ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iotabi GIF version

Theorem iotabi 4976
Description: Equivalence theorem for descriptions. (Contributed by Andrew Salmon, 30-Jun-2011.)
Assertion
Ref Expression
iotabi (∀𝑥(𝜑𝜓) → (℩𝑥𝜑) = (℩𝑥𝜓))

Proof of Theorem iotabi
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 abbi 2201 . . . . . 6 (∀𝑥(𝜑𝜓) ↔ {𝑥𝜑} = {𝑥𝜓})
21biimpi 118 . . . . 5 (∀𝑥(𝜑𝜓) → {𝑥𝜑} = {𝑥𝜓})
32eqeq1d 2096 . . . 4 (∀𝑥(𝜑𝜓) → ({𝑥𝜑} = {𝑧} ↔ {𝑥𝜓} = {𝑧}))
43abbidv 2205 . . 3 (∀𝑥(𝜑𝜓) → {𝑧 ∣ {𝑥𝜑} = {𝑧}} = {𝑧 ∣ {𝑥𝜓} = {𝑧}})
54unieqd 3659 . 2 (∀𝑥(𝜑𝜓) → {𝑧 ∣ {𝑥𝜑} = {𝑧}} = {𝑧 ∣ {𝑥𝜓} = {𝑧}})
6 df-iota 4967 . 2 (℩𝑥𝜑) = {𝑧 ∣ {𝑥𝜑} = {𝑧}}
7 df-iota 4967 . 2 (℩𝑥𝜓) = {𝑧 ∣ {𝑥𝜓} = {𝑧}}
85, 6, 73eqtr4g 2145 1 (∀𝑥(𝜑𝜓) → (℩𝑥𝜑) = (℩𝑥𝜓))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 103  wal 1287   = wceq 1289  {cab 2074  {csn 3441   cuni 3648  cio 4965
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 665  ax-5 1381  ax-7 1382  ax-gen 1383  ax-ie1 1427  ax-ie2 1428  ax-8 1440  ax-10 1441  ax-11 1442  ax-i12 1443  ax-bndl 1444  ax-4 1445  ax-17 1464  ax-i9 1468  ax-ial 1472  ax-i5r 1473  ax-ext 2070
This theorem depends on definitions:  df-bi 115  df-tru 1292  df-nf 1395  df-sb 1693  df-clab 2075  df-cleq 2081  df-clel 2084  df-nfc 2217  df-rex 2365  df-uni 3649  df-iota 4967
This theorem is referenced by:  iotabidv  4988  iotabii  4989  eusvobj1  5621
  Copyright terms: Public domain W3C validator