ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lgsval4a Unicode version

Theorem lgsval4a 14462
Description: Same as lgsval4 14460 for positive  N. (Contributed by Mario Carneiro, 4-Feb-2015.)
Hypothesis
Ref Expression
lgsval4.1  |-  F  =  ( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( A  /L n ) ^
( n  pCnt  N
) ) ,  1 ) )
Assertion
Ref Expression
lgsval4a  |-  ( ( A  e.  ZZ  /\  N  e.  NN )  ->  ( A  /L
N )  =  (  seq 1 (  x.  ,  F ) `  N ) )
Distinct variable groups:    A, n    n, N
Allowed substitution hint:    F( n)

Proof of Theorem lgsval4a
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl 109 . . 3  |-  ( ( A  e.  ZZ  /\  N  e.  NN )  ->  A  e.  ZZ )
2 nnz 9274 . . . 4  |-  ( N  e.  NN  ->  N  e.  ZZ )
32adantl 277 . . 3  |-  ( ( A  e.  ZZ  /\  N  e.  NN )  ->  N  e.  ZZ )
4 nnne0 8949 . . . 4  |-  ( N  e.  NN  ->  N  =/=  0 )
54adantl 277 . . 3  |-  ( ( A  e.  ZZ  /\  N  e.  NN )  ->  N  =/=  0 )
6 lgsval4.1 . . . 4  |-  F  =  ( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( A  /L n ) ^
( n  pCnt  N
) ) ,  1 ) )
76lgsval4 14460 . . 3  |-  ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  ->  ( A  /L N )  =  ( if ( ( N  <  0  /\  A  <  0
) ,  -u 1 ,  1 )  x.  (  seq 1 (  x.  ,  F ) `
 ( abs `  N
) ) ) )
81, 3, 5, 7syl3anc 1238 . 2  |-  ( ( A  e.  ZZ  /\  N  e.  NN )  ->  ( A  /L
N )  =  ( if ( ( N  <  0  /\  A  <  0 ) ,  -u
1 ,  1 )  x.  (  seq 1
(  x.  ,  F
) `  ( abs `  N ) ) ) )
9 nngt0 8946 . . . . . . 7  |-  ( N  e.  NN  ->  0  <  N )
109adantl 277 . . . . . 6  |-  ( ( A  e.  ZZ  /\  N  e.  NN )  ->  0  <  N )
11 0re 7959 . . . . . . 7  |-  0  e.  RR
12 nnre 8928 . . . . . . . 8  |-  ( N  e.  NN  ->  N  e.  RR )
1312adantl 277 . . . . . . 7  |-  ( ( A  e.  ZZ  /\  N  e.  NN )  ->  N  e.  RR )
14 ltnsym 8045 . . . . . . 7  |-  ( ( 0  e.  RR  /\  N  e.  RR )  ->  ( 0  <  N  ->  -.  N  <  0
) )
1511, 13, 14sylancr 414 . . . . . 6  |-  ( ( A  e.  ZZ  /\  N  e.  NN )  ->  ( 0  <  N  ->  -.  N  <  0
) )
1610, 15mpd 13 . . . . 5  |-  ( ( A  e.  ZZ  /\  N  e.  NN )  ->  -.  N  <  0
)
1716intnanrd 932 . . . 4  |-  ( ( A  e.  ZZ  /\  N  e.  NN )  ->  -.  ( N  <  0  /\  A  <  0 ) )
1817iffalsed 3546 . . 3  |-  ( ( A  e.  ZZ  /\  N  e.  NN )  ->  if ( ( N  <  0  /\  A  <  0 ) ,  -u
1 ,  1 )  =  1 )
19 nnnn0 9185 . . . . . . 7  |-  ( N  e.  NN  ->  N  e.  NN0 )
2019adantl 277 . . . . . 6  |-  ( ( A  e.  ZZ  /\  N  e.  NN )  ->  N  e.  NN0 )
2120nn0ge0d 9234 . . . . 5  |-  ( ( A  e.  ZZ  /\  N  e.  NN )  ->  0  <_  N )
2213, 21absidd 11178 . . . 4  |-  ( ( A  e.  ZZ  /\  N  e.  NN )  ->  ( abs `  N
)  =  N )
2322fveq2d 5521 . . 3  |-  ( ( A  e.  ZZ  /\  N  e.  NN )  ->  (  seq 1 (  x.  ,  F ) `
 ( abs `  N
) )  =  (  seq 1 (  x.  ,  F ) `  N ) )
2418, 23oveq12d 5895 . 2  |-  ( ( A  e.  ZZ  /\  N  e.  NN )  ->  ( if ( ( N  <  0  /\  A  <  0 ) ,  -u 1 ,  1 )  x.  (  seq 1 (  x.  ,  F ) `  ( abs `  N ) ) )  =  ( 1  x.  (  seq 1
(  x.  ,  F
) `  N )
) )
25 nnuz 9565 . . . . . 6  |-  NN  =  ( ZZ>= `  1 )
26 1zzd 9282 . . . . . 6  |-  ( ( A  e.  ZZ  /\  N  e.  NN )  ->  1  e.  ZZ )
276lgsfcl3 14461 . . . . . . . 8  |-  ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  ->  F : NN --> ZZ )
281, 3, 5, 27syl3anc 1238 . . . . . . 7  |-  ( ( A  e.  ZZ  /\  N  e.  NN )  ->  F : NN --> ZZ )
2928ffvelcdmda 5653 . . . . . 6  |-  ( ( ( A  e.  ZZ  /\  N  e.  NN )  /\  x  e.  NN )  ->  ( F `  x )  e.  ZZ )
30 zmulcl 9308 . . . . . . 7  |-  ( ( x  e.  ZZ  /\  y  e.  ZZ )  ->  ( x  x.  y
)  e.  ZZ )
3130adantl 277 . . . . . 6  |-  ( ( ( A  e.  ZZ  /\  N  e.  NN )  /\  ( x  e.  ZZ  /\  y  e.  ZZ ) )  -> 
( x  x.  y
)  e.  ZZ )
3225, 26, 29, 31seqf 10463 . . . . 5  |-  ( ( A  e.  ZZ  /\  N  e.  NN )  ->  seq 1 (  x.  ,  F ) : NN --> ZZ )
33 simpr 110 . . . . 5  |-  ( ( A  e.  ZZ  /\  N  e.  NN )  ->  N  e.  NN )
3432, 33ffvelcdmd 5654 . . . 4  |-  ( ( A  e.  ZZ  /\  N  e.  NN )  ->  (  seq 1 (  x.  ,  F ) `
 N )  e.  ZZ )
3534zcnd 9378 . . 3  |-  ( ( A  e.  ZZ  /\  N  e.  NN )  ->  (  seq 1 (  x.  ,  F ) `
 N )  e.  CC )
3635mulid2d 7978 . 2  |-  ( ( A  e.  ZZ  /\  N  e.  NN )  ->  ( 1  x.  (  seq 1 (  x.  ,  F ) `  N
) )  =  (  seq 1 (  x.  ,  F ) `  N ) )
378, 24, 363eqtrd 2214 1  |-  ( ( A  e.  ZZ  /\  N  e.  NN )  ->  ( A  /L
N )  =  (  seq 1 (  x.  ,  F ) `  N ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    = wceq 1353    e. wcel 2148    =/= wne 2347   ifcif 3536   class class class wbr 4005    |-> cmpt 4066   -->wf 5214   ` cfv 5218  (class class class)co 5877   RRcr 7812   0cc0 7813   1c1 7814    x. cmul 7818    < clt 7994   -ucneg 8131   NNcn 8921   NN0cn0 9178   ZZcz 9255    seqcseq 10447   ^cexp 10521   abscabs 11008   Primecprime 12109    pCnt cpc 12286    /Lclgs 14437
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4120  ax-sep 4123  ax-nul 4131  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-setind 4538  ax-iinf 4589  ax-cnex 7904  ax-resscn 7905  ax-1cn 7906  ax-1re 7907  ax-icn 7908  ax-addcl 7909  ax-addrcl 7910  ax-mulcl 7911  ax-mulrcl 7912  ax-addcom 7913  ax-mulcom 7914  ax-addass 7915  ax-mulass 7916  ax-distr 7917  ax-i2m1 7918  ax-0lt1 7919  ax-1rid 7920  ax-0id 7921  ax-rnegex 7922  ax-precex 7923  ax-cnre 7924  ax-pre-ltirr 7925  ax-pre-ltwlin 7926  ax-pre-lttrn 7927  ax-pre-apti 7928  ax-pre-ltadd 7929  ax-pre-mulgt0 7930  ax-pre-mulext 7931  ax-arch 7932  ax-caucvg 7933
This theorem depends on definitions:  df-bi 117  df-stab 831  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-xor 1376  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2741  df-sbc 2965  df-csb 3060  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-nul 3425  df-if 3537  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-int 3847  df-iun 3890  df-br 4006  df-opab 4067  df-mpt 4068  df-tr 4104  df-id 4295  df-po 4298  df-iso 4299  df-iord 4368  df-on 4370  df-ilim 4371  df-suc 4373  df-iom 4592  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-res 4640  df-ima 4641  df-iota 5180  df-fun 5220  df-fn 5221  df-f 5222  df-f1 5223  df-fo 5224  df-f1o 5225  df-fv 5226  df-isom 5227  df-riota 5833  df-ov 5880  df-oprab 5881  df-mpo 5882  df-1st 6143  df-2nd 6144  df-recs 6308  df-irdg 6373  df-frec 6394  df-1o 6419  df-2o 6420  df-oadd 6423  df-er 6537  df-en 6743  df-dom 6744  df-fin 6745  df-sup 6985  df-inf 6986  df-pnf 7996  df-mnf 7997  df-xr 7998  df-ltxr 7999  df-le 8000  df-sub 8132  df-neg 8133  df-reap 8534  df-ap 8541  df-div 8632  df-inn 8922  df-2 8980  df-3 8981  df-4 8982  df-5 8983  df-6 8984  df-7 8985  df-8 8986  df-n0 9179  df-z 9256  df-uz 9531  df-q 9622  df-rp 9656  df-fz 10011  df-fzo 10145  df-fl 10272  df-mod 10325  df-seqfrec 10448  df-exp 10522  df-ihash 10758  df-cj 10853  df-re 10854  df-im 10855  df-rsqrt 11009  df-abs 11010  df-clim 11289  df-proddc 11561  df-dvds 11797  df-gcd 11946  df-prm 12110  df-phi 12213  df-pc 12287  df-lgs 14438
This theorem is referenced by:  lgsmod  14466
  Copyright terms: Public domain W3C validator