ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sqgcd Unicode version

Theorem sqgcd 11510
Description: Square distributes over GCD. (Contributed by Scott Fenton, 18-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.)
Assertion
Ref Expression
sqgcd  |-  ( ( M  e.  NN  /\  N  e.  NN )  ->  ( ( M  gcd  N ) ^ 2 )  =  ( ( M ^ 2 )  gcd  ( N ^ 2 ) ) )

Proof of Theorem sqgcd
StepHypRef Expression
1 gcdnncl 11451 . . . . 5  |-  ( ( M  e.  NN  /\  N  e.  NN )  ->  ( M  gcd  N
)  e.  NN )
21nnsqcld 10286 . . . 4  |-  ( ( M  e.  NN  /\  N  e.  NN )  ->  ( ( M  gcd  N ) ^ 2 )  e.  NN )
32nncnd 8592 . . 3  |-  ( ( M  e.  NN  /\  N  e.  NN )  ->  ( ( M  gcd  N ) ^ 2 )  e.  CC )
43mulid1d 7655 . 2  |-  ( ( M  e.  NN  /\  N  e.  NN )  ->  ( ( ( M  gcd  N ) ^
2 )  x.  1 )  =  ( ( M  gcd  N ) ^ 2 ) )
5 nnsqcl 10203 . . . . . . 7  |-  ( M  e.  NN  ->  ( M ^ 2 )  e.  NN )
65nnzd 9024 . . . . . 6  |-  ( M  e.  NN  ->  ( M ^ 2 )  e.  ZZ )
76adantr 272 . . . . 5  |-  ( ( M  e.  NN  /\  N  e.  NN )  ->  ( M ^ 2 )  e.  ZZ )
8 nnsqcl 10203 . . . . . . 7  |-  ( N  e.  NN  ->  ( N ^ 2 )  e.  NN )
98nnzd 9024 . . . . . 6  |-  ( N  e.  NN  ->  ( N ^ 2 )  e.  ZZ )
109adantl 273 . . . . 5  |-  ( ( M  e.  NN  /\  N  e.  NN )  ->  ( N ^ 2 )  e.  ZZ )
11 nnz 8925 . . . . . . . 8  |-  ( M  e.  NN  ->  M  e.  ZZ )
12 nnz 8925 . . . . . . . 8  |-  ( N  e.  NN  ->  N  e.  ZZ )
13 gcddvds 11447 . . . . . . . 8  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( ( M  gcd  N )  ||  M  /\  ( M  gcd  N ) 
||  N ) )
1411, 12, 13syl2an 285 . . . . . . 7  |-  ( ( M  e.  NN  /\  N  e.  NN )  ->  ( ( M  gcd  N )  ||  M  /\  ( M  gcd  N ) 
||  N ) )
1514simpld 111 . . . . . 6  |-  ( ( M  e.  NN  /\  N  e.  NN )  ->  ( M  gcd  N
)  ||  M )
161nnzd 9024 . . . . . . 7  |-  ( ( M  e.  NN  /\  N  e.  NN )  ->  ( M  gcd  N
)  e.  ZZ )
1711adantr 272 . . . . . . 7  |-  ( ( M  e.  NN  /\  N  e.  NN )  ->  M  e.  ZZ )
18 dvdssqim 11505 . . . . . . 7  |-  ( ( ( M  gcd  N
)  e.  ZZ  /\  M  e.  ZZ )  ->  ( ( M  gcd  N )  ||  M  -> 
( ( M  gcd  N ) ^ 2 ) 
||  ( M ^
2 ) ) )
1916, 17, 18syl2anc 406 . . . . . 6  |-  ( ( M  e.  NN  /\  N  e.  NN )  ->  ( ( M  gcd  N )  ||  M  -> 
( ( M  gcd  N ) ^ 2 ) 
||  ( M ^
2 ) ) )
2015, 19mpd 13 . . . . 5  |-  ( ( M  e.  NN  /\  N  e.  NN )  ->  ( ( M  gcd  N ) ^ 2 ) 
||  ( M ^
2 ) )
2114simprd 113 . . . . . 6  |-  ( ( M  e.  NN  /\  N  e.  NN )  ->  ( M  gcd  N
)  ||  N )
2212adantl 273 . . . . . . 7  |-  ( ( M  e.  NN  /\  N  e.  NN )  ->  N  e.  ZZ )
23 dvdssqim 11505 . . . . . . 7  |-  ( ( ( M  gcd  N
)  e.  ZZ  /\  N  e.  ZZ )  ->  ( ( M  gcd  N )  ||  N  -> 
( ( M  gcd  N ) ^ 2 ) 
||  ( N ^
2 ) ) )
2416, 22, 23syl2anc 406 . . . . . 6  |-  ( ( M  e.  NN  /\  N  e.  NN )  ->  ( ( M  gcd  N )  ||  N  -> 
( ( M  gcd  N ) ^ 2 ) 
||  ( N ^
2 ) ) )
2521, 24mpd 13 . . . . 5  |-  ( ( M  e.  NN  /\  N  e.  NN )  ->  ( ( M  gcd  N ) ^ 2 ) 
||  ( N ^
2 ) )
26 gcddiv 11500 . . . . 5  |-  ( ( ( ( M ^
2 )  e.  ZZ  /\  ( N ^ 2 )  e.  ZZ  /\  ( ( M  gcd  N ) ^ 2 )  e.  NN )  /\  ( ( ( M  gcd  N ) ^
2 )  ||  ( M ^ 2 )  /\  ( ( M  gcd  N ) ^ 2 ) 
||  ( N ^
2 ) ) )  ->  ( ( ( M ^ 2 )  gcd  ( N ^
2 ) )  / 
( ( M  gcd  N ) ^ 2 ) )  =  ( ( ( M ^ 2 )  /  ( ( M  gcd  N ) ^ 2 ) )  gcd  ( ( N ^ 2 )  / 
( ( M  gcd  N ) ^ 2 ) ) ) )
277, 10, 2, 20, 25, 26syl32anc 1192 . . . 4  |-  ( ( M  e.  NN  /\  N  e.  NN )  ->  ( ( ( M ^ 2 )  gcd  ( N ^ 2 ) )  /  (
( M  gcd  N
) ^ 2 ) )  =  ( ( ( M ^ 2 )  /  ( ( M  gcd  N ) ^ 2 ) )  gcd  ( ( N ^ 2 )  / 
( ( M  gcd  N ) ^ 2 ) ) ) )
28 nncn 8586 . . . . . . 7  |-  ( M  e.  NN  ->  M  e.  CC )
2928adantr 272 . . . . . 6  |-  ( ( M  e.  NN  /\  N  e.  NN )  ->  M  e.  CC )
301nncnd 8592 . . . . . 6  |-  ( ( M  e.  NN  /\  N  e.  NN )  ->  ( M  gcd  N
)  e.  CC )
311nnap0d 8624 . . . . . 6  |-  ( ( M  e.  NN  /\  N  e.  NN )  ->  ( M  gcd  N
) #  0 )
3229, 30, 31sqdivapd 10278 . . . . 5  |-  ( ( M  e.  NN  /\  N  e.  NN )  ->  ( ( M  / 
( M  gcd  N
) ) ^ 2 )  =  ( ( M ^ 2 )  /  ( ( M  gcd  N ) ^
2 ) ) )
33 nncn 8586 . . . . . . 7  |-  ( N  e.  NN  ->  N  e.  CC )
3433adantl 273 . . . . . 6  |-  ( ( M  e.  NN  /\  N  e.  NN )  ->  N  e.  CC )
3534, 30, 31sqdivapd 10278 . . . . 5  |-  ( ( M  e.  NN  /\  N  e.  NN )  ->  ( ( N  / 
( M  gcd  N
) ) ^ 2 )  =  ( ( N ^ 2 )  /  ( ( M  gcd  N ) ^
2 ) ) )
3632, 35oveq12d 5724 . . . 4  |-  ( ( M  e.  NN  /\  N  e.  NN )  ->  ( ( ( M  /  ( M  gcd  N ) ) ^ 2 )  gcd  ( ( N  /  ( M  gcd  N ) ) ^ 2 ) )  =  ( ( ( M ^ 2 )  /  ( ( M  gcd  N ) ^
2 ) )  gcd  ( ( N ^
2 )  /  (
( M  gcd  N
) ^ 2 ) ) ) )
37 gcddiv 11500 . . . . . . 7  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  ( M  gcd  N )  e.  NN )  /\  ( ( M  gcd  N )  ||  M  /\  ( M  gcd  N ) 
||  N ) )  ->  ( ( M  gcd  N )  / 
( M  gcd  N
) )  =  ( ( M  /  ( M  gcd  N ) )  gcd  ( N  / 
( M  gcd  N
) ) ) )
3817, 22, 1, 14, 37syl31anc 1187 . . . . . 6  |-  ( ( M  e.  NN  /\  N  e.  NN )  ->  ( ( M  gcd  N )  /  ( M  gcd  N ) )  =  ( ( M  /  ( M  gcd  N ) )  gcd  ( N  /  ( M  gcd  N ) ) ) )
3930, 31dividapd 8407 . . . . . 6  |-  ( ( M  e.  NN  /\  N  e.  NN )  ->  ( ( M  gcd  N )  /  ( M  gcd  N ) )  =  1 )
4038, 39eqtr3d 2134 . . . . 5  |-  ( ( M  e.  NN  /\  N  e.  NN )  ->  ( ( M  / 
( M  gcd  N
) )  gcd  ( N  /  ( M  gcd  N ) ) )  =  1 )
411nnne0d 8623 . . . . . . . . 9  |-  ( ( M  e.  NN  /\  N  e.  NN )  ->  ( M  gcd  N
)  =/=  0 )
42 dvdsval2 11291 . . . . . . . . 9  |-  ( ( ( M  gcd  N
)  e.  ZZ  /\  ( M  gcd  N )  =/=  0  /\  M  e.  ZZ )  ->  (
( M  gcd  N
)  ||  M  <->  ( M  /  ( M  gcd  N ) )  e.  ZZ ) )
4316, 41, 17, 42syl3anc 1184 . . . . . . . 8  |-  ( ( M  e.  NN  /\  N  e.  NN )  ->  ( ( M  gcd  N )  ||  M  <->  ( M  /  ( M  gcd  N ) )  e.  ZZ ) )
4415, 43mpbid 146 . . . . . . 7  |-  ( ( M  e.  NN  /\  N  e.  NN )  ->  ( M  /  ( M  gcd  N ) )  e.  ZZ )
45 nnre 8585 . . . . . . . . 9  |-  ( M  e.  NN  ->  M  e.  RR )
4645adantr 272 . . . . . . . 8  |-  ( ( M  e.  NN  /\  N  e.  NN )  ->  M  e.  RR )
471nnred 8591 . . . . . . . 8  |-  ( ( M  e.  NN  /\  N  e.  NN )  ->  ( M  gcd  N
)  e.  RR )
48 nngt0 8603 . . . . . . . . 9  |-  ( M  e.  NN  ->  0  <  M )
4948adantr 272 . . . . . . . 8  |-  ( ( M  e.  NN  /\  N  e.  NN )  ->  0  <  M )
501nngt0d 8622 . . . . . . . 8  |-  ( ( M  e.  NN  /\  N  e.  NN )  ->  0  <  ( M  gcd  N ) )
5146, 47, 49, 50divgt0d 8551 . . . . . . 7  |-  ( ( M  e.  NN  /\  N  e.  NN )  ->  0  <  ( M  /  ( M  gcd  N ) ) )
52 elnnz 8916 . . . . . . 7  |-  ( ( M  /  ( M  gcd  N ) )  e.  NN  <->  ( ( M  /  ( M  gcd  N ) )  e.  ZZ  /\  0  <  ( M  /  ( M  gcd  N ) ) ) )
5344, 51, 52sylanbrc 411 . . . . . 6  |-  ( ( M  e.  NN  /\  N  e.  NN )  ->  ( M  /  ( M  gcd  N ) )  e.  NN )
54 dvdsval2 11291 . . . . . . . . 9  |-  ( ( ( M  gcd  N
)  e.  ZZ  /\  ( M  gcd  N )  =/=  0  /\  N  e.  ZZ )  ->  (
( M  gcd  N
)  ||  N  <->  ( N  /  ( M  gcd  N ) )  e.  ZZ ) )
5516, 41, 22, 54syl3anc 1184 . . . . . . . 8  |-  ( ( M  e.  NN  /\  N  e.  NN )  ->  ( ( M  gcd  N )  ||  N  <->  ( N  /  ( M  gcd  N ) )  e.  ZZ ) )
5621, 55mpbid 146 . . . . . . 7  |-  ( ( M  e.  NN  /\  N  e.  NN )  ->  ( N  /  ( M  gcd  N ) )  e.  ZZ )
57 nnre 8585 . . . . . . . . 9  |-  ( N  e.  NN  ->  N  e.  RR )
5857adantl 273 . . . . . . . 8  |-  ( ( M  e.  NN  /\  N  e.  NN )  ->  N  e.  RR )
59 nngt0 8603 . . . . . . . . 9  |-  ( N  e.  NN  ->  0  <  N )
6059adantl 273 . . . . . . . 8  |-  ( ( M  e.  NN  /\  N  e.  NN )  ->  0  <  N )
6158, 47, 60, 50divgt0d 8551 . . . . . . 7  |-  ( ( M  e.  NN  /\  N  e.  NN )  ->  0  <  ( N  /  ( M  gcd  N ) ) )
62 elnnz 8916 . . . . . . 7  |-  ( ( N  /  ( M  gcd  N ) )  e.  NN  <->  ( ( N  /  ( M  gcd  N ) )  e.  ZZ  /\  0  <  ( N  /  ( M  gcd  N ) ) ) )
6356, 61, 62sylanbrc 411 . . . . . 6  |-  ( ( M  e.  NN  /\  N  e.  NN )  ->  ( N  /  ( M  gcd  N ) )  e.  NN )
64 2nn 8733 . . . . . . 7  |-  2  e.  NN
65 rppwr 11509 . . . . . . 7  |-  ( ( ( M  /  ( M  gcd  N ) )  e.  NN  /\  ( N  /  ( M  gcd  N ) )  e.  NN  /\  2  e.  NN )  ->  ( ( ( M  /  ( M  gcd  N ) )  gcd  ( N  / 
( M  gcd  N
) ) )  =  1  ->  ( (
( M  /  ( M  gcd  N ) ) ^ 2 )  gcd  ( ( N  / 
( M  gcd  N
) ) ^ 2 ) )  =  1 ) )
6664, 65mp3an3 1272 . . . . . 6  |-  ( ( ( M  /  ( M  gcd  N ) )  e.  NN  /\  ( N  /  ( M  gcd  N ) )  e.  NN )  ->  ( ( ( M  /  ( M  gcd  N ) )  gcd  ( N  / 
( M  gcd  N
) ) )  =  1  ->  ( (
( M  /  ( M  gcd  N ) ) ^ 2 )  gcd  ( ( N  / 
( M  gcd  N
) ) ^ 2 ) )  =  1 ) )
6753, 63, 66syl2anc 406 . . . . 5  |-  ( ( M  e.  NN  /\  N  e.  NN )  ->  ( ( ( M  /  ( M  gcd  N ) )  gcd  ( N  /  ( M  gcd  N ) ) )  =  1  ->  ( (
( M  /  ( M  gcd  N ) ) ^ 2 )  gcd  ( ( N  / 
( M  gcd  N
) ) ^ 2 ) )  =  1 ) )
6840, 67mpd 13 . . . 4  |-  ( ( M  e.  NN  /\  N  e.  NN )  ->  ( ( ( M  /  ( M  gcd  N ) ) ^ 2 )  gcd  ( ( N  /  ( M  gcd  N ) ) ^ 2 ) )  =  1 )
6927, 36, 683eqtr2d 2138 . . 3  |-  ( ( M  e.  NN  /\  N  e.  NN )  ->  ( ( ( M ^ 2 )  gcd  ( N ^ 2 ) )  /  (
( M  gcd  N
) ^ 2 ) )  =  1 )
706, 9anim12i 334 . . . . . 6  |-  ( ( M  e.  NN  /\  N  e.  NN )  ->  ( ( M ^
2 )  e.  ZZ  /\  ( N ^ 2 )  e.  ZZ ) )
715nnne0d 8623 . . . . . . . . 9  |-  ( M  e.  NN  ->  ( M ^ 2 )  =/=  0 )
7271neneqd 2288 . . . . . . . 8  |-  ( M  e.  NN  ->  -.  ( M ^ 2 )  =  0 )
7372intnanrd 885 . . . . . . 7  |-  ( M  e.  NN  ->  -.  ( ( M ^
2 )  =  0  /\  ( N ^
2 )  =  0 ) )
7473adantr 272 . . . . . 6  |-  ( ( M  e.  NN  /\  N  e.  NN )  ->  -.  ( ( M ^ 2 )  =  0  /\  ( N ^ 2 )  =  0 ) )
75 gcdn0cl 11446 . . . . . 6  |-  ( ( ( ( M ^
2 )  e.  ZZ  /\  ( N ^ 2 )  e.  ZZ )  /\  -.  ( ( M ^ 2 )  =  0  /\  ( N ^ 2 )  =  0 ) )  -> 
( ( M ^
2 )  gcd  ( N ^ 2 ) )  e.  NN )
7670, 74, 75syl2anc 406 . . . . 5  |-  ( ( M  e.  NN  /\  N  e.  NN )  ->  ( ( M ^
2 )  gcd  ( N ^ 2 ) )  e.  NN )
7776nncnd 8592 . . . 4  |-  ( ( M  e.  NN  /\  N  e.  NN )  ->  ( ( M ^
2 )  gcd  ( N ^ 2 ) )  e.  CC )
782nnap0d 8624 . . . 4  |-  ( ( M  e.  NN  /\  N  e.  NN )  ->  ( ( M  gcd  N ) ^ 2 ) #  0 )
79 ax-1cn 7588 . . . . 5  |-  1  e.  CC
80 divmulap 8296 . . . . 5  |-  ( ( ( ( M ^
2 )  gcd  ( N ^ 2 ) )  e.  CC  /\  1  e.  CC  /\  ( ( ( M  gcd  N
) ^ 2 )  e.  CC  /\  (
( M  gcd  N
) ^ 2 ) #  0 ) )  -> 
( ( ( ( M ^ 2 )  gcd  ( N ^
2 ) )  / 
( ( M  gcd  N ) ^ 2 ) )  =  1  <->  (
( ( M  gcd  N ) ^ 2 )  x.  1 )  =  ( ( M ^
2 )  gcd  ( N ^ 2 ) ) ) )
8179, 80mp3an2 1271 . . . 4  |-  ( ( ( ( M ^
2 )  gcd  ( N ^ 2 ) )  e.  CC  /\  (
( ( M  gcd  N ) ^ 2 )  e.  CC  /\  (
( M  gcd  N
) ^ 2 ) #  0 ) )  -> 
( ( ( ( M ^ 2 )  gcd  ( N ^
2 ) )  / 
( ( M  gcd  N ) ^ 2 ) )  =  1  <->  (
( ( M  gcd  N ) ^ 2 )  x.  1 )  =  ( ( M ^
2 )  gcd  ( N ^ 2 ) ) ) )
8277, 3, 78, 81syl12anc 1182 . . 3  |-  ( ( M  e.  NN  /\  N  e.  NN )  ->  ( ( ( ( M ^ 2 )  gcd  ( N ^
2 ) )  / 
( ( M  gcd  N ) ^ 2 ) )  =  1  <->  (
( ( M  gcd  N ) ^ 2 )  x.  1 )  =  ( ( M ^
2 )  gcd  ( N ^ 2 ) ) ) )
8369, 82mpbid 146 . 2  |-  ( ( M  e.  NN  /\  N  e.  NN )  ->  ( ( ( M  gcd  N ) ^
2 )  x.  1 )  =  ( ( M ^ 2 )  gcd  ( N ^
2 ) ) )
844, 83eqtr3d 2134 1  |-  ( ( M  e.  NN  /\  N  e.  NN )  ->  ( ( M  gcd  N ) ^ 2 )  =  ( ( M ^ 2 )  gcd  ( N ^ 2 ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1299    e. wcel 1448    =/= wne 2267   class class class wbr 3875  (class class class)co 5706   CCcc 7498   RRcr 7499   0cc0 7500   1c1 7501    x. cmul 7505    < clt 7672   # cap 8209    / cdiv 8293   NNcn 8578   2c2 8629   ZZcz 8906   ^cexp 10133    || cdvds 11288    gcd cgcd 11430
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 584  ax-in2 585  ax-io 671  ax-5 1391  ax-7 1392  ax-gen 1393  ax-ie1 1437  ax-ie2 1438  ax-8 1450  ax-10 1451  ax-11 1452  ax-i12 1453  ax-bndl 1454  ax-4 1455  ax-13 1459  ax-14 1460  ax-17 1474  ax-i9 1478  ax-ial 1482  ax-i5r 1483  ax-ext 2082  ax-coll 3983  ax-sep 3986  ax-nul 3994  ax-pow 4038  ax-pr 4069  ax-un 4293  ax-setind 4390  ax-iinf 4440  ax-cnex 7586  ax-resscn 7587  ax-1cn 7588  ax-1re 7589  ax-icn 7590  ax-addcl 7591  ax-addrcl 7592  ax-mulcl 7593  ax-mulrcl 7594  ax-addcom 7595  ax-mulcom 7596  ax-addass 7597  ax-mulass 7598  ax-distr 7599  ax-i2m1 7600  ax-0lt1 7601  ax-1rid 7602  ax-0id 7603  ax-rnegex 7604  ax-precex 7605  ax-cnre 7606  ax-pre-ltirr 7607  ax-pre-ltwlin 7608  ax-pre-lttrn 7609  ax-pre-apti 7610  ax-pre-ltadd 7611  ax-pre-mulgt0 7612  ax-pre-mulext 7613  ax-arch 7614  ax-caucvg 7615
This theorem depends on definitions:  df-bi 116  df-dc 787  df-3or 931  df-3an 932  df-tru 1302  df-fal 1305  df-nf 1405  df-sb 1704  df-eu 1963  df-mo 1964  df-clab 2087  df-cleq 2093  df-clel 2096  df-nfc 2229  df-ne 2268  df-nel 2363  df-ral 2380  df-rex 2381  df-reu 2382  df-rmo 2383  df-rab 2384  df-v 2643  df-sbc 2863  df-csb 2956  df-dif 3023  df-un 3025  df-in 3027  df-ss 3034  df-nul 3311  df-if 3422  df-pw 3459  df-sn 3480  df-pr 3481  df-op 3483  df-uni 3684  df-int 3719  df-iun 3762  df-br 3876  df-opab 3930  df-mpt 3931  df-tr 3967  df-id 4153  df-po 4156  df-iso 4157  df-iord 4226  df-on 4228  df-ilim 4229  df-suc 4231  df-iom 4443  df-xp 4483  df-rel 4484  df-cnv 4485  df-co 4486  df-dm 4487  df-rn 4488  df-res 4489  df-ima 4490  df-iota 5024  df-fun 5061  df-fn 5062  df-f 5063  df-f1 5064  df-fo 5065  df-f1o 5066  df-fv 5067  df-riota 5662  df-ov 5709  df-oprab 5710  df-mpo 5711  df-1st 5969  df-2nd 5970  df-recs 6132  df-frec 6218  df-sup 6786  df-pnf 7674  df-mnf 7675  df-xr 7676  df-ltxr 7677  df-le 7678  df-sub 7806  df-neg 7807  df-reap 8203  df-ap 8210  df-div 8294  df-inn 8579  df-2 8637  df-3 8638  df-4 8639  df-n0 8830  df-z 8907  df-uz 9177  df-q 9262  df-rp 9292  df-fz 9632  df-fzo 9761  df-fl 9884  df-mod 9937  df-seqfrec 10060  df-exp 10134  df-cj 10455  df-re 10456  df-im 10457  df-rsqrt 10610  df-abs 10611  df-dvds 11289  df-gcd 11431
This theorem is referenced by:  dvdssqlem  11511  nn0gcdsq  11670
  Copyright terms: Public domain W3C validator