| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > iotabi | GIF version | ||
| Description: Equivalence theorem for descriptions. (Contributed by Andrew Salmon, 30-Jun-2011.) |
| Ref | Expression |
|---|---|
| iotabi | ⊢ (∀𝑥(𝜑 ↔ 𝜓) → (℩𝑥𝜑) = (℩𝑥𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | abbi 2343 | . . . . . 6 ⊢ (∀𝑥(𝜑 ↔ 𝜓) ↔ {𝑥 ∣ 𝜑} = {𝑥 ∣ 𝜓}) | |
| 2 | 1 | biimpi 120 | . . . . 5 ⊢ (∀𝑥(𝜑 ↔ 𝜓) → {𝑥 ∣ 𝜑} = {𝑥 ∣ 𝜓}) |
| 3 | 2 | eqeq1d 2238 | . . . 4 ⊢ (∀𝑥(𝜑 ↔ 𝜓) → ({𝑥 ∣ 𝜑} = {𝑧} ↔ {𝑥 ∣ 𝜓} = {𝑧})) |
| 4 | 3 | abbidv 2347 | . . 3 ⊢ (∀𝑥(𝜑 ↔ 𝜓) → {𝑧 ∣ {𝑥 ∣ 𝜑} = {𝑧}} = {𝑧 ∣ {𝑥 ∣ 𝜓} = {𝑧}}) |
| 5 | 4 | unieqd 3899 | . 2 ⊢ (∀𝑥(𝜑 ↔ 𝜓) → ∪ {𝑧 ∣ {𝑥 ∣ 𝜑} = {𝑧}} = ∪ {𝑧 ∣ {𝑥 ∣ 𝜓} = {𝑧}}) |
| 6 | df-iota 5278 | . 2 ⊢ (℩𝑥𝜑) = ∪ {𝑧 ∣ {𝑥 ∣ 𝜑} = {𝑧}} | |
| 7 | df-iota 5278 | . 2 ⊢ (℩𝑥𝜓) = ∪ {𝑧 ∣ {𝑥 ∣ 𝜓} = {𝑧}} | |
| 8 | 5, 6, 7 | 3eqtr4g 2287 | 1 ⊢ (∀𝑥(𝜑 ↔ 𝜓) → (℩𝑥𝜑) = (℩𝑥𝜓)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 ∀wal 1393 = wceq 1395 {cab 2215 {csn 3666 ∪ cuni 3888 ℩cio 5276 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-rex 2514 df-uni 3889 df-iota 5278 |
| This theorem is referenced by: iotabidv 5301 iotabii 5302 iotaexel 5965 eusvobj1 5994 |
| Copyright terms: Public domain | W3C validator |