . 4  |-  ( ph  ->  ( Q `  K
)  =  K )
76 fveq2 5486 . . . . . . 7  |-  ( x  =  K  ->  ( Q `  x )  =  ( Q `  K ) )
77 id 19 . . . . . . 7  |-  ( x  =  K  ->  x  =  K )
7876, 77eqeq12d 2180 . . . . . 6  |-  ( x  =  K  ->  (
( Q `  x
)  =  x  <->  ( Q `  K )  =  K ) )
7978ralsng 3616 . . . . 5  |-  ( K  e.  ZZ  ->  ( A. x  e.  { K }  ( Q `  x )  =  x  <-> 
( Q `  K
)  =  K ) )
803, 62, 793syl 17 . . . 4  |-  ( ph  ->  ( A. x  e. 
{ K }  ( Q `  x )  =  x  <->  ( Q `  K )  =  K ) )
8175, 80mpbird 166 . . 3  |-  ( ph  ->  A. x  e.  { K }  ( Q `  x )  =  x )
82 ralun 3304 . . 3  |-  ( ( A. x  e.  ( M..^ K ) ( Q `  x )  =  x  /\  A. x  e.  { K }  ( Q `  x )  =  x )  ->  A. x  e.  ( ( M..^ K
)  u.  { K } ) ( Q `
 x )  =  x )
8360, 81, 82syl2anc 409 . 2  |-  ( ph  ->  A. x  e.  ( ( M..^ K )  u.  { K }
) ( Q `  x )  =  x )
84 elfzuz 9956 . . . 4  |-  ( K  e.  ( M ... N )  ->  K  e.  ( ZZ>= `  M )
)
85 fzisfzounsn 10171 . . . 4  |-  ( K  e.  ( ZZ>= `  M
)  ->  ( M ... K )  =  ( ( M..^ K )  u.  { K }
) )
863, 84, 853syl 17 . . 3  |-  ( ph  ->  ( M ... K
)  =  ( ( M..^ K )  u. 
{ K } ) )
8786raleqdv 2667 . 2  |-  ( ph  ->  ( A. x  e.  ( M ... K
) ( Q `  x )  =  x  <->  A. x  e.  (
( M..^ K )  u.  { K }
) ( Q `  x )  =  x ) )
8883, 87mpbird 166 1  |-  ( ph  ->  A. x  e.  ( M ... K ) ( Q `  x
)  =  x )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1343    e. wcel 2136   A.wral 2444    u. cun 3114   ifcif 3520   {csn 3576   class class class wbr 3982    |-> cmpt 4043   `'ccnv 4603   -->wf 5184   -1-1-onto->wf1o 5187   ` cfv 5188  (class class class)co 5842   RRcr 7752   1c1 7754    < clt 7933    <_ cle 7934    - cmin 8069   ZZcz 9191   ZZ>=cuz 9466   ...cfz 9944  ..^cfzo 10077
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-cnex 7844  ax-resscn 7845  ax-1cn 7846  ax-1re 7847  ax-icn 7848  ax-addcl 7849  ax-addrcl 7850  ax-mulcl 7851  ax-addcom 7853  ax-addass 7855  ax-distr 7857  ax-i2m1 7858  ax-0lt1 7859  ax-0id 7861  ax-rnegex 7862  ax-cnre 7864  ax-pre-ltirr 7865  ax-pre-ltwlin 7866  ax-pre-lttrn 7867  ax-pre-apti 7868  ax-pre-ltadd 7869
This theorem depends on definitions:  df-bi 116  df-dc 825  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-nel 2432  df-ral 2449  df-rex 2450  df-reu 2451  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-if 3521  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-id 4271  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-riota 5798  df-ov 5845  df-oprab 5846  df-mpo 5847  df-1st 6108  df-2nd 6109  df-pnf 7935  df-mnf 7936  df-xr 7937  df-ltxr 7938  df-le 7939  df-sub 8071  df-neg 8072  df-inn 8858  df-n0 9115  df-z 9192  df-uz 9467  df-fz 9945  df-fzo 10078
This theorem is referenced by:  seq3f1olemstep  10436
  Copyright terms: Public domain W3C validator