ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sqgcd Unicode version

Theorem sqgcd 11984
Description: Square distributes over gcd. (Contributed by Scott Fenton, 18-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.)
Assertion
Ref Expression
sqgcd  |-  ( ( M  e.  NN  /\  N  e.  NN )  ->  ( ( M  gcd  N ) ^ 2 )  =  ( ( M ^ 2 )  gcd  ( N ^ 2 ) ) )

Proof of Theorem sqgcd
StepHypRef Expression
1 gcdnncl 11922 . . . . 5  |-  ( ( M  e.  NN  /\  N  e.  NN )  ->  ( M  gcd  N
)  e.  NN )
21nnsqcld 10630 . . . 4  |-  ( ( M  e.  NN  /\  N  e.  NN )  ->  ( ( M  gcd  N ) ^ 2 )  e.  NN )
32nncnd 8892 . . 3  |-  ( ( M  e.  NN  /\  N  e.  NN )  ->  ( ( M  gcd  N ) ^ 2 )  e.  CC )
43mulid1d 7937 . 2  |-  ( ( M  e.  NN  /\  N  e.  NN )  ->  ( ( ( M  gcd  N ) ^
2 )  x.  1 )  =  ( ( M  gcd  N ) ^ 2 ) )
5 nnsqcl 10545 . . . . . . 7  |-  ( M  e.  NN  ->  ( M ^ 2 )  e.  NN )
65nnzd 9333 . . . . . 6  |-  ( M  e.  NN  ->  ( M ^ 2 )  e.  ZZ )
76adantr 274 . . . . 5  |-  ( ( M  e.  NN  /\  N  e.  NN )  ->  ( M ^ 2 )  e.  ZZ )
8 nnsqcl 10545 . . . . . . 7  |-  ( N  e.  NN  ->  ( N ^ 2 )  e.  NN )
98nnzd 9333 . . . . . 6  |-  ( N  e.  NN  ->  ( N ^ 2 )  e.  ZZ )
109adantl 275 . . . . 5  |-  ( ( M  e.  NN  /\  N  e.  NN )  ->  ( N ^ 2 )  e.  ZZ )
11 nnz 9231 . . . . . . . 8  |-  ( M  e.  NN  ->  M  e.  ZZ )
12 nnz 9231 . . . . . . . 8  |-  ( N  e.  NN  ->  N  e.  ZZ )
13 gcddvds 11918 . . . . . . . 8  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( ( M  gcd  N )  ||  M  /\  ( M  gcd  N ) 
||  N ) )
1411, 12, 13syl2an 287 . . . . . . 7  |-  ( ( M  e.  NN  /\  N  e.  NN )  ->  ( ( M  gcd  N )  ||  M  /\  ( M  gcd  N ) 
||  N ) )
1514simpld 111 . . . . . 6  |-  ( ( M  e.  NN  /\  N  e.  NN )  ->  ( M  gcd  N
)  ||  M )
161nnzd 9333 . . . . . . 7  |-  ( ( M  e.  NN  /\  N  e.  NN )  ->  ( M  gcd  N
)  e.  ZZ )
1711adantr 274 . . . . . . 7  |-  ( ( M  e.  NN  /\  N  e.  NN )  ->  M  e.  ZZ )
18 dvdssqim 11979 . . . . . . 7  |-  ( ( ( M  gcd  N
)  e.  ZZ  /\  M  e.  ZZ )  ->  ( ( M  gcd  N )  ||  M  -> 
( ( M  gcd  N ) ^ 2 ) 
||  ( M ^
2 ) ) )
1916, 17, 18syl2anc 409 . . . . . 6  |-  ( ( M  e.  NN  /\  N  e.  NN )  ->  ( ( M  gcd  N )  ||  M  -> 
( ( M  gcd  N ) ^ 2 ) 
||  ( M ^
2 ) ) )
2015, 19mpd 13 . . . . 5  |-  ( ( M  e.  NN  /\  N  e.  NN )  ->  ( ( M  gcd  N ) ^ 2 ) 
||  ( M ^
2 ) )
2114simprd 113 . . . . . 6  |-  ( ( M  e.  NN  /\  N  e.  NN )  ->  ( M  gcd  N
)  ||  N )
2212adantl 275 . . . . . . 7  |-  ( ( M  e.  NN  /\  N  e.  NN )  ->  N  e.  ZZ )
23 dvdssqim 11979 . . . . . . 7  |-  ( ( ( M  gcd  N
)  e.  ZZ  /\  N  e.  ZZ )  ->  ( ( M  gcd  N )  ||  N  -> 
( ( M  gcd  N ) ^ 2 ) 
||  ( N ^
2 ) ) )
2416, 22, 23syl2anc 409 . . . . . 6  |-  ( ( M  e.  NN  /\  N  e.  NN )  ->  ( ( M  gcd  N )  ||  N  -> 
( ( M  gcd  N ) ^ 2 ) 
||  ( N ^
2 ) ) )
2521, 24mpd 13 . . . . 5  |-  ( ( M  e.  NN  /\  N  e.  NN )  ->  ( ( M  gcd  N ) ^ 2 ) 
||  ( N ^
2 ) )
26 gcddiv 11974 . . . . 5  |-  ( ( ( ( M ^
2 )  e.  ZZ  /\  ( N ^ 2 )  e.  ZZ  /\  ( ( M  gcd  N ) ^ 2 )  e.  NN )  /\  ( ( ( M  gcd  N ) ^
2 )  ||  ( M ^ 2 )  /\  ( ( M  gcd  N ) ^ 2 ) 
||  ( N ^
2 ) ) )  ->  ( ( ( M ^ 2 )  gcd  ( N ^
2 ) )  / 
( ( M  gcd  N ) ^ 2 ) )  =  ( ( ( M ^ 2 )  /  ( ( M  gcd  N ) ^ 2 ) )  gcd  ( ( N ^ 2 )  / 
( ( M  gcd  N ) ^ 2 ) ) ) )
277, 10, 2, 20, 25, 26syl32anc 1241 . . . 4  |-  ( ( M  e.  NN  /\  N  e.  NN )  ->  ( ( ( M ^ 2 )  gcd  ( N ^ 2 ) )  /  (
( M  gcd  N
) ^ 2 ) )  =  ( ( ( M ^ 2 )  /  ( ( M  gcd  N ) ^ 2 ) )  gcd  ( ( N ^ 2 )  / 
( ( M  gcd  N ) ^ 2 ) ) ) )
28 nncn 8886 . . . . . . 7  |-  ( M  e.  NN  ->  M  e.  CC )
2928adantr 274 . . . . . 6  |-  ( ( M  e.  NN  /\  N  e.  NN )  ->  M  e.  CC )
301nncnd 8892 . . . . . 6  |-  ( ( M  e.  NN  /\  N  e.  NN )  ->  ( M  gcd  N
)  e.  CC )
311nnap0d 8924 . . . . . 6  |-  ( ( M  e.  NN  /\  N  e.  NN )  ->  ( M  gcd  N
) #  0 )
3229, 30, 31sqdivapd 10622 . . . . 5  |-  ( ( M  e.  NN  /\  N  e.  NN )  ->  ( ( M  / 
( M  gcd  N
) ) ^ 2 )  =  ( ( M ^ 2 )  /  ( ( M  gcd  N ) ^
2 ) ) )
33 nncn 8886 . . . . . . 7  |-  ( N  e.  NN  ->  N  e.  CC )
3433adantl 275 . . . . . 6  |-  ( ( M  e.  NN  /\  N  e.  NN )  ->  N  e.  CC )
3534, 30, 31sqdivapd 10622 . . . . 5  |-  ( ( M  e.  NN  /\  N  e.  NN )  ->  ( ( N  / 
( M  gcd  N
) ) ^ 2 )  =  ( ( N ^ 2 )  /  ( ( M  gcd  N ) ^
2 ) ) )
3632, 35oveq12d 5871 . . . 4  |-  ( ( M  e.  NN  /\  N  e.  NN )  ->  ( ( ( M  /  ( M  gcd  N ) ) ^ 2 )  gcd  ( ( N  /  ( M  gcd  N ) ) ^ 2 ) )  =  ( ( ( M ^ 2 )  /  ( ( M  gcd  N ) ^
2 ) )  gcd  ( ( N ^
2 )  /  (
( M  gcd  N
) ^ 2 ) ) ) )
37 gcddiv 11974 . . . . . . 7  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  ( M  gcd  N )  e.  NN )  /\  ( ( M  gcd  N )  ||  M  /\  ( M  gcd  N ) 
||  N ) )  ->  ( ( M  gcd  N )  / 
( M  gcd  N
) )  =  ( ( M  /  ( M  gcd  N ) )  gcd  ( N  / 
( M  gcd  N
) ) ) )
3817, 22, 1, 14, 37syl31anc 1236 . . . . . 6  |-  ( ( M  e.  NN  /\  N  e.  NN )  ->  ( ( M  gcd  N )  /  ( M  gcd  N ) )  =  ( ( M  /  ( M  gcd  N ) )  gcd  ( N  /  ( M  gcd  N ) ) ) )
3930, 31dividapd 8703 . . . . . 6  |-  ( ( M  e.  NN  /\  N  e.  NN )  ->  ( ( M  gcd  N )  /  ( M  gcd  N ) )  =  1 )
4038, 39eqtr3d 2205 . . . . 5  |-  ( ( M  e.  NN  /\  N  e.  NN )  ->  ( ( M  / 
( M  gcd  N
) )  gcd  ( N  /  ( M  gcd  N ) ) )  =  1 )
411nnne0d 8923 . . . . . . . . 9  |-  ( ( M  e.  NN  /\  N  e.  NN )  ->  ( M  gcd  N
)  =/=  0 )
42 dvdsval2 11752 . . . . . . . . 9  |-  ( ( ( M  gcd  N
)  e.  ZZ  /\  ( M  gcd  N )  =/=  0  /\  M  e.  ZZ )  ->  (
( M  gcd  N
)  ||  M  <->  ( M  /  ( M  gcd  N ) )  e.  ZZ ) )
4316, 41, 17, 42syl3anc 1233 . . . . . . . 8  |-  ( ( M  e.  NN  /\  N  e.  NN )  ->  ( ( M  gcd  N )  ||  M  <->  ( M  /  ( M  gcd  N ) )  e.  ZZ ) )
4415, 43mpbid 146 . . . . . . 7  |-  ( ( M  e.  NN  /\  N  e.  NN )  ->  ( M  /  ( M  gcd  N ) )  e.  ZZ )
45 nnre 8885 . . . . . . . . 9  |-  ( M  e.  NN  ->  M  e.  RR )
4645adantr 274 . . . . . . . 8  |-  ( ( M  e.  NN  /\  N  e.  NN )  ->  M  e.  RR )
471nnred 8891 . . . . . . . 8  |-  ( ( M  e.  NN  /\  N  e.  NN )  ->  ( M  gcd  N
)  e.  RR )
48 nngt0 8903 . . . . . . . . 9  |-  ( M  e.  NN  ->  0  <  M )
4948adantr 274 . . . . . . . 8  |-  ( ( M  e.  NN  /\  N  e.  NN )  ->  0  <  M )
501nngt0d 8922 . . . . . . . 8  |-  ( ( M  e.  NN  /\  N  e.  NN )  ->  0  <  ( M  gcd  N ) )
5146, 47, 49, 50divgt0d 8851 . . . . . . 7  |-  ( ( M  e.  NN  /\  N  e.  NN )  ->  0  <  ( M  /  ( M  gcd  N ) ) )
52 elnnz 9222 . . . . . . 7  |-  ( ( M  /  ( M  gcd  N ) )  e.  NN  <->  ( ( M  /  ( M  gcd  N ) )  e.  ZZ  /\  0  <  ( M  /  ( M  gcd  N ) ) ) )
5344, 51, 52sylanbrc 415 . . . . . 6  |-  ( ( M  e.  NN  /\  N  e.  NN )  ->  ( M  /  ( M  gcd  N ) )  e.  NN )
54 dvdsval2 11752 . . . . . . . . 9  |-  ( ( ( M  gcd  N
)  e.  ZZ  /\  ( M  gcd  N )  =/=  0  /\  N  e.  ZZ )  ->  (
( M  gcd  N
)  ||  N  <->  ( N  /  ( M  gcd  N ) )  e.  ZZ ) )
5516, 41, 22, 54syl3anc 1233 . . . . . . . 8  |-  ( ( M  e.  NN  /\  N  e.  NN )  ->  ( ( M  gcd  N )  ||  N  <->  ( N  /  ( M  gcd  N ) )  e.  ZZ ) )
5621, 55mpbid 146 . . . . . . 7  |-  ( ( M  e.  NN  /\  N  e.  NN )  ->  ( N  /  ( M  gcd  N ) )  e.  ZZ )
57 nnre 8885 . . . . . . . . 9  |-  ( N  e.  NN  ->  N  e.  RR )
5857adantl 275 . . . . . . . 8  |-  ( ( M  e.  NN  /\  N  e.  NN )  ->  N  e.  RR )
59 nngt0 8903 . . . . . . . . 9  |-  ( N  e.  NN  ->  0  <  N )
6059adantl 275 . . . . . . . 8  |-  ( ( M  e.  NN  /\  N  e.  NN )  ->  0  <  N )
6158, 47, 60, 50divgt0d 8851 . . . . . . 7  |-  ( ( M  e.  NN  /\  N  e.  NN )  ->  0  <  ( N  /  ( M  gcd  N ) ) )
62 elnnz 9222 . . . . . . 7  |-  ( ( N  /  ( M  gcd  N ) )  e.  NN  <->  ( ( N  /  ( M  gcd  N ) )  e.  ZZ  /\  0  <  ( N  /  ( M  gcd  N ) ) ) )
6356, 61, 62sylanbrc 415 . . . . . 6  |-  ( ( M  e.  NN  /\  N  e.  NN )  ->  ( N  /  ( M  gcd  N ) )  e.  NN )
64 2nn 9039 . . . . . . 7  |-  2  e.  NN
65 rppwr 11983 . . . . . . 7  |-  ( ( ( M  /  ( M  gcd  N ) )  e.  NN  /\  ( N  /  ( M  gcd  N ) )  e.  NN  /\  2  e.  NN )  ->  ( ( ( M  /  ( M  gcd  N ) )  gcd  ( N  / 
( M  gcd  N
) ) )  =  1  ->  ( (
( M  /  ( M  gcd  N ) ) ^ 2 )  gcd  ( ( N  / 
( M  gcd  N
) ) ^ 2 ) )  =  1 ) )
6664, 65mp3an3 1321 . . . . . 6  |-  ( ( ( M  /  ( M  gcd  N ) )  e.  NN  /\  ( N  /  ( M  gcd  N ) )  e.  NN )  ->  ( ( ( M  /  ( M  gcd  N ) )  gcd  ( N  / 
( M  gcd  N
) ) )  =  1  ->  ( (
( M  /  ( M  gcd  N ) ) ^ 2 )  gcd  ( ( N  / 
( M  gcd  N
) ) ^ 2 ) )  =  1 ) )
6753, 63, 66syl2anc 409 . . . . 5  |-  ( ( M  e.  NN  /\  N  e.  NN )  ->  ( ( ( M  /  ( M  gcd  N ) )  gcd  ( N  /  ( M  gcd  N ) ) )  =  1  ->  ( (
( M  /  ( M  gcd  N ) ) ^ 2 )  gcd  ( ( N  / 
( M  gcd  N
) ) ^ 2 ) )  =  1 ) )
6840, 67mpd 13 . . . 4  |-  ( ( M  e.  NN  /\  N  e.  NN )  ->  ( ( ( M  /  ( M  gcd  N ) ) ^ 2 )  gcd  ( ( N  /  ( M  gcd  N ) ) ^ 2 ) )  =  1 )
6927, 36, 683eqtr2d 2209 . . 3  |-  ( ( M  e.  NN  /\  N  e.  NN )  ->  ( ( ( M ^ 2 )  gcd  ( N ^ 2 ) )  /  (
( M  gcd  N
) ^ 2 ) )  =  1 )
706, 9anim12i 336 . . . . . 6  |-  ( ( M  e.  NN  /\  N  e.  NN )  ->  ( ( M ^
2 )  e.  ZZ  /\  ( N ^ 2 )  e.  ZZ ) )
715nnne0d 8923 . . . . . . . . 9  |-  ( M  e.  NN  ->  ( M ^ 2 )  =/=  0 )
7271neneqd 2361 . . . . . . . 8  |-  ( M  e.  NN  ->  -.  ( M ^ 2 )  =  0 )
7372intnanrd 927 . . . . . . 7  |-  ( M  e.  NN  ->  -.  ( ( M ^
2 )  =  0  /\  ( N ^
2 )  =  0 ) )
7473adantr 274 . . . . . 6  |-  ( ( M  e.  NN  /\  N  e.  NN )  ->  -.  ( ( M ^ 2 )  =  0  /\  ( N ^ 2 )  =  0 ) )
75 gcdn0cl 11917 . . . . . 6  |-  ( ( ( ( M ^
2 )  e.  ZZ  /\  ( N ^ 2 )  e.  ZZ )  /\  -.  ( ( M ^ 2 )  =  0  /\  ( N ^ 2 )  =  0 ) )  -> 
( ( M ^
2 )  gcd  ( N ^ 2 ) )  e.  NN )
7670, 74, 75syl2anc 409 . . . . 5  |-  ( ( M  e.  NN  /\  N  e.  NN )  ->  ( ( M ^
2 )  gcd  ( N ^ 2 ) )  e.  NN )
7776nncnd 8892 . . . 4  |-  ( ( M  e.  NN  /\  N  e.  NN )  ->  ( ( M ^
2 )  gcd  ( N ^ 2 ) )  e.  CC )
782nnap0d 8924 . . . 4  |-  ( ( M  e.  NN  /\  N  e.  NN )  ->  ( ( M  gcd  N ) ^ 2 ) #  0 )
79 ax-1cn 7867 . . . . 5  |-  1  e.  CC
80 divmulap 8592 . . . . 5  |-  ( ( ( ( M ^
2 )  gcd  ( N ^ 2 ) )  e.  CC  /\  1  e.  CC  /\  ( ( ( M  gcd  N
) ^ 2 )  e.  CC  /\  (
( M  gcd  N
) ^ 2 ) #  0 ) )  -> 
( ( ( ( M ^ 2 )  gcd  ( N ^
2 ) )  / 
( ( M  gcd  N ) ^ 2 ) )  =  1  <->  (
( ( M  gcd  N ) ^ 2 )  x.  1 )  =  ( ( M ^
2 )  gcd  ( N ^ 2 ) ) ) )
8179, 80mp3an2 1320 . . . 4  |-  ( ( ( ( M ^
2 )  gcd  ( N ^ 2 ) )  e.  CC  /\  (
( ( M  gcd  N ) ^ 2 )  e.  CC  /\  (
( M  gcd  N
) ^ 2 ) #  0 ) )  -> 
( ( ( ( M ^ 2 )  gcd  ( N ^
2 ) )  / 
( ( M  gcd  N ) ^ 2 ) )  =  1  <->  (
( ( M  gcd  N ) ^ 2 )  x.  1 )  =  ( ( M ^
2 )  gcd  ( N ^ 2 ) ) ) )
8277, 3, 78, 81syl12anc 1231 . . 3  |-  ( ( M  e.  NN  /\  N  e.  NN )  ->  ( ( ( ( M ^ 2 )  gcd  ( N ^
2 ) )  / 
( ( M  gcd  N ) ^ 2 ) )  =  1  <->  (
( ( M  gcd  N ) ^ 2 )  x.  1 )  =  ( ( M ^
2 )  gcd  ( N ^ 2 ) ) ) )
8369, 82mpbid 146 . 2  |-  ( ( M  e.  NN  /\  N  e.  NN )  ->  ( ( ( M  gcd  N ) ^
2 )  x.  1 )  =  ( ( M ^ 2 )  gcd  ( N ^
2 ) ) )
844, 83eqtr3d 2205 1  |-  ( ( M  e.  NN  /\  N  e.  NN )  ->  ( ( M  gcd  N ) ^ 2 )  =  ( ( M ^ 2 )  gcd  ( N ^ 2 ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1348    e. wcel 2141    =/= wne 2340   class class class wbr 3989  (class class class)co 5853   CCcc 7772   RRcr 7773   0cc0 7774   1c1 7775    x. cmul 7779    < clt 7954   # cap 8500    / cdiv 8589   NNcn 8878   2c2 8929   ZZcz 9212   ^cexp 10475    || cdvds 11749    gcd cgcd 11897
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4104  ax-sep 4107  ax-nul 4115  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-iinf 4572  ax-cnex 7865  ax-resscn 7866  ax-1cn 7867  ax-1re 7868  ax-icn 7869  ax-addcl 7870  ax-addrcl 7871  ax-mulcl 7872  ax-mulrcl 7873  ax-addcom 7874  ax-mulcom 7875  ax-addass 7876  ax-mulass 7877  ax-distr 7878  ax-i2m1 7879  ax-0lt1 7880  ax-1rid 7881  ax-0id 7882  ax-rnegex 7883  ax-precex 7884  ax-cnre 7885  ax-pre-ltirr 7886  ax-pre-ltwlin 7887  ax-pre-lttrn 7888  ax-pre-apti 7889  ax-pre-ltadd 7890  ax-pre-mulgt0 7891  ax-pre-mulext 7892  ax-arch 7893  ax-caucvg 7894
This theorem depends on definitions:  df-bi 116  df-stab 826  df-dc 830  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-nel 2436  df-ral 2453  df-rex 2454  df-reu 2455  df-rmo 2456  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-if 3527  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-iun 3875  df-br 3990  df-opab 4051  df-mpt 4052  df-tr 4088  df-id 4278  df-po 4281  df-iso 4282  df-iord 4351  df-on 4353  df-ilim 4354  df-suc 4356  df-iom 4575  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-fv 5206  df-riota 5809  df-ov 5856  df-oprab 5857  df-mpo 5858  df-1st 6119  df-2nd 6120  df-recs 6284  df-frec 6370  df-sup 6961  df-pnf 7956  df-mnf 7957  df-xr 7958  df-ltxr 7959  df-le 7960  df-sub 8092  df-neg 8093  df-reap 8494  df-ap 8501  df-div 8590  df-inn 8879  df-2 8937  df-3 8938  df-4 8939  df-n0 9136  df-z 9213  df-uz 9488  df-q 9579  df-rp 9611  df-fz 9966  df-fzo 10099  df-fl 10226  df-mod 10279  df-seqfrec 10402  df-exp 10476  df-cj 10806  df-re 10807  df-im 10808  df-rsqrt 10962  df-abs 10963  df-dvds 11750  df-gcd 11898
This theorem is referenced by:  dvdssqlem  11985  nn0gcdsq  12154  pythagtriplem3  12221
  Copyright terms: Public domain W3C validator