ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sqgcd Unicode version

Theorem sqgcd 12166
Description: Square distributes over gcd. (Contributed by Scott Fenton, 18-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.)
Assertion
Ref Expression
sqgcd  |-  ( ( M  e.  NN  /\  N  e.  NN )  ->  ( ( M  gcd  N ) ^ 2 )  =  ( ( M ^ 2 )  gcd  ( N ^ 2 ) ) )

Proof of Theorem sqgcd
StepHypRef Expression
1 gcdnncl 12104 . . . . 5  |-  ( ( M  e.  NN  /\  N  e.  NN )  ->  ( M  gcd  N
)  e.  NN )
21nnsqcld 10765 . . . 4  |-  ( ( M  e.  NN  /\  N  e.  NN )  ->  ( ( M  gcd  N ) ^ 2 )  e.  NN )
32nncnd 8996 . . 3  |-  ( ( M  e.  NN  /\  N  e.  NN )  ->  ( ( M  gcd  N ) ^ 2 )  e.  CC )
43mulridd 8036 . 2  |-  ( ( M  e.  NN  /\  N  e.  NN )  ->  ( ( ( M  gcd  N ) ^
2 )  x.  1 )  =  ( ( M  gcd  N ) ^ 2 ) )
5 nnsqcl 10680 . . . . . . 7  |-  ( M  e.  NN  ->  ( M ^ 2 )  e.  NN )
65nnzd 9438 . . . . . 6  |-  ( M  e.  NN  ->  ( M ^ 2 )  e.  ZZ )
76adantr 276 . . . . 5  |-  ( ( M  e.  NN  /\  N  e.  NN )  ->  ( M ^ 2 )  e.  ZZ )
8 nnsqcl 10680 . . . . . . 7  |-  ( N  e.  NN  ->  ( N ^ 2 )  e.  NN )
98nnzd 9438 . . . . . 6  |-  ( N  e.  NN  ->  ( N ^ 2 )  e.  ZZ )
109adantl 277 . . . . 5  |-  ( ( M  e.  NN  /\  N  e.  NN )  ->  ( N ^ 2 )  e.  ZZ )
11 nnz 9336 . . . . . . . 8  |-  ( M  e.  NN  ->  M  e.  ZZ )
12 nnz 9336 . . . . . . . 8  |-  ( N  e.  NN  ->  N  e.  ZZ )
13 gcddvds 12100 . . . . . . . 8  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( ( M  gcd  N )  ||  M  /\  ( M  gcd  N ) 
||  N ) )
1411, 12, 13syl2an 289 . . . . . . 7  |-  ( ( M  e.  NN  /\  N  e.  NN )  ->  ( ( M  gcd  N )  ||  M  /\  ( M  gcd  N ) 
||  N ) )
1514simpld 112 . . . . . 6  |-  ( ( M  e.  NN  /\  N  e.  NN )  ->  ( M  gcd  N
)  ||  M )
161nnzd 9438 . . . . . . 7  |-  ( ( M  e.  NN  /\  N  e.  NN )  ->  ( M  gcd  N
)  e.  ZZ )
1711adantr 276 . . . . . . 7  |-  ( ( M  e.  NN  /\  N  e.  NN )  ->  M  e.  ZZ )
18 dvdssqim 12161 . . . . . . 7  |-  ( ( ( M  gcd  N
)  e.  ZZ  /\  M  e.  ZZ )  ->  ( ( M  gcd  N )  ||  M  -> 
( ( M  gcd  N ) ^ 2 ) 
||  ( M ^
2 ) ) )
1916, 17, 18syl2anc 411 . . . . . 6  |-  ( ( M  e.  NN  /\  N  e.  NN )  ->  ( ( M  gcd  N )  ||  M  -> 
( ( M  gcd  N ) ^ 2 ) 
||  ( M ^
2 ) ) )
2015, 19mpd 13 . . . . 5  |-  ( ( M  e.  NN  /\  N  e.  NN )  ->  ( ( M  gcd  N ) ^ 2 ) 
||  ( M ^
2 ) )
2114simprd 114 . . . . . 6  |-  ( ( M  e.  NN  /\  N  e.  NN )  ->  ( M  gcd  N
)  ||  N )
2212adantl 277 . . . . . . 7  |-  ( ( M  e.  NN  /\  N  e.  NN )  ->  N  e.  ZZ )
23 dvdssqim 12161 . . . . . . 7  |-  ( ( ( M  gcd  N
)  e.  ZZ  /\  N  e.  ZZ )  ->  ( ( M  gcd  N )  ||  N  -> 
( ( M  gcd  N ) ^ 2 ) 
||  ( N ^
2 ) ) )
2416, 22, 23syl2anc 411 . . . . . 6  |-  ( ( M  e.  NN  /\  N  e.  NN )  ->  ( ( M  gcd  N )  ||  N  -> 
( ( M  gcd  N ) ^ 2 ) 
||  ( N ^
2 ) ) )
2521, 24mpd 13 . . . . 5  |-  ( ( M  e.  NN  /\  N  e.  NN )  ->  ( ( M  gcd  N ) ^ 2 ) 
||  ( N ^
2 ) )
26 gcddiv 12156 . . . . 5  |-  ( ( ( ( M ^
2 )  e.  ZZ  /\  ( N ^ 2 )  e.  ZZ  /\  ( ( M  gcd  N ) ^ 2 )  e.  NN )  /\  ( ( ( M  gcd  N ) ^
2 )  ||  ( M ^ 2 )  /\  ( ( M  gcd  N ) ^ 2 ) 
||  ( N ^
2 ) ) )  ->  ( ( ( M ^ 2 )  gcd  ( N ^
2 ) )  / 
( ( M  gcd  N ) ^ 2 ) )  =  ( ( ( M ^ 2 )  /  ( ( M  gcd  N ) ^ 2 ) )  gcd  ( ( N ^ 2 )  / 
( ( M  gcd  N ) ^ 2 ) ) ) )
277, 10, 2, 20, 25, 26syl32anc 1257 . . . 4  |-  ( ( M  e.  NN  /\  N  e.  NN )  ->  ( ( ( M ^ 2 )  gcd  ( N ^ 2 ) )  /  (
( M  gcd  N
) ^ 2 ) )  =  ( ( ( M ^ 2 )  /  ( ( M  gcd  N ) ^ 2 ) )  gcd  ( ( N ^ 2 )  / 
( ( M  gcd  N ) ^ 2 ) ) ) )
28 nncn 8990 . . . . . . 7  |-  ( M  e.  NN  ->  M  e.  CC )
2928adantr 276 . . . . . 6  |-  ( ( M  e.  NN  /\  N  e.  NN )  ->  M  e.  CC )
301nncnd 8996 . . . . . 6  |-  ( ( M  e.  NN  /\  N  e.  NN )  ->  ( M  gcd  N
)  e.  CC )
311nnap0d 9028 . . . . . 6  |-  ( ( M  e.  NN  /\  N  e.  NN )  ->  ( M  gcd  N
) #  0 )
3229, 30, 31sqdivapd 10757 . . . . 5  |-  ( ( M  e.  NN  /\  N  e.  NN )  ->  ( ( M  / 
( M  gcd  N
) ) ^ 2 )  =  ( ( M ^ 2 )  /  ( ( M  gcd  N ) ^
2 ) ) )
33 nncn 8990 . . . . . . 7  |-  ( N  e.  NN  ->  N  e.  CC )
3433adantl 277 . . . . . 6  |-  ( ( M  e.  NN  /\  N  e.  NN )  ->  N  e.  CC )
3534, 30, 31sqdivapd 10757 . . . . 5  |-  ( ( M  e.  NN  /\  N  e.  NN )  ->  ( ( N  / 
( M  gcd  N
) ) ^ 2 )  =  ( ( N ^ 2 )  /  ( ( M  gcd  N ) ^
2 ) ) )
3632, 35oveq12d 5936 . . . 4  |-  ( ( M  e.  NN  /\  N  e.  NN )  ->  ( ( ( M  /  ( M  gcd  N ) ) ^ 2 )  gcd  ( ( N  /  ( M  gcd  N ) ) ^ 2 ) )  =  ( ( ( M ^ 2 )  /  ( ( M  gcd  N ) ^
2 ) )  gcd  ( ( N ^
2 )  /  (
( M  gcd  N
) ^ 2 ) ) ) )
37 gcddiv 12156 . . . . . . 7  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  ( M  gcd  N )  e.  NN )  /\  ( ( M  gcd  N )  ||  M  /\  ( M  gcd  N ) 
||  N ) )  ->  ( ( M  gcd  N )  / 
( M  gcd  N
) )  =  ( ( M  /  ( M  gcd  N ) )  gcd  ( N  / 
( M  gcd  N
) ) ) )
3817, 22, 1, 14, 37syl31anc 1252 . . . . . 6  |-  ( ( M  e.  NN  /\  N  e.  NN )  ->  ( ( M  gcd  N )  /  ( M  gcd  N ) )  =  ( ( M  /  ( M  gcd  N ) )  gcd  ( N  /  ( M  gcd  N ) ) ) )
3930, 31dividapd 8805 . . . . . 6  |-  ( ( M  e.  NN  /\  N  e.  NN )  ->  ( ( M  gcd  N )  /  ( M  gcd  N ) )  =  1 )
4038, 39eqtr3d 2228 . . . . 5  |-  ( ( M  e.  NN  /\  N  e.  NN )  ->  ( ( M  / 
( M  gcd  N
) )  gcd  ( N  /  ( M  gcd  N ) ) )  =  1 )
411nnne0d 9027 . . . . . . . . 9  |-  ( ( M  e.  NN  /\  N  e.  NN )  ->  ( M  gcd  N
)  =/=  0 )
42 dvdsval2 11933 . . . . . . . . 9  |-  ( ( ( M  gcd  N
)  e.  ZZ  /\  ( M  gcd  N )  =/=  0  /\  M  e.  ZZ )  ->  (
( M  gcd  N
)  ||  M  <->  ( M  /  ( M  gcd  N ) )  e.  ZZ ) )
4316, 41, 17, 42syl3anc 1249 . . . . . . . 8  |-  ( ( M  e.  NN  /\  N  e.  NN )  ->  ( ( M  gcd  N )  ||  M  <->  ( M  /  ( M  gcd  N ) )  e.  ZZ ) )
4415, 43mpbid 147 . . . . . . 7  |-  ( ( M  e.  NN  /\  N  e.  NN )  ->  ( M  /  ( M  gcd  N ) )  e.  ZZ )
45 nnre 8989 . . . . . . . . 9  |-  ( M  e.  NN  ->  M  e.  RR )
4645adantr 276 . . . . . . . 8  |-  ( ( M  e.  NN  /\  N  e.  NN )  ->  M  e.  RR )
471nnred 8995 . . . . . . . 8  |-  ( ( M  e.  NN  /\  N  e.  NN )  ->  ( M  gcd  N
)  e.  RR )
48 nngt0 9007 . . . . . . . . 9  |-  ( M  e.  NN  ->  0  <  M )
4948adantr 276 . . . . . . . 8  |-  ( ( M  e.  NN  /\  N  e.  NN )  ->  0  <  M )
501nngt0d 9026 . . . . . . . 8  |-  ( ( M  e.  NN  /\  N  e.  NN )  ->  0  <  ( M  gcd  N ) )
5146, 47, 49, 50divgt0d 8954 . . . . . . 7  |-  ( ( M  e.  NN  /\  N  e.  NN )  ->  0  <  ( M  /  ( M  gcd  N ) ) )
52 elnnz 9327 . . . . . . 7  |-  ( ( M  /  ( M  gcd  N ) )  e.  NN  <->  ( ( M  /  ( M  gcd  N ) )  e.  ZZ  /\  0  <  ( M  /  ( M  gcd  N ) ) ) )
5344, 51, 52sylanbrc 417 . . . . . 6  |-  ( ( M  e.  NN  /\  N  e.  NN )  ->  ( M  /  ( M  gcd  N ) )  e.  NN )
54 dvdsval2 11933 . . . . . . . . 9  |-  ( ( ( M  gcd  N
)  e.  ZZ  /\  ( M  gcd  N )  =/=  0  /\  N  e.  ZZ )  ->  (
( M  gcd  N
)  ||  N  <->  ( N  /  ( M  gcd  N ) )  e.  ZZ ) )
5516, 41, 22, 54syl3anc 1249 . . . . . . . 8  |-  ( ( M  e.  NN  /\  N  e.  NN )  ->  ( ( M  gcd  N )  ||  N  <->  ( N  /  ( M  gcd  N ) )  e.  ZZ ) )
5621, 55mpbid 147 . . . . . . 7  |-  ( ( M  e.  NN  /\  N  e.  NN )  ->  ( N  /  ( M  gcd  N ) )  e.  ZZ )
57 nnre 8989 . . . . . . . . 9  |-  ( N  e.  NN  ->  N  e.  RR )
5857adantl 277 . . . . . . . 8  |-  ( ( M  e.  NN  /\  N  e.  NN )  ->  N  e.  RR )
59 nngt0 9007 . . . . . . . . 9  |-  ( N  e.  NN  ->  0  <  N )
6059adantl 277 . . . . . . . 8  |-  ( ( M  e.  NN  /\  N  e.  NN )  ->  0  <  N )
6158, 47, 60, 50divgt0d 8954 . . . . . . 7  |-  ( ( M  e.  NN  /\  N  e.  NN )  ->  0  <  ( N  /  ( M  gcd  N ) ) )
62 elnnz 9327 . . . . . . 7  |-  ( ( N  /  ( M  gcd  N ) )  e.  NN  <->  ( ( N  /  ( M  gcd  N ) )  e.  ZZ  /\  0  <  ( N  /  ( M  gcd  N ) ) ) )
6356, 61, 62sylanbrc 417 . . . . . 6  |-  ( ( M  e.  NN  /\  N  e.  NN )  ->  ( N  /  ( M  gcd  N ) )  e.  NN )
64 2nn 9143 . . . . . . 7  |-  2  e.  NN
65 rppwr 12165 . . . . . . 7  |-  ( ( ( M  /  ( M  gcd  N ) )  e.  NN  /\  ( N  /  ( M  gcd  N ) )  e.  NN  /\  2  e.  NN )  ->  ( ( ( M  /  ( M  gcd  N ) )  gcd  ( N  / 
( M  gcd  N
) ) )  =  1  ->  ( (
( M  /  ( M  gcd  N ) ) ^ 2 )  gcd  ( ( N  / 
( M  gcd  N
) ) ^ 2 ) )  =  1 ) )
6664, 65mp3an3 1337 . . . . . 6  |-  ( ( ( M  /  ( M  gcd  N ) )  e.  NN  /\  ( N  /  ( M  gcd  N ) )  e.  NN )  ->  ( ( ( M  /  ( M  gcd  N ) )  gcd  ( N  / 
( M  gcd  N
) ) )  =  1  ->  ( (
( M  /  ( M  gcd  N ) ) ^ 2 )  gcd  ( ( N  / 
( M  gcd  N
) ) ^ 2 ) )  =  1 ) )
6753, 63, 66syl2anc 411 . . . . 5  |-  ( ( M  e.  NN  /\  N  e.  NN )  ->  ( ( ( M  /  ( M  gcd  N ) )  gcd  ( N  /  ( M  gcd  N ) ) )  =  1  ->  ( (
( M  /  ( M  gcd  N ) ) ^ 2 )  gcd  ( ( N  / 
( M  gcd  N
) ) ^ 2 ) )  =  1 ) )
6840, 67mpd 13 . . . 4  |-  ( ( M  e.  NN  /\  N  e.  NN )  ->  ( ( ( M  /  ( M  gcd  N ) ) ^ 2 )  gcd  ( ( N  /  ( M  gcd  N ) ) ^ 2 ) )  =  1 )
6927, 36, 683eqtr2d 2232 . . 3  |-  ( ( M  e.  NN  /\  N  e.  NN )  ->  ( ( ( M ^ 2 )  gcd  ( N ^ 2 ) )  /  (
( M  gcd  N
) ^ 2 ) )  =  1 )
706, 9anim12i 338 . . . . . 6  |-  ( ( M  e.  NN  /\  N  e.  NN )  ->  ( ( M ^
2 )  e.  ZZ  /\  ( N ^ 2 )  e.  ZZ ) )
715nnne0d 9027 . . . . . . . . 9  |-  ( M  e.  NN  ->  ( M ^ 2 )  =/=  0 )
7271neneqd 2385 . . . . . . . 8  |-  ( M  e.  NN  ->  -.  ( M ^ 2 )  =  0 )
7372intnanrd 933 . . . . . . 7  |-  ( M  e.  NN  ->  -.  ( ( M ^
2 )  =  0  /\  ( N ^
2 )  =  0 ) )
7473adantr 276 . . . . . 6  |-  ( ( M  e.  NN  /\  N  e.  NN )  ->  -.  ( ( M ^ 2 )  =  0  /\  ( N ^ 2 )  =  0 ) )
75 gcdn0cl 12099 . . . . . 6  |-  ( ( ( ( M ^
2 )  e.  ZZ  /\  ( N ^ 2 )  e.  ZZ )  /\  -.  ( ( M ^ 2 )  =  0  /\  ( N ^ 2 )  =  0 ) )  -> 
( ( M ^
2 )  gcd  ( N ^ 2 ) )  e.  NN )
7670, 74, 75syl2anc 411 . . . . 5  |-  ( ( M  e.  NN  /\  N  e.  NN )  ->  ( ( M ^
2 )  gcd  ( N ^ 2 ) )  e.  NN )
7776nncnd 8996 . . . 4  |-  ( ( M  e.  NN  /\  N  e.  NN )  ->  ( ( M ^
2 )  gcd  ( N ^ 2 ) )  e.  CC )
782nnap0d 9028 . . . 4  |-  ( ( M  e.  NN  /\  N  e.  NN )  ->  ( ( M  gcd  N ) ^ 2 ) #  0 )
79 ax-1cn 7965 . . . . 5  |-  1  e.  CC
80 divmulap 8694 . . . . 5  |-  ( ( ( ( M ^
2 )  gcd  ( N ^ 2 ) )  e.  CC  /\  1  e.  CC  /\  ( ( ( M  gcd  N
) ^ 2 )  e.  CC  /\  (
( M  gcd  N
) ^ 2 ) #  0 ) )  -> 
( ( ( ( M ^ 2 )  gcd  ( N ^
2 ) )  / 
( ( M  gcd  N ) ^ 2 ) )  =  1  <->  (
( ( M  gcd  N ) ^ 2 )  x.  1 )  =  ( ( M ^
2 )  gcd  ( N ^ 2 ) ) ) )
8179, 80mp3an2 1336 . . . 4  |-  ( ( ( ( M ^
2 )  gcd  ( N ^ 2 ) )  e.  CC  /\  (
( ( M  gcd  N ) ^ 2 )  e.  CC  /\  (
( M  gcd  N
) ^ 2 ) #  0 ) )  -> 
( ( ( ( M ^ 2 )  gcd  ( N ^
2 ) )  / 
( ( M  gcd  N ) ^ 2 ) )  =  1  <->  (
( ( M  gcd  N ) ^ 2 )  x.  1 )  =  ( ( M ^
2 )  gcd  ( N ^ 2 ) ) ) )
8277, 3, 78, 81syl12anc 1247 . . 3  |-  ( ( M  e.  NN  /\  N  e.  NN )  ->  ( ( ( ( M ^ 2 )  gcd  ( N ^
2 ) )  / 
( ( M  gcd  N ) ^ 2 ) )  =  1  <->  (
( ( M  gcd  N ) ^ 2 )  x.  1 )  =  ( ( M ^
2 )  gcd  ( N ^ 2 ) ) ) )
8369, 82mpbid 147 . 2  |-  ( ( M  e.  NN  /\  N  e.  NN )  ->  ( ( ( M  gcd  N ) ^
2 )  x.  1 )  =  ( ( M ^ 2 )  gcd  ( N ^
2 ) ) )
844, 83eqtr3d 2228 1  |-  ( ( M  e.  NN  /\  N  e.  NN )  ->  ( ( M  gcd  N ) ^ 2 )  =  ( ( M ^ 2 )  gcd  ( N ^ 2 ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1364    e. wcel 2164    =/= wne 2364   class class class wbr 4029  (class class class)co 5918   CCcc 7870   RRcr 7871   0cc0 7872   1c1 7873    x. cmul 7877    < clt 8054   # cap 8600    / cdiv 8691   NNcn 8982   2c2 9033   ZZcz 9317   ^cexp 10609    || cdvds 11930    gcd cgcd 12079
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-nul 4155  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-iinf 4620  ax-cnex 7963  ax-resscn 7964  ax-1cn 7965  ax-1re 7966  ax-icn 7967  ax-addcl 7968  ax-addrcl 7969  ax-mulcl 7970  ax-mulrcl 7971  ax-addcom 7972  ax-mulcom 7973  ax-addass 7974  ax-mulass 7975  ax-distr 7976  ax-i2m1 7977  ax-0lt1 7978  ax-1rid 7979  ax-0id 7980  ax-rnegex 7981  ax-precex 7982  ax-cnre 7983  ax-pre-ltirr 7984  ax-pre-ltwlin 7985  ax-pre-lttrn 7986  ax-pre-apti 7987  ax-pre-ltadd 7988  ax-pre-mulgt0 7989  ax-pre-mulext 7990  ax-arch 7991  ax-caucvg 7992
This theorem depends on definitions:  df-bi 117  df-stab 832  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-if 3558  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-tr 4128  df-id 4324  df-po 4327  df-iso 4328  df-iord 4397  df-on 4399  df-ilim 4400  df-suc 4402  df-iom 4623  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-riota 5873  df-ov 5921  df-oprab 5922  df-mpo 5923  df-1st 6193  df-2nd 6194  df-recs 6358  df-frec 6444  df-sup 7043  df-pnf 8056  df-mnf 8057  df-xr 8058  df-ltxr 8059  df-le 8060  df-sub 8192  df-neg 8193  df-reap 8594  df-ap 8601  df-div 8692  df-inn 8983  df-2 9041  df-3 9042  df-4 9043  df-n0 9241  df-z 9318  df-uz 9593  df-q 9685  df-rp 9720  df-fz 10075  df-fzo 10209  df-fl 10339  df-mod 10394  df-seqfrec 10519  df-exp 10610  df-cj 10986  df-re 10987  df-im 10988  df-rsqrt 11142  df-abs 11143  df-dvds 11931  df-gcd 12080
This theorem is referenced by:  dvdssqlem  12167  nn0gcdsq  12338  pythagtriplem3  12405
  Copyright terms: Public domain W3C validator