| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sqgcd | Unicode version | ||
| Description: Square distributes over gcd. (Contributed by Scott Fenton, 18-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.) |
| Ref | Expression |
|---|---|
| sqgcd |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gcdnncl 12159 |
. . . . 5
| |
| 2 | 1 | nnsqcld 10803 |
. . . 4
|
| 3 | 2 | nncnd 9021 |
. . 3
|
| 4 | 3 | mulridd 8060 |
. 2
|
| 5 | nnsqcl 10718 |
. . . . . . 7
| |
| 6 | 5 | nnzd 9464 |
. . . . . 6
|
| 7 | 6 | adantr 276 |
. . . . 5
|
| 8 | nnsqcl 10718 |
. . . . . . 7
| |
| 9 | 8 | nnzd 9464 |
. . . . . 6
|
| 10 | 9 | adantl 277 |
. . . . 5
|
| 11 | nnz 9362 |
. . . . . . . 8
| |
| 12 | nnz 9362 |
. . . . . . . 8
| |
| 13 | gcddvds 12155 |
. . . . . . . 8
| |
| 14 | 11, 12, 13 | syl2an 289 |
. . . . . . 7
|
| 15 | 14 | simpld 112 |
. . . . . 6
|
| 16 | 1 | nnzd 9464 |
. . . . . . 7
|
| 17 | 11 | adantr 276 |
. . . . . . 7
|
| 18 | dvdssqim 12216 |
. . . . . . 7
| |
| 19 | 16, 17, 18 | syl2anc 411 |
. . . . . 6
|
| 20 | 15, 19 | mpd 13 |
. . . . 5
|
| 21 | 14 | simprd 114 |
. . . . . 6
|
| 22 | 12 | adantl 277 |
. . . . . . 7
|
| 23 | dvdssqim 12216 |
. . . . . . 7
| |
| 24 | 16, 22, 23 | syl2anc 411 |
. . . . . 6
|
| 25 | 21, 24 | mpd 13 |
. . . . 5
|
| 26 | gcddiv 12211 |
. . . . 5
| |
| 27 | 7, 10, 2, 20, 25, 26 | syl32anc 1257 |
. . . 4
|
| 28 | nncn 9015 |
. . . . . . 7
| |
| 29 | 28 | adantr 276 |
. . . . . 6
|
| 30 | 1 | nncnd 9021 |
. . . . . 6
|
| 31 | 1 | nnap0d 9053 |
. . . . . 6
|
| 32 | 29, 30, 31 | sqdivapd 10795 |
. . . . 5
|
| 33 | nncn 9015 |
. . . . . . 7
| |
| 34 | 33 | adantl 277 |
. . . . . 6
|
| 35 | 34, 30, 31 | sqdivapd 10795 |
. . . . 5
|
| 36 | 32, 35 | oveq12d 5943 |
. . . 4
|
| 37 | gcddiv 12211 |
. . . . . . 7
| |
| 38 | 17, 22, 1, 14, 37 | syl31anc 1252 |
. . . . . 6
|
| 39 | 30, 31 | dividapd 8830 |
. . . . . 6
|
| 40 | 38, 39 | eqtr3d 2231 |
. . . . 5
|
| 41 | 1 | nnne0d 9052 |
. . . . . . . . 9
|
| 42 | dvdsval2 11972 |
. . . . . . . . 9
| |
| 43 | 16, 41, 17, 42 | syl3anc 1249 |
. . . . . . . 8
|
| 44 | 15, 43 | mpbid 147 |
. . . . . . 7
|
| 45 | nnre 9014 |
. . . . . . . . 9
| |
| 46 | 45 | adantr 276 |
. . . . . . . 8
|
| 47 | 1 | nnred 9020 |
. . . . . . . 8
|
| 48 | nngt0 9032 |
. . . . . . . . 9
| |
| 49 | 48 | adantr 276 |
. . . . . . . 8
|
| 50 | 1 | nngt0d 9051 |
. . . . . . . 8
|
| 51 | 46, 47, 49, 50 | divgt0d 8979 |
. . . . . . 7
|
| 52 | elnnz 9353 |
. . . . . . 7
| |
| 53 | 44, 51, 52 | sylanbrc 417 |
. . . . . 6
|
| 54 | dvdsval2 11972 |
. . . . . . . . 9
| |
| 55 | 16, 41, 22, 54 | syl3anc 1249 |
. . . . . . . 8
|
| 56 | 21, 55 | mpbid 147 |
. . . . . . 7
|
| 57 | nnre 9014 |
. . . . . . . . 9
| |
| 58 | 57 | adantl 277 |
. . . . . . . 8
|
| 59 | nngt0 9032 |
. . . . . . . . 9
| |
| 60 | 59 | adantl 277 |
. . . . . . . 8
|
| 61 | 58, 47, 60, 50 | divgt0d 8979 |
. . . . . . 7
|
| 62 | elnnz 9353 |
. . . . . . 7
| |
| 63 | 56, 61, 62 | sylanbrc 417 |
. . . . . 6
|
| 64 | 2nn 9169 |
. . . . . . 7
| |
| 65 | rppwr 12220 |
. . . . . . 7
| |
| 66 | 64, 65 | mp3an3 1337 |
. . . . . 6
|
| 67 | 53, 63, 66 | syl2anc 411 |
. . . . 5
|
| 68 | 40, 67 | mpd 13 |
. . . 4
|
| 69 | 27, 36, 68 | 3eqtr2d 2235 |
. . 3
|
| 70 | 6, 9 | anim12i 338 |
. . . . . 6
|
| 71 | 5 | nnne0d 9052 |
. . . . . . . . 9
|
| 72 | 71 | neneqd 2388 |
. . . . . . . 8
|
| 73 | 72 | intnanrd 933 |
. . . . . . 7
|
| 74 | 73 | adantr 276 |
. . . . . 6
|
| 75 | gcdn0cl 12154 |
. . . . . 6
| |
| 76 | 70, 74, 75 | syl2anc 411 |
. . . . 5
|
| 77 | 76 | nncnd 9021 |
. . . 4
|
| 78 | 2 | nnap0d 9053 |
. . . 4
|
| 79 | ax-1cn 7989 |
. . . . 5
| |
| 80 | divmulap 8719 |
. . . . 5
| |
| 81 | 79, 80 | mp3an2 1336 |
. . . 4
|
| 82 | 77, 3, 78, 81 | syl12anc 1247 |
. . 3
|
| 83 | 69, 82 | mpbid 147 |
. 2
|
| 84 | 4, 83 | eqtr3d 2231 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4149 ax-sep 4152 ax-nul 4160 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-setind 4574 ax-iinf 4625 ax-cnex 7987 ax-resscn 7988 ax-1cn 7989 ax-1re 7990 ax-icn 7991 ax-addcl 7992 ax-addrcl 7993 ax-mulcl 7994 ax-mulrcl 7995 ax-addcom 7996 ax-mulcom 7997 ax-addass 7998 ax-mulass 7999 ax-distr 8000 ax-i2m1 8001 ax-0lt1 8002 ax-1rid 8003 ax-0id 8004 ax-rnegex 8005 ax-precex 8006 ax-cnre 8007 ax-pre-ltirr 8008 ax-pre-ltwlin 8009 ax-pre-lttrn 8010 ax-pre-apti 8011 ax-pre-ltadd 8012 ax-pre-mulgt0 8013 ax-pre-mulext 8014 ax-arch 8015 ax-caucvg 8016 |
| This theorem depends on definitions: df-bi 117 df-stab 832 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rmo 2483 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3452 df-if 3563 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-int 3876 df-iun 3919 df-br 4035 df-opab 4096 df-mpt 4097 df-tr 4133 df-id 4329 df-po 4332 df-iso 4333 df-iord 4402 df-on 4404 df-ilim 4405 df-suc 4407 df-iom 4628 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-res 4676 df-ima 4677 df-iota 5220 df-fun 5261 df-fn 5262 df-f 5263 df-f1 5264 df-fo 5265 df-f1o 5266 df-fv 5267 df-riota 5880 df-ov 5928 df-oprab 5929 df-mpo 5930 df-1st 6207 df-2nd 6208 df-recs 6372 df-frec 6458 df-sup 7059 df-pnf 8080 df-mnf 8081 df-xr 8082 df-ltxr 8083 df-le 8084 df-sub 8216 df-neg 8217 df-reap 8619 df-ap 8626 df-div 8717 df-inn 9008 df-2 9066 df-3 9067 df-4 9068 df-n0 9267 df-z 9344 df-uz 9619 df-q 9711 df-rp 9746 df-fz 10101 df-fzo 10235 df-fl 10377 df-mod 10432 df-seqfrec 10557 df-exp 10648 df-cj 11024 df-re 11025 df-im 11026 df-rsqrt 11180 df-abs 11181 df-dvds 11970 df-gcd 12146 |
| This theorem is referenced by: dvdssqlem 12222 nn0gcdsq 12393 pythagtriplem3 12461 |
| Copyright terms: Public domain | W3C validator |