![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > iotabi | GIF version |
Description: Equivalence theorem for descriptions. (Contributed by Andrew Salmon, 30-Jun-2011.) |
Ref | Expression |
---|---|
iotabi | ⊢ (∀𝑥(𝜑 ↔ 𝜓) → (℩𝑥𝜑) = (℩𝑥𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | abbi 2307 | . . . . . 6 ⊢ (∀𝑥(𝜑 ↔ 𝜓) ↔ {𝑥 ∣ 𝜑} = {𝑥 ∣ 𝜓}) | |
2 | 1 | biimpi 120 | . . . . 5 ⊢ (∀𝑥(𝜑 ↔ 𝜓) → {𝑥 ∣ 𝜑} = {𝑥 ∣ 𝜓}) |
3 | 2 | eqeq1d 2202 | . . . 4 ⊢ (∀𝑥(𝜑 ↔ 𝜓) → ({𝑥 ∣ 𝜑} = {𝑧} ↔ {𝑥 ∣ 𝜓} = {𝑧})) |
4 | 3 | abbidv 2311 | . . 3 ⊢ (∀𝑥(𝜑 ↔ 𝜓) → {𝑧 ∣ {𝑥 ∣ 𝜑} = {𝑧}} = {𝑧 ∣ {𝑥 ∣ 𝜓} = {𝑧}}) |
5 | 4 | unieqd 3846 | . 2 ⊢ (∀𝑥(𝜑 ↔ 𝜓) → ∪ {𝑧 ∣ {𝑥 ∣ 𝜑} = {𝑧}} = ∪ {𝑧 ∣ {𝑥 ∣ 𝜓} = {𝑧}}) |
6 | df-iota 5215 | . 2 ⊢ (℩𝑥𝜑) = ∪ {𝑧 ∣ {𝑥 ∣ 𝜑} = {𝑧}} | |
7 | df-iota 5215 | . 2 ⊢ (℩𝑥𝜓) = ∪ {𝑧 ∣ {𝑥 ∣ 𝜓} = {𝑧}} | |
8 | 5, 6, 7 | 3eqtr4g 2251 | 1 ⊢ (∀𝑥(𝜑 ↔ 𝜓) → (℩𝑥𝜑) = (℩𝑥𝜓)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 105 ∀wal 1362 = wceq 1364 {cab 2179 {csn 3618 ∪ cuni 3835 ℩cio 5213 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-rex 2478 df-uni 3836 df-iota 5215 |
This theorem is referenced by: iotabidv 5237 iotabii 5238 iotaexel 5878 eusvobj1 5905 |
Copyright terms: Public domain | W3C validator |