ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pclemdc Unicode version

Theorem pclemdc 12426
Description: Lemma for the prime power pre-function's properties. (Contributed by Jim Kingdon, 8-Oct-2024.)
Hypothesis
Ref Expression
pclem.1  |-  A  =  { n  e.  NN0  |  ( P ^ n
)  ||  N }
Assertion
Ref Expression
pclemdc  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  ->  A. x  e.  ZZ DECID  x  e.  A )
Distinct variable groups:    n, N, x    P, n, x
Allowed substitution hints:    A( x, n)

Proof of Theorem pclemdc
StepHypRef Expression
1 elnn0dc 9676 . . . . . 6  |-  ( x  e.  ZZ  -> DECID  x  e.  NN0 )
21ad2antlr 489 . . . . 5  |-  ( ( ( ( P  e.  ( ZZ>= `  2 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  /\  x  e.  ZZ )  /\  x  e.  NN0 )  -> DECID  x  e.  NN0 )
3 eluzelz 9601 . . . . . . . 8  |-  ( P  e.  ( ZZ>= `  2
)  ->  P  e.  ZZ )
43ad3antrrr 492 . . . . . . 7  |-  ( ( ( ( P  e.  ( ZZ>= `  2 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  /\  x  e.  ZZ )  /\  x  e.  NN0 )  ->  P  e.  ZZ )
5 zexpcl 10625 . . . . . . 7  |-  ( ( P  e.  ZZ  /\  x  e.  NN0 )  -> 
( P ^ x
)  e.  ZZ )
64, 5sylancom 420 . . . . . 6  |-  ( ( ( ( P  e.  ( ZZ>= `  2 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  /\  x  e.  ZZ )  /\  x  e.  NN0 )  ->  ( P ^ x )  e.  ZZ )
7 simprl 529 . . . . . . 7  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  ->  N  e.  ZZ )
87ad2antrr 488 . . . . . 6  |-  ( ( ( ( P  e.  ( ZZ>= `  2 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  /\  x  e.  ZZ )  /\  x  e.  NN0 )  ->  N  e.  ZZ )
9 zdvdsdc 11955 . . . . . 6  |-  ( ( ( P ^ x
)  e.  ZZ  /\  N  e.  ZZ )  -> DECID  ( P ^ x ) 
||  N )
106, 8, 9syl2anc 411 . . . . 5  |-  ( ( ( ( P  e.  ( ZZ>= `  2 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  /\  x  e.  ZZ )  /\  x  e.  NN0 )  -> DECID  ( P ^ x
)  ||  N )
112, 10dcand 934 . . . 4  |-  ( ( ( ( P  e.  ( ZZ>= `  2 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  /\  x  e.  ZZ )  /\  x  e.  NN0 )  -> DECID  ( x  e.  NN0  /\  ( P ^ x
)  ||  N )
)
12 oveq2 5926 . . . . . . 7  |-  ( n  =  x  ->  ( P ^ n )  =  ( P ^ x
) )
1312breq1d 4039 . . . . . 6  |-  ( n  =  x  ->  (
( P ^ n
)  ||  N  <->  ( P ^ x )  ||  N ) )
14 pclem.1 . . . . . 6  |-  A  =  { n  e.  NN0  |  ( P ^ n
)  ||  N }
1513, 14elrab2 2919 . . . . 5  |-  ( x  e.  A  <->  ( x  e.  NN0  /\  ( P ^ x )  ||  N ) )
1615dcbii 841 . . . 4  |-  (DECID  x  e.  A  <-> DECID  ( x  e.  NN0  /\  ( P ^ x
)  ||  N )
)
1711, 16sylibr 134 . . 3  |-  ( ( ( ( P  e.  ( ZZ>= `  2 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  /\  x  e.  ZZ )  /\  x  e.  NN0 )  -> DECID  x  e.  A
)
18 simpr 110 . . . . . . 7  |-  ( ( ( ( P  e.  ( ZZ>= `  2 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  /\  x  e.  ZZ )  /\  -.  x  e.  NN0 )  ->  -.  x  e.  NN0 )
1918intnanrd 933 . . . . . 6  |-  ( ( ( ( P  e.  ( ZZ>= `  2 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  /\  x  e.  ZZ )  /\  -.  x  e.  NN0 )  ->  -.  ( x  e.  NN0  /\  ( P ^ x
)  ||  N )
)
2019olcd 735 . . . . 5  |-  ( ( ( ( P  e.  ( ZZ>= `  2 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  /\  x  e.  ZZ )  /\  -.  x  e.  NN0 )  -> 
( ( x  e. 
NN0  /\  ( P ^ x )  ||  N )  \/  -.  ( x  e.  NN0  /\  ( P ^ x
)  ||  N )
) )
21 df-dc 836 . . . . 5  |-  (DECID  ( x  e.  NN0  /\  ( P ^ x )  ||  N )  <->  ( (
x  e.  NN0  /\  ( P ^ x ) 
||  N )  \/ 
-.  ( x  e. 
NN0  /\  ( P ^ x )  ||  N ) ) )
2220, 21sylibr 134 . . . 4  |-  ( ( ( ( P  e.  ( ZZ>= `  2 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  /\  x  e.  ZZ )  /\  -.  x  e.  NN0 )  -> DECID  (
x  e.  NN0  /\  ( P ^ x ) 
||  N ) )
2322, 16sylibr 134 . . 3  |-  ( ( ( ( P  e.  ( ZZ>= `  2 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  /\  x  e.  ZZ )  /\  -.  x  e.  NN0 )  -> DECID  x  e.  A )
24 exmiddc 837 . . . . 5  |-  (DECID  x  e. 
NN0  ->  ( x  e. 
NN0  \/  -.  x  e.  NN0 ) )
251, 24syl 14 . . . 4  |-  ( x  e.  ZZ  ->  (
x  e.  NN0  \/  -.  x  e.  NN0 ) )
2625adantl 277 . . 3  |-  ( ( ( P  e.  (
ZZ>= `  2 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  /\  x  e.  ZZ )  ->  (
x  e.  NN0  \/  -.  x  e.  NN0 ) )
2717, 23, 26mpjaodan 799 . 2  |-  ( ( ( P  e.  (
ZZ>= `  2 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  /\  x  e.  ZZ )  -> DECID  x  e.  A
)
2827ralrimiva 2567 1  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  ->  A. x  e.  ZZ DECID  x  e.  A )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    \/ wo 709  DECID wdc 835    = wceq 1364    e. wcel 2164    =/= wne 2364   A.wral 2472   {crab 2476   class class class wbr 4029   ` cfv 5254  (class class class)co 5918   0cc0 7872   2c2 9033   NN0cn0 9240   ZZcz 9317   ZZ>=cuz 9592   ^cexp 10609    || cdvds 11930
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-nul 4155  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-iinf 4620  ax-cnex 7963  ax-resscn 7964  ax-1cn 7965  ax-1re 7966  ax-icn 7967  ax-addcl 7968  ax-addrcl 7969  ax-mulcl 7970  ax-mulrcl 7971  ax-addcom 7972  ax-mulcom 7973  ax-addass 7974  ax-mulass 7975  ax-distr 7976  ax-i2m1 7977  ax-0lt1 7978  ax-1rid 7979  ax-0id 7980  ax-rnegex 7981  ax-precex 7982  ax-cnre 7983  ax-pre-ltirr 7984  ax-pre-ltwlin 7985  ax-pre-lttrn 7986  ax-pre-apti 7987  ax-pre-ltadd 7988  ax-pre-mulgt0 7989  ax-pre-mulext 7990  ax-arch 7991
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-if 3558  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-tr 4128  df-id 4324  df-po 4327  df-iso 4328  df-iord 4397  df-on 4399  df-ilim 4400  df-suc 4402  df-iom 4623  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-riota 5873  df-ov 5921  df-oprab 5922  df-mpo 5923  df-1st 6193  df-2nd 6194  df-recs 6358  df-frec 6444  df-pnf 8056  df-mnf 8057  df-xr 8058  df-ltxr 8059  df-le 8060  df-sub 8192  df-neg 8193  df-reap 8594  df-ap 8601  df-div 8692  df-inn 8983  df-n0 9241  df-z 9318  df-uz 9593  df-q 9685  df-rp 9720  df-fl 10339  df-mod 10394  df-seqfrec 10519  df-exp 10610  df-dvds 11931
This theorem is referenced by:  pcprecl  12427  pcprendvds  12428  pcpremul  12431
  Copyright terms: Public domain W3C validator