Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > sqgcd | Unicode version |
Description: Square distributes over gcd. (Contributed by Scott Fenton, 18-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.) |
Ref | Expression |
---|---|
sqgcd |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | gcdnncl 11922 | . . . . 5 | |
2 | 1 | nnsqcld 10630 | . . . 4 |
3 | 2 | nncnd 8892 | . . 3 |
4 | 3 | mulid1d 7937 | . 2 |
5 | nnsqcl 10545 | . . . . . . 7 | |
6 | 5 | nnzd 9333 | . . . . . 6 |
7 | 6 | adantr 274 | . . . . 5 |
8 | nnsqcl 10545 | . . . . . . 7 | |
9 | 8 | nnzd 9333 | . . . . . 6 |
10 | 9 | adantl 275 | . . . . 5 |
11 | nnz 9231 | . . . . . . . 8 | |
12 | nnz 9231 | . . . . . . . 8 | |
13 | gcddvds 11918 | . . . . . . . 8 | |
14 | 11, 12, 13 | syl2an 287 | . . . . . . 7 |
15 | 14 | simpld 111 | . . . . . 6 |
16 | 1 | nnzd 9333 | . . . . . . 7 |
17 | 11 | adantr 274 | . . . . . . 7 |
18 | dvdssqim 11979 | . . . . . . 7 | |
19 | 16, 17, 18 | syl2anc 409 | . . . . . 6 |
20 | 15, 19 | mpd 13 | . . . . 5 |
21 | 14 | simprd 113 | . . . . . 6 |
22 | 12 | adantl 275 | . . . . . . 7 |
23 | dvdssqim 11979 | . . . . . . 7 | |
24 | 16, 22, 23 | syl2anc 409 | . . . . . 6 |
25 | 21, 24 | mpd 13 | . . . . 5 |
26 | gcddiv 11974 | . . . . 5 | |
27 | 7, 10, 2, 20, 25, 26 | syl32anc 1241 | . . . 4 |
28 | nncn 8886 | . . . . . . 7 | |
29 | 28 | adantr 274 | . . . . . 6 |
30 | 1 | nncnd 8892 | . . . . . 6 |
31 | 1 | nnap0d 8924 | . . . . . 6 # |
32 | 29, 30, 31 | sqdivapd 10622 | . . . . 5 |
33 | nncn 8886 | . . . . . . 7 | |
34 | 33 | adantl 275 | . . . . . 6 |
35 | 34, 30, 31 | sqdivapd 10622 | . . . . 5 |
36 | 32, 35 | oveq12d 5871 | . . . 4 |
37 | gcddiv 11974 | . . . . . . 7 | |
38 | 17, 22, 1, 14, 37 | syl31anc 1236 | . . . . . 6 |
39 | 30, 31 | dividapd 8703 | . . . . . 6 |
40 | 38, 39 | eqtr3d 2205 | . . . . 5 |
41 | 1 | nnne0d 8923 | . . . . . . . . 9 |
42 | dvdsval2 11752 | . . . . . . . . 9 | |
43 | 16, 41, 17, 42 | syl3anc 1233 | . . . . . . . 8 |
44 | 15, 43 | mpbid 146 | . . . . . . 7 |
45 | nnre 8885 | . . . . . . . . 9 | |
46 | 45 | adantr 274 | . . . . . . . 8 |
47 | 1 | nnred 8891 | . . . . . . . 8 |
48 | nngt0 8903 | . . . . . . . . 9 | |
49 | 48 | adantr 274 | . . . . . . . 8 |
50 | 1 | nngt0d 8922 | . . . . . . . 8 |
51 | 46, 47, 49, 50 | divgt0d 8851 | . . . . . . 7 |
52 | elnnz 9222 | . . . . . . 7 | |
53 | 44, 51, 52 | sylanbrc 415 | . . . . . 6 |
54 | dvdsval2 11752 | . . . . . . . . 9 | |
55 | 16, 41, 22, 54 | syl3anc 1233 | . . . . . . . 8 |
56 | 21, 55 | mpbid 146 | . . . . . . 7 |
57 | nnre 8885 | . . . . . . . . 9 | |
58 | 57 | adantl 275 | . . . . . . . 8 |
59 | nngt0 8903 | . . . . . . . . 9 | |
60 | 59 | adantl 275 | . . . . . . . 8 |
61 | 58, 47, 60, 50 | divgt0d 8851 | . . . . . . 7 |
62 | elnnz 9222 | . . . . . . 7 | |
63 | 56, 61, 62 | sylanbrc 415 | . . . . . 6 |
64 | 2nn 9039 | . . . . . . 7 | |
65 | rppwr 11983 | . . . . . . 7 | |
66 | 64, 65 | mp3an3 1321 | . . . . . 6 |
67 | 53, 63, 66 | syl2anc 409 | . . . . 5 |
68 | 40, 67 | mpd 13 | . . . 4 |
69 | 27, 36, 68 | 3eqtr2d 2209 | . . 3 |
70 | 6, 9 | anim12i 336 | . . . . . 6 |
71 | 5 | nnne0d 8923 | . . . . . . . . 9 |
72 | 71 | neneqd 2361 | . . . . . . . 8 |
73 | 72 | intnanrd 927 | . . . . . . 7 |
74 | 73 | adantr 274 | . . . . . 6 |
75 | gcdn0cl 11917 | . . . . . 6 | |
76 | 70, 74, 75 | syl2anc 409 | . . . . 5 |
77 | 76 | nncnd 8892 | . . . 4 |
78 | 2 | nnap0d 8924 | . . . 4 # |
79 | ax-1cn 7867 | . . . . 5 | |
80 | divmulap 8592 | . . . . 5 # | |
81 | 79, 80 | mp3an2 1320 | . . . 4 # |
82 | 77, 3, 78, 81 | syl12anc 1231 | . . 3 |
83 | 69, 82 | mpbid 146 | . 2 |
84 | 4, 83 | eqtr3d 2205 | 1 |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wa 103 wb 104 wceq 1348 wcel 2141 wne 2340 class class class wbr 3989 (class class class)co 5853 cc 7772 cr 7773 cc0 7774 c1 7775 cmul 7779 clt 7954 # cap 8500 cdiv 8589 cn 8878 c2 8929 cz 9212 cexp 10475 cdvds 11749 cgcd 11897 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-coll 4104 ax-sep 4107 ax-nul 4115 ax-pow 4160 ax-pr 4194 ax-un 4418 ax-setind 4521 ax-iinf 4572 ax-cnex 7865 ax-resscn 7866 ax-1cn 7867 ax-1re 7868 ax-icn 7869 ax-addcl 7870 ax-addrcl 7871 ax-mulcl 7872 ax-mulrcl 7873 ax-addcom 7874 ax-mulcom 7875 ax-addass 7876 ax-mulass 7877 ax-distr 7878 ax-i2m1 7879 ax-0lt1 7880 ax-1rid 7881 ax-0id 7882 ax-rnegex 7883 ax-precex 7884 ax-cnre 7885 ax-pre-ltirr 7886 ax-pre-ltwlin 7887 ax-pre-lttrn 7888 ax-pre-apti 7889 ax-pre-ltadd 7890 ax-pre-mulgt0 7891 ax-pre-mulext 7892 ax-arch 7893 ax-caucvg 7894 |
This theorem depends on definitions: df-bi 116 df-stab 826 df-dc 830 df-3or 974 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-nel 2436 df-ral 2453 df-rex 2454 df-reu 2455 df-rmo 2456 df-rab 2457 df-v 2732 df-sbc 2956 df-csb 3050 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-nul 3415 df-if 3527 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-int 3832 df-iun 3875 df-br 3990 df-opab 4051 df-mpt 4052 df-tr 4088 df-id 4278 df-po 4281 df-iso 4282 df-iord 4351 df-on 4353 df-ilim 4354 df-suc 4356 df-iom 4575 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-res 4623 df-ima 4624 df-iota 5160 df-fun 5200 df-fn 5201 df-f 5202 df-f1 5203 df-fo 5204 df-f1o 5205 df-fv 5206 df-riota 5809 df-ov 5856 df-oprab 5857 df-mpo 5858 df-1st 6119 df-2nd 6120 df-recs 6284 df-frec 6370 df-sup 6961 df-pnf 7956 df-mnf 7957 df-xr 7958 df-ltxr 7959 df-le 7960 df-sub 8092 df-neg 8093 df-reap 8494 df-ap 8501 df-div 8590 df-inn 8879 df-2 8937 df-3 8938 df-4 8939 df-n0 9136 df-z 9213 df-uz 9488 df-q 9579 df-rp 9611 df-fz 9966 df-fzo 10099 df-fl 10226 df-mod 10279 df-seqfrec 10402 df-exp 10476 df-cj 10806 df-re 10807 df-im 10808 df-rsqrt 10962 df-abs 10963 df-dvds 11750 df-gcd 11898 |
This theorem is referenced by: dvdssqlem 11985 nn0gcdsq 12154 pythagtriplem3 12221 |
Copyright terms: Public domain | W3C validator |