| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > iotabi | GIF version | ||
| Description: Equivalence theorem for descriptions. (Contributed by Andrew Salmon, 30-Jun-2011.) |
| Ref | Expression |
|---|---|
| iotabi | ⊢ (∀𝑥(𝜑 ↔ 𝜓) → (℩𝑥𝜑) = (℩𝑥𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | abbi 2323 | . . . . . 6 ⊢ (∀𝑥(𝜑 ↔ 𝜓) ↔ {𝑥 ∣ 𝜑} = {𝑥 ∣ 𝜓}) | |
| 2 | 1 | biimpi 120 | . . . . 5 ⊢ (∀𝑥(𝜑 ↔ 𝜓) → {𝑥 ∣ 𝜑} = {𝑥 ∣ 𝜓}) |
| 3 | 2 | eqeq1d 2218 | . . . 4 ⊢ (∀𝑥(𝜑 ↔ 𝜓) → ({𝑥 ∣ 𝜑} = {𝑧} ↔ {𝑥 ∣ 𝜓} = {𝑧})) |
| 4 | 3 | abbidv 2327 | . . 3 ⊢ (∀𝑥(𝜑 ↔ 𝜓) → {𝑧 ∣ {𝑥 ∣ 𝜑} = {𝑧}} = {𝑧 ∣ {𝑥 ∣ 𝜓} = {𝑧}}) |
| 5 | 4 | unieqd 3878 | . 2 ⊢ (∀𝑥(𝜑 ↔ 𝜓) → ∪ {𝑧 ∣ {𝑥 ∣ 𝜑} = {𝑧}} = ∪ {𝑧 ∣ {𝑥 ∣ 𝜓} = {𝑧}}) |
| 6 | df-iota 5254 | . 2 ⊢ (℩𝑥𝜑) = ∪ {𝑧 ∣ {𝑥 ∣ 𝜑} = {𝑧}} | |
| 7 | df-iota 5254 | . 2 ⊢ (℩𝑥𝜓) = ∪ {𝑧 ∣ {𝑥 ∣ 𝜓} = {𝑧}} | |
| 8 | 5, 6, 7 | 3eqtr4g 2267 | 1 ⊢ (∀𝑥(𝜑 ↔ 𝜓) → (℩𝑥𝜑) = (℩𝑥𝜓)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 ∀wal 1373 = wceq 1375 {cab 2195 {csn 3646 ∪ cuni 3867 ℩cio 5252 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 713 ax-5 1473 ax-7 1474 ax-gen 1475 ax-ie1 1519 ax-ie2 1520 ax-8 1530 ax-10 1531 ax-11 1532 ax-i12 1533 ax-bndl 1535 ax-4 1536 ax-17 1552 ax-i9 1556 ax-ial 1560 ax-i5r 1561 ax-ext 2191 |
| This theorem depends on definitions: df-bi 117 df-tru 1378 df-nf 1487 df-sb 1789 df-clab 2196 df-cleq 2202 df-clel 2205 df-nfc 2341 df-rex 2494 df-uni 3868 df-iota 5254 |
| This theorem is referenced by: iotabidv 5277 iotabii 5278 iotaexel 5932 eusvobj1 5961 |
| Copyright terms: Public domain | W3C validator |