ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iotabi GIF version

Theorem iotabi 5201
Description: Equivalence theorem for descriptions. (Contributed by Andrew Salmon, 30-Jun-2011.)
Assertion
Ref Expression
iotabi (∀𝑥(𝜑𝜓) → (℩𝑥𝜑) = (℩𝑥𝜓))

Proof of Theorem iotabi
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 abbi 2302 . . . . . 6 (∀𝑥(𝜑𝜓) ↔ {𝑥𝜑} = {𝑥𝜓})
21biimpi 120 . . . . 5 (∀𝑥(𝜑𝜓) → {𝑥𝜑} = {𝑥𝜓})
32eqeq1d 2197 . . . 4 (∀𝑥(𝜑𝜓) → ({𝑥𝜑} = {𝑧} ↔ {𝑥𝜓} = {𝑧}))
43abbidv 2306 . . 3 (∀𝑥(𝜑𝜓) → {𝑧 ∣ {𝑥𝜑} = {𝑧}} = {𝑧 ∣ {𝑥𝜓} = {𝑧}})
54unieqd 3834 . 2 (∀𝑥(𝜑𝜓) → {𝑧 ∣ {𝑥𝜑} = {𝑧}} = {𝑧 ∣ {𝑥𝜓} = {𝑧}})
6 df-iota 5192 . 2 (℩𝑥𝜑) = {𝑧 ∣ {𝑥𝜑} = {𝑧}}
7 df-iota 5192 . 2 (℩𝑥𝜓) = {𝑧 ∣ {𝑥𝜓} = {𝑧}}
85, 6, 73eqtr4g 2246 1 (∀𝑥(𝜑𝜓) → (℩𝑥𝜑) = (℩𝑥𝜓))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105  wal 1361   = wceq 1363  {cab 2174  {csn 3606   cuni 3823  cio 5190
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1457  ax-7 1458  ax-gen 1459  ax-ie1 1503  ax-ie2 1504  ax-8 1514  ax-10 1515  ax-11 1516  ax-i12 1517  ax-bndl 1519  ax-4 1520  ax-17 1536  ax-i9 1540  ax-ial 1544  ax-i5r 1545  ax-ext 2170
This theorem depends on definitions:  df-bi 117  df-tru 1366  df-nf 1471  df-sb 1773  df-clab 2175  df-cleq 2181  df-clel 2184  df-nfc 2320  df-rex 2473  df-uni 3824  df-iota 5192
This theorem is referenced by:  iotabidv  5213  iotabii  5214  eusvobj1  5877
  Copyright terms: Public domain W3C validator