ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pclemdc Unicode version

Theorem pclemdc 12231
Description: Lemma for the prime power pre-function's properties. (Contributed by Jim Kingdon, 8-Oct-2024.)
Hypothesis
Ref Expression
pclem.1  |-  A  =  { n  e.  NN0  |  ( P ^ n
)  ||  N }
Assertion
Ref Expression
pclemdc  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  ->  A. x  e.  ZZ DECID  x  e.  A )
Distinct variable groups:    n, N, x    P, n, x
Allowed substitution hints:    A( x, n)

Proof of Theorem pclemdc
StepHypRef Expression
1 elnn0dc 9559 . . . . . 6  |-  ( x  e.  ZZ  -> DECID  x  e.  NN0 )
21ad2antlr 486 . . . . 5  |-  ( ( ( ( P  e.  ( ZZ>= `  2 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  /\  x  e.  ZZ )  /\  x  e.  NN0 )  -> DECID  x  e.  NN0 )
3 eluzelz 9485 . . . . . . . 8  |-  ( P  e.  ( ZZ>= `  2
)  ->  P  e.  ZZ )
43ad3antrrr 489 . . . . . . 7  |-  ( ( ( ( P  e.  ( ZZ>= `  2 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  /\  x  e.  ZZ )  /\  x  e.  NN0 )  ->  P  e.  ZZ )
5 simpr 109 . . . . . . 7  |-  ( ( ( ( P  e.  ( ZZ>= `  2 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  /\  x  e.  ZZ )  /\  x  e.  NN0 )  ->  x  e.  NN0 )
6 zexpcl 10480 . . . . . . 7  |-  ( ( P  e.  ZZ  /\  x  e.  NN0 )  -> 
( P ^ x
)  e.  ZZ )
74, 5, 6syl2anc 409 . . . . . 6  |-  ( ( ( ( P  e.  ( ZZ>= `  2 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  /\  x  e.  ZZ )  /\  x  e.  NN0 )  ->  ( P ^ x )  e.  ZZ )
8 simprl 526 . . . . . . 7  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  ->  N  e.  ZZ )
98ad2antrr 485 . . . . . 6  |-  ( ( ( ( P  e.  ( ZZ>= `  2 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  /\  x  e.  ZZ )  /\  x  e.  NN0 )  ->  N  e.  ZZ )
10 zdvdsdc 11763 . . . . . 6  |-  ( ( ( P ^ x
)  e.  ZZ  /\  N  e.  ZZ )  -> DECID  ( P ^ x ) 
||  N )
117, 9, 10syl2anc 409 . . . . 5  |-  ( ( ( ( P  e.  ( ZZ>= `  2 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  /\  x  e.  ZZ )  /\  x  e.  NN0 )  -> DECID  ( P ^ x
)  ||  N )
12 dcan2 929 . . . . 5  |-  (DECID  x  e. 
NN0  ->  (DECID  ( P ^ x
)  ||  N  -> DECID  ( x  e.  NN0  /\  ( P ^ x )  ||  N ) ) )
132, 11, 12sylc 62 . . . 4  |-  ( ( ( ( P  e.  ( ZZ>= `  2 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  /\  x  e.  ZZ )  /\  x  e.  NN0 )  -> DECID  ( x  e.  NN0  /\  ( P ^ x
)  ||  N )
)
14 oveq2 5859 . . . . . . 7  |-  ( n  =  x  ->  ( P ^ n )  =  ( P ^ x
) )
1514breq1d 3997 . . . . . 6  |-  ( n  =  x  ->  (
( P ^ n
)  ||  N  <->  ( P ^ x )  ||  N ) )
16 pclem.1 . . . . . 6  |-  A  =  { n  e.  NN0  |  ( P ^ n
)  ||  N }
1715, 16elrab2 2889 . . . . 5  |-  ( x  e.  A  <->  ( x  e.  NN0  /\  ( P ^ x )  ||  N ) )
1817dcbii 835 . . . 4  |-  (DECID  x  e.  A  <-> DECID  ( x  e.  NN0  /\  ( P ^ x
)  ||  N )
)
1913, 18sylibr 133 . . 3  |-  ( ( ( ( P  e.  ( ZZ>= `  2 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  /\  x  e.  ZZ )  /\  x  e.  NN0 )  -> DECID  x  e.  A
)
20 simpr 109 . . . . . . 7  |-  ( ( ( ( P  e.  ( ZZ>= `  2 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  /\  x  e.  ZZ )  /\  -.  x  e.  NN0 )  ->  -.  x  e.  NN0 )
2120intnanrd 927 . . . . . 6  |-  ( ( ( ( P  e.  ( ZZ>= `  2 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  /\  x  e.  ZZ )  /\  -.  x  e.  NN0 )  ->  -.  ( x  e.  NN0  /\  ( P ^ x
)  ||  N )
)
2221olcd 729 . . . . 5  |-  ( ( ( ( P  e.  ( ZZ>= `  2 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  /\  x  e.  ZZ )  /\  -.  x  e.  NN0 )  -> 
( ( x  e. 
NN0  /\  ( P ^ x )  ||  N )  \/  -.  ( x  e.  NN0  /\  ( P ^ x
)  ||  N )
) )
23 df-dc 830 . . . . 5  |-  (DECID  ( x  e.  NN0  /\  ( P ^ x )  ||  N )  <->  ( (
x  e.  NN0  /\  ( P ^ x ) 
||  N )  \/ 
-.  ( x  e. 
NN0  /\  ( P ^ x )  ||  N ) ) )
2422, 23sylibr 133 . . . 4  |-  ( ( ( ( P  e.  ( ZZ>= `  2 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  /\  x  e.  ZZ )  /\  -.  x  e.  NN0 )  -> DECID  (
x  e.  NN0  /\  ( P ^ x ) 
||  N ) )
2524, 18sylibr 133 . . 3  |-  ( ( ( ( P  e.  ( ZZ>= `  2 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  /\  x  e.  ZZ )  /\  -.  x  e.  NN0 )  -> DECID  x  e.  A )
26 exmiddc 831 . . . . 5  |-  (DECID  x  e. 
NN0  ->  ( x  e. 
NN0  \/  -.  x  e.  NN0 ) )
271, 26syl 14 . . . 4  |-  ( x  e.  ZZ  ->  (
x  e.  NN0  \/  -.  x  e.  NN0 ) )
2827adantl 275 . . 3  |-  ( ( ( P  e.  (
ZZ>= `  2 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  /\  x  e.  ZZ )  ->  (
x  e.  NN0  \/  -.  x  e.  NN0 ) )
2919, 25, 28mpjaodan 793 . 2  |-  ( ( ( P  e.  (
ZZ>= `  2 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  /\  x  e.  ZZ )  -> DECID  x  e.  A
)
3029ralrimiva 2543 1  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  ->  A. x  e.  ZZ DECID  x  e.  A )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    \/ wo 703  DECID wdc 829    = wceq 1348    e. wcel 2141    =/= wne 2340   A.wral 2448   {crab 2452   class class class wbr 3987   ` cfv 5196  (class class class)co 5851   0cc0 7763   2c2 8918   NN0cn0 9124   ZZcz 9201   ZZ>=cuz 9476   ^cexp 10464    || cdvds 11738
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4102  ax-sep 4105  ax-nul 4113  ax-pow 4158  ax-pr 4192  ax-un 4416  ax-setind 4519  ax-iinf 4570  ax-cnex 7854  ax-resscn 7855  ax-1cn 7856  ax-1re 7857  ax-icn 7858  ax-addcl 7859  ax-addrcl 7860  ax-mulcl 7861  ax-mulrcl 7862  ax-addcom 7863  ax-mulcom 7864  ax-addass 7865  ax-mulass 7866  ax-distr 7867  ax-i2m1 7868  ax-0lt1 7869  ax-1rid 7870  ax-0id 7871  ax-rnegex 7872  ax-precex 7873  ax-cnre 7874  ax-pre-ltirr 7875  ax-pre-ltwlin 7876  ax-pre-lttrn 7877  ax-pre-apti 7878  ax-pre-ltadd 7879  ax-pre-mulgt0 7880  ax-pre-mulext 7881  ax-arch 7882
This theorem depends on definitions:  df-bi 116  df-dc 830  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-nel 2436  df-ral 2453  df-rex 2454  df-reu 2455  df-rmo 2456  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-if 3526  df-pw 3566  df-sn 3587  df-pr 3588  df-op 3590  df-uni 3795  df-int 3830  df-iun 3873  df-br 3988  df-opab 4049  df-mpt 4050  df-tr 4086  df-id 4276  df-po 4279  df-iso 4280  df-iord 4349  df-on 4351  df-ilim 4352  df-suc 4354  df-iom 4573  df-xp 4615  df-rel 4616  df-cnv 4617  df-co 4618  df-dm 4619  df-rn 4620  df-res 4621  df-ima 4622  df-iota 5158  df-fun 5198  df-fn 5199  df-f 5200  df-f1 5201  df-fo 5202  df-f1o 5203  df-fv 5204  df-riota 5807  df-ov 5854  df-oprab 5855  df-mpo 5856  df-1st 6117  df-2nd 6118  df-recs 6282  df-frec 6368  df-pnf 7945  df-mnf 7946  df-xr 7947  df-ltxr 7948  df-le 7949  df-sub 8081  df-neg 8082  df-reap 8483  df-ap 8490  df-div 8579  df-inn 8868  df-n0 9125  df-z 9202  df-uz 9477  df-q 9568  df-rp 9600  df-fl 10215  df-mod 10268  df-seqfrec 10391  df-exp 10465  df-dvds 11739
This theorem is referenced by:  pcprecl  12232  pcprendvds  12233  pcpremul  12236
  Copyright terms: Public domain W3C validator