ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pclemdc Unicode version

Theorem pclemdc 12482
Description: Lemma for the prime power pre-function's properties. (Contributed by Jim Kingdon, 8-Oct-2024.)
Hypothesis
Ref Expression
pclem.1  |-  A  =  { n  e.  NN0  |  ( P ^ n
)  ||  N }
Assertion
Ref Expression
pclemdc  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  ->  A. x  e.  ZZ DECID  x  e.  A )
Distinct variable groups:    n, N, x    P, n, x
Allowed substitution hints:    A( x, n)

Proof of Theorem pclemdc
StepHypRef Expression
1 elnn0dc 9702 . . . . . 6  |-  ( x  e.  ZZ  -> DECID  x  e.  NN0 )
21ad2antlr 489 . . . . 5  |-  ( ( ( ( P  e.  ( ZZ>= `  2 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  /\  x  e.  ZZ )  /\  x  e.  NN0 )  -> DECID  x  e.  NN0 )
3 eluzelz 9627 . . . . . . . 8  |-  ( P  e.  ( ZZ>= `  2
)  ->  P  e.  ZZ )
43ad3antrrr 492 . . . . . . 7  |-  ( ( ( ( P  e.  ( ZZ>= `  2 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  /\  x  e.  ZZ )  /\  x  e.  NN0 )  ->  P  e.  ZZ )
5 zexpcl 10663 . . . . . . 7  |-  ( ( P  e.  ZZ  /\  x  e.  NN0 )  -> 
( P ^ x
)  e.  ZZ )
64, 5sylancom 420 . . . . . 6  |-  ( ( ( ( P  e.  ( ZZ>= `  2 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  /\  x  e.  ZZ )  /\  x  e.  NN0 )  ->  ( P ^ x )  e.  ZZ )
7 simprl 529 . . . . . . 7  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  ->  N  e.  ZZ )
87ad2antrr 488 . . . . . 6  |-  ( ( ( ( P  e.  ( ZZ>= `  2 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  /\  x  e.  ZZ )  /\  x  e.  NN0 )  ->  N  e.  ZZ )
9 zdvdsdc 11994 . . . . . 6  |-  ( ( ( P ^ x
)  e.  ZZ  /\  N  e.  ZZ )  -> DECID  ( P ^ x ) 
||  N )
106, 8, 9syl2anc 411 . . . . 5  |-  ( ( ( ( P  e.  ( ZZ>= `  2 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  /\  x  e.  ZZ )  /\  x  e.  NN0 )  -> DECID  ( P ^ x
)  ||  N )
112, 10dcand 934 . . . 4  |-  ( ( ( ( P  e.  ( ZZ>= `  2 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  /\  x  e.  ZZ )  /\  x  e.  NN0 )  -> DECID  ( x  e.  NN0  /\  ( P ^ x
)  ||  N )
)
12 oveq2 5933 . . . . . . 7  |-  ( n  =  x  ->  ( P ^ n )  =  ( P ^ x
) )
1312breq1d 4044 . . . . . 6  |-  ( n  =  x  ->  (
( P ^ n
)  ||  N  <->  ( P ^ x )  ||  N ) )
14 pclem.1 . . . . . 6  |-  A  =  { n  e.  NN0  |  ( P ^ n
)  ||  N }
1513, 14elrab2 2923 . . . . 5  |-  ( x  e.  A  <->  ( x  e.  NN0  /\  ( P ^ x )  ||  N ) )
1615dcbii 841 . . . 4  |-  (DECID  x  e.  A  <-> DECID  ( x  e.  NN0  /\  ( P ^ x
)  ||  N )
)
1711, 16sylibr 134 . . 3  |-  ( ( ( ( P  e.  ( ZZ>= `  2 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  /\  x  e.  ZZ )  /\  x  e.  NN0 )  -> DECID  x  e.  A
)
18 simpr 110 . . . . . . 7  |-  ( ( ( ( P  e.  ( ZZ>= `  2 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  /\  x  e.  ZZ )  /\  -.  x  e.  NN0 )  ->  -.  x  e.  NN0 )
1918intnanrd 933 . . . . . 6  |-  ( ( ( ( P  e.  ( ZZ>= `  2 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  /\  x  e.  ZZ )  /\  -.  x  e.  NN0 )  ->  -.  ( x  e.  NN0  /\  ( P ^ x
)  ||  N )
)
2019olcd 735 . . . . 5  |-  ( ( ( ( P  e.  ( ZZ>= `  2 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  /\  x  e.  ZZ )  /\  -.  x  e.  NN0 )  -> 
( ( x  e. 
NN0  /\  ( P ^ x )  ||  N )  \/  -.  ( x  e.  NN0  /\  ( P ^ x
)  ||  N )
) )
21 df-dc 836 . . . . 5  |-  (DECID  ( x  e.  NN0  /\  ( P ^ x )  ||  N )  <->  ( (
x  e.  NN0  /\  ( P ^ x ) 
||  N )  \/ 
-.  ( x  e. 
NN0  /\  ( P ^ x )  ||  N ) ) )
2220, 21sylibr 134 . . . 4  |-  ( ( ( ( P  e.  ( ZZ>= `  2 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  /\  x  e.  ZZ )  /\  -.  x  e.  NN0 )  -> DECID  (
x  e.  NN0  /\  ( P ^ x ) 
||  N ) )
2322, 16sylibr 134 . . 3  |-  ( ( ( ( P  e.  ( ZZ>= `  2 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  /\  x  e.  ZZ )  /\  -.  x  e.  NN0 )  -> DECID  x  e.  A )
24 exmiddc 837 . . . . 5  |-  (DECID  x  e. 
NN0  ->  ( x  e. 
NN0  \/  -.  x  e.  NN0 ) )
251, 24syl 14 . . . 4  |-  ( x  e.  ZZ  ->  (
x  e.  NN0  \/  -.  x  e.  NN0 ) )
2625adantl 277 . . 3  |-  ( ( ( P  e.  (
ZZ>= `  2 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  /\  x  e.  ZZ )  ->  (
x  e.  NN0  \/  -.  x  e.  NN0 ) )
2717, 23, 26mpjaodan 799 . 2  |-  ( ( ( P  e.  (
ZZ>= `  2 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  /\  x  e.  ZZ )  -> DECID  x  e.  A
)
2827ralrimiva 2570 1  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  ->  A. x  e.  ZZ DECID  x  e.  A )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    \/ wo 709  DECID wdc 835    = wceq 1364    e. wcel 2167    =/= wne 2367   A.wral 2475   {crab 2479   class class class wbr 4034   ` cfv 5259  (class class class)co 5925   0cc0 7896   2c2 9058   NN0cn0 9266   ZZcz 9343   ZZ>=cuz 9618   ^cexp 10647    || cdvds 11969
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-nul 4160  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-iinf 4625  ax-cnex 7987  ax-resscn 7988  ax-1cn 7989  ax-1re 7990  ax-icn 7991  ax-addcl 7992  ax-addrcl 7993  ax-mulcl 7994  ax-mulrcl 7995  ax-addcom 7996  ax-mulcom 7997  ax-addass 7998  ax-mulass 7999  ax-distr 8000  ax-i2m1 8001  ax-0lt1 8002  ax-1rid 8003  ax-0id 8004  ax-rnegex 8005  ax-precex 8006  ax-cnre 8007  ax-pre-ltirr 8008  ax-pre-ltwlin 8009  ax-pre-lttrn 8010  ax-pre-apti 8011  ax-pre-ltadd 8012  ax-pre-mulgt0 8013  ax-pre-mulext 8014  ax-arch 8015
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-if 3563  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-tr 4133  df-id 4329  df-po 4332  df-iso 4333  df-iord 4402  df-on 4404  df-ilim 4405  df-suc 4407  df-iom 4628  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-1st 6207  df-2nd 6208  df-recs 6372  df-frec 6458  df-pnf 8080  df-mnf 8081  df-xr 8082  df-ltxr 8083  df-le 8084  df-sub 8216  df-neg 8217  df-reap 8619  df-ap 8626  df-div 8717  df-inn 9008  df-n0 9267  df-z 9344  df-uz 9619  df-q 9711  df-rp 9746  df-fl 10377  df-mod 10432  df-seqfrec 10557  df-exp 10648  df-dvds 11970
This theorem is referenced by:  pcprecl  12483  pcprendvds  12484  pcpremul  12487
  Copyright terms: Public domain W3C validator