ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pclemdc Unicode version

Theorem pclemdc 12302
Description: Lemma for the prime power pre-function's properties. (Contributed by Jim Kingdon, 8-Oct-2024.)
Hypothesis
Ref Expression
pclem.1  |-  A  =  { n  e.  NN0  |  ( P ^ n
)  ||  N }
Assertion
Ref Expression
pclemdc  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  ->  A. x  e.  ZZ DECID  x  e.  A )
Distinct variable groups:    n, N, x    P, n, x
Allowed substitution hints:    A( x, n)

Proof of Theorem pclemdc
StepHypRef Expression
1 elnn0dc 9625 . . . . . 6  |-  ( x  e.  ZZ  -> DECID  x  e.  NN0 )
21ad2antlr 489 . . . . 5  |-  ( ( ( ( P  e.  ( ZZ>= `  2 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  /\  x  e.  ZZ )  /\  x  e.  NN0 )  -> DECID  x  e.  NN0 )
3 eluzelz 9551 . . . . . . . 8  |-  ( P  e.  ( ZZ>= `  2
)  ->  P  e.  ZZ )
43ad3antrrr 492 . . . . . . 7  |-  ( ( ( ( P  e.  ( ZZ>= `  2 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  /\  x  e.  ZZ )  /\  x  e.  NN0 )  ->  P  e.  ZZ )
5 simpr 110 . . . . . . 7  |-  ( ( ( ( P  e.  ( ZZ>= `  2 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  /\  x  e.  ZZ )  /\  x  e.  NN0 )  ->  x  e.  NN0 )
6 zexpcl 10549 . . . . . . 7  |-  ( ( P  e.  ZZ  /\  x  e.  NN0 )  -> 
( P ^ x
)  e.  ZZ )
74, 5, 6syl2anc 411 . . . . . 6  |-  ( ( ( ( P  e.  ( ZZ>= `  2 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  /\  x  e.  ZZ )  /\  x  e.  NN0 )  ->  ( P ^ x )  e.  ZZ )
8 simprl 529 . . . . . . 7  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  ->  N  e.  ZZ )
98ad2antrr 488 . . . . . 6  |-  ( ( ( ( P  e.  ( ZZ>= `  2 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  /\  x  e.  ZZ )  /\  x  e.  NN0 )  ->  N  e.  ZZ )
10 zdvdsdc 11833 . . . . . 6  |-  ( ( ( P ^ x
)  e.  ZZ  /\  N  e.  ZZ )  -> DECID  ( P ^ x ) 
||  N )
117, 9, 10syl2anc 411 . . . . 5  |-  ( ( ( ( P  e.  ( ZZ>= `  2 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  /\  x  e.  ZZ )  /\  x  e.  NN0 )  -> DECID  ( P ^ x
)  ||  N )
12 dcan2 935 . . . . 5  |-  (DECID  x  e. 
NN0  ->  (DECID  ( P ^ x
)  ||  N  -> DECID  ( x  e.  NN0  /\  ( P ^ x )  ||  N ) ) )
132, 11, 12sylc 62 . . . 4  |-  ( ( ( ( P  e.  ( ZZ>= `  2 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  /\  x  e.  ZZ )  /\  x  e.  NN0 )  -> DECID  ( x  e.  NN0  /\  ( P ^ x
)  ||  N )
)
14 oveq2 5896 . . . . . . 7  |-  ( n  =  x  ->  ( P ^ n )  =  ( P ^ x
) )
1514breq1d 4025 . . . . . 6  |-  ( n  =  x  ->  (
( P ^ n
)  ||  N  <->  ( P ^ x )  ||  N ) )
16 pclem.1 . . . . . 6  |-  A  =  { n  e.  NN0  |  ( P ^ n
)  ||  N }
1715, 16elrab2 2908 . . . . 5  |-  ( x  e.  A  <->  ( x  e.  NN0  /\  ( P ^ x )  ||  N ) )
1817dcbii 841 . . . 4  |-  (DECID  x  e.  A  <-> DECID  ( x  e.  NN0  /\  ( P ^ x
)  ||  N )
)
1913, 18sylibr 134 . . 3  |-  ( ( ( ( P  e.  ( ZZ>= `  2 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  /\  x  e.  ZZ )  /\  x  e.  NN0 )  -> DECID  x  e.  A
)
20 simpr 110 . . . . . . 7  |-  ( ( ( ( P  e.  ( ZZ>= `  2 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  /\  x  e.  ZZ )  /\  -.  x  e.  NN0 )  ->  -.  x  e.  NN0 )
2120intnanrd 933 . . . . . 6  |-  ( ( ( ( P  e.  ( ZZ>= `  2 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  /\  x  e.  ZZ )  /\  -.  x  e.  NN0 )  ->  -.  ( x  e.  NN0  /\  ( P ^ x
)  ||  N )
)
2221olcd 735 . . . . 5  |-  ( ( ( ( P  e.  ( ZZ>= `  2 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  /\  x  e.  ZZ )  /\  -.  x  e.  NN0 )  -> 
( ( x  e. 
NN0  /\  ( P ^ x )  ||  N )  \/  -.  ( x  e.  NN0  /\  ( P ^ x
)  ||  N )
) )
23 df-dc 836 . . . . 5  |-  (DECID  ( x  e.  NN0  /\  ( P ^ x )  ||  N )  <->  ( (
x  e.  NN0  /\  ( P ^ x ) 
||  N )  \/ 
-.  ( x  e. 
NN0  /\  ( P ^ x )  ||  N ) ) )
2422, 23sylibr 134 . . . 4  |-  ( ( ( ( P  e.  ( ZZ>= `  2 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  /\  x  e.  ZZ )  /\  -.  x  e.  NN0 )  -> DECID  (
x  e.  NN0  /\  ( P ^ x ) 
||  N ) )
2524, 18sylibr 134 . . 3  |-  ( ( ( ( P  e.  ( ZZ>= `  2 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  /\  x  e.  ZZ )  /\  -.  x  e.  NN0 )  -> DECID  x  e.  A )
26 exmiddc 837 . . . . 5  |-  (DECID  x  e. 
NN0  ->  ( x  e. 
NN0  \/  -.  x  e.  NN0 ) )
271, 26syl 14 . . . 4  |-  ( x  e.  ZZ  ->  (
x  e.  NN0  \/  -.  x  e.  NN0 ) )
2827adantl 277 . . 3  |-  ( ( ( P  e.  (
ZZ>= `  2 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  /\  x  e.  ZZ )  ->  (
x  e.  NN0  \/  -.  x  e.  NN0 ) )
2919, 25, 28mpjaodan 799 . 2  |-  ( ( ( P  e.  (
ZZ>= `  2 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  /\  x  e.  ZZ )  -> DECID  x  e.  A
)
3029ralrimiva 2560 1  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  ->  A. x  e.  ZZ DECID  x  e.  A )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    \/ wo 709  DECID wdc 835    = wceq 1363    e. wcel 2158    =/= wne 2357   A.wral 2465   {crab 2469   class class class wbr 4015   ` cfv 5228  (class class class)co 5888   0cc0 7825   2c2 8984   NN0cn0 9190   ZZcz 9267   ZZ>=cuz 9542   ^cexp 10533    || cdvds 11808
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1457  ax-7 1458  ax-gen 1459  ax-ie1 1503  ax-ie2 1504  ax-8 1514  ax-10 1515  ax-11 1516  ax-i12 1517  ax-bndl 1519  ax-4 1520  ax-17 1536  ax-i9 1540  ax-ial 1544  ax-i5r 1545  ax-13 2160  ax-14 2161  ax-ext 2169  ax-coll 4130  ax-sep 4133  ax-nul 4141  ax-pow 4186  ax-pr 4221  ax-un 4445  ax-setind 4548  ax-iinf 4599  ax-cnex 7916  ax-resscn 7917  ax-1cn 7918  ax-1re 7919  ax-icn 7920  ax-addcl 7921  ax-addrcl 7922  ax-mulcl 7923  ax-mulrcl 7924  ax-addcom 7925  ax-mulcom 7926  ax-addass 7927  ax-mulass 7928  ax-distr 7929  ax-i2m1 7930  ax-0lt1 7931  ax-1rid 7932  ax-0id 7933  ax-rnegex 7934  ax-precex 7935  ax-cnre 7936  ax-pre-ltirr 7937  ax-pre-ltwlin 7938  ax-pre-lttrn 7939  ax-pre-apti 7940  ax-pre-ltadd 7941  ax-pre-mulgt0 7942  ax-pre-mulext 7943  ax-arch 7944
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 980  df-3an 981  df-tru 1366  df-fal 1369  df-nf 1471  df-sb 1773  df-eu 2039  df-mo 2040  df-clab 2174  df-cleq 2180  df-clel 2183  df-nfc 2318  df-ne 2358  df-nel 2453  df-ral 2470  df-rex 2471  df-reu 2472  df-rmo 2473  df-rab 2474  df-v 2751  df-sbc 2975  df-csb 3070  df-dif 3143  df-un 3145  df-in 3147  df-ss 3154  df-nul 3435  df-if 3547  df-pw 3589  df-sn 3610  df-pr 3611  df-op 3613  df-uni 3822  df-int 3857  df-iun 3900  df-br 4016  df-opab 4077  df-mpt 4078  df-tr 4114  df-id 4305  df-po 4308  df-iso 4309  df-iord 4378  df-on 4380  df-ilim 4381  df-suc 4383  df-iom 4602  df-xp 4644  df-rel 4645  df-cnv 4646  df-co 4647  df-dm 4648  df-rn 4649  df-res 4650  df-ima 4651  df-iota 5190  df-fun 5230  df-fn 5231  df-f 5232  df-f1 5233  df-fo 5234  df-f1o 5235  df-fv 5236  df-riota 5844  df-ov 5891  df-oprab 5892  df-mpo 5893  df-1st 6155  df-2nd 6156  df-recs 6320  df-frec 6406  df-pnf 8008  df-mnf 8009  df-xr 8010  df-ltxr 8011  df-le 8012  df-sub 8144  df-neg 8145  df-reap 8546  df-ap 8553  df-div 8644  df-inn 8934  df-n0 9191  df-z 9268  df-uz 9543  df-q 9634  df-rp 9668  df-fl 10284  df-mod 10337  df-seqfrec 10460  df-exp 10534  df-dvds 11809
This theorem is referenced by:  pcprecl  12303  pcprendvds  12304  pcpremul  12307
  Copyright terms: Public domain W3C validator