ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  zfz1iso Unicode version

Theorem zfz1iso 10823
Description: A finite set of integers has an order isomorphism to a one-based finite sequence. (Contributed by Jim Kingdon, 3-Sep-2022.)
Assertion
Ref Expression
zfz1iso  |-  ( ( A  C_  ZZ  /\  A  e.  Fin )  ->  E. f 
f  Isom  <  ,  <  ( ( 1 ... ( `  A ) ) ,  A ) )
Distinct variable group:    A, f

Proof of Theorem zfz1iso
Dummy variables  n  x  a  k  m  w  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isfi 6763 . . . 4  |-  ( A  e.  Fin  <->  E. n  e.  om  A  ~~  n
)
21biimpi 120 . . 3  |-  ( A  e.  Fin  ->  E. n  e.  om  A  ~~  n
)
32adantl 277 . 2  |-  ( ( A  C_  ZZ  /\  A  e.  Fin )  ->  E. n  e.  om  A  ~~  n
)
4 simprlr 538 . . . 4  |-  ( ( n  e.  om  /\  ( ( A  C_  ZZ  /\  A  e.  Fin )  /\  A  ~~  n
) )  ->  A  e.  Fin )
5 breq2 4009 . . . . . . . . 9  |-  ( w  =  (/)  ->  ( x 
~~  w  <->  x  ~~  (/) ) )
65anbi2d 464 . . . . . . . 8  |-  ( w  =  (/)  ->  ( ( ( x  C_  ZZ  /\  x  e.  Fin )  /\  x  ~~  w )  <-> 
( ( x  C_  ZZ  /\  x  e.  Fin )  /\  x  ~~  (/) ) ) )
76imbi1d 231 . . . . . . 7  |-  ( w  =  (/)  ->  ( ( ( ( x  C_  ZZ  /\  x  e.  Fin )  /\  x  ~~  w
)  ->  E. f 
f  Isom  <  ,  <  ( ( 1 ... ( `  x ) ) ,  x ) )  <->  ( (
( x  C_  ZZ  /\  x  e.  Fin )  /\  x  ~~  (/) )  ->  E. f  f  Isom  <  ,  <  ( ( 1 ... ( `  x
) ) ,  x
) ) ) )
87albidv 1824 . . . . . 6  |-  ( w  =  (/)  ->  ( A. x ( ( ( x  C_  ZZ  /\  x  e.  Fin )  /\  x  ~~  w )  ->  E. f 
f  Isom  <  ,  <  ( ( 1 ... ( `  x ) ) ,  x ) )  <->  A. x
( ( ( x 
C_  ZZ  /\  x  e.  Fin )  /\  x  ~~  (/) )  ->  E. f 
f  Isom  <  ,  <  ( ( 1 ... ( `  x ) ) ,  x ) ) ) )
9 breq2 4009 . . . . . . . . 9  |-  ( w  =  k  ->  (
x  ~~  w  <->  x  ~~  k ) )
109anbi2d 464 . . . . . . . 8  |-  ( w  =  k  ->  (
( ( x  C_  ZZ  /\  x  e.  Fin )  /\  x  ~~  w
)  <->  ( ( x 
C_  ZZ  /\  x  e.  Fin )  /\  x  ~~  k ) ) )
1110imbi1d 231 . . . . . . 7  |-  ( w  =  k  ->  (
( ( ( x 
C_  ZZ  /\  x  e.  Fin )  /\  x  ~~  w )  ->  E. f 
f  Isom  <  ,  <  ( ( 1 ... ( `  x ) ) ,  x ) )  <->  ( (
( x  C_  ZZ  /\  x  e.  Fin )  /\  x  ~~  k )  ->  E. f  f  Isom  <  ,  <  ( ( 1 ... ( `  x
) ) ,  x
) ) ) )
1211albidv 1824 . . . . . 6  |-  ( w  =  k  ->  ( A. x ( ( ( x  C_  ZZ  /\  x  e.  Fin )  /\  x  ~~  w )  ->  E. f 
f  Isom  <  ,  <  ( ( 1 ... ( `  x ) ) ,  x ) )  <->  A. x
( ( ( x 
C_  ZZ  /\  x  e.  Fin )  /\  x  ~~  k )  ->  E. f 
f  Isom  <  ,  <  ( ( 1 ... ( `  x ) ) ,  x ) ) ) )
13 breq2 4009 . . . . . . . . 9  |-  ( w  =  suc  k  -> 
( x  ~~  w  <->  x 
~~  suc  k )
)
1413anbi2d 464 . . . . . . . 8  |-  ( w  =  suc  k  -> 
( ( ( x 
C_  ZZ  /\  x  e.  Fin )  /\  x  ~~  w )  <->  ( (
x  C_  ZZ  /\  x  e.  Fin )  /\  x  ~~  suc  k ) ) )
1514imbi1d 231 . . . . . . 7  |-  ( w  =  suc  k  -> 
( ( ( ( x  C_  ZZ  /\  x  e.  Fin )  /\  x  ~~  w )  ->  E. f 
f  Isom  <  ,  <  ( ( 1 ... ( `  x ) ) ,  x ) )  <->  ( (
( x  C_  ZZ  /\  x  e.  Fin )  /\  x  ~~  suc  k
)  ->  E. f 
f  Isom  <  ,  <  ( ( 1 ... ( `  x ) ) ,  x ) ) ) )
1615albidv 1824 . . . . . 6  |-  ( w  =  suc  k  -> 
( A. x ( ( ( x  C_  ZZ  /\  x  e.  Fin )  /\  x  ~~  w
)  ->  E. f 
f  Isom  <  ,  <  ( ( 1 ... ( `  x ) ) ,  x ) )  <->  A. x
( ( ( x 
C_  ZZ  /\  x  e.  Fin )  /\  x  ~~  suc  k )  ->  E. f  f  Isom  <  ,  <  ( ( 1 ... ( `  x
) ) ,  x
) ) ) )
17 breq2 4009 . . . . . . . . 9  |-  ( w  =  n  ->  (
x  ~~  w  <->  x  ~~  n ) )
1817anbi2d 464 . . . . . . . 8  |-  ( w  =  n  ->  (
( ( x  C_  ZZ  /\  x  e.  Fin )  /\  x  ~~  w
)  <->  ( ( x 
C_  ZZ  /\  x  e.  Fin )  /\  x  ~~  n ) ) )
1918imbi1d 231 . . . . . . 7  |-  ( w  =  n  ->  (
( ( ( x 
C_  ZZ  /\  x  e.  Fin )  /\  x  ~~  w )  ->  E. f 
f  Isom  <  ,  <  ( ( 1 ... ( `  x ) ) ,  x ) )  <->  ( (
( x  C_  ZZ  /\  x  e.  Fin )  /\  x  ~~  n )  ->  E. f  f  Isom  <  ,  <  ( ( 1 ... ( `  x
) ) ,  x
) ) ) )
2019albidv 1824 . . . . . 6  |-  ( w  =  n  ->  ( A. x ( ( ( x  C_  ZZ  /\  x  e.  Fin )  /\  x  ~~  w )  ->  E. f 
f  Isom  <  ,  <  ( ( 1 ... ( `  x ) ) ,  x ) )  <->  A. x
( ( ( x 
C_  ZZ  /\  x  e.  Fin )  /\  x  ~~  n )  ->  E. f 
f  Isom  <  ,  <  ( ( 1 ... ( `  x ) ) ,  x ) ) ) )
21 iso0 5820 . . . . . . . . . 10  |-  (/)  Isom  <  ,  <  ( (/) ,  (/) )
22 en0 6797 . . . . . . . . . . . . . . . . 17  |-  ( x 
~~  (/)  <->  x  =  (/) )
2322biimpi 120 . . . . . . . . . . . . . . . 16  |-  ( x 
~~  (/)  ->  x  =  (/) )
2423fveq2d 5521 . . . . . . . . . . . . . . 15  |-  ( x 
~~  (/)  ->  ( `  x
)  =  ( `  (/) ) )
25 hash0 10778 . . . . . . . . . . . . . . 15  |-  ( `  (/) )  =  0
2624, 25eqtrdi 2226 . . . . . . . . . . . . . 14  |-  ( x 
~~  (/)  ->  ( `  x
)  =  0 )
2726oveq2d 5893 . . . . . . . . . . . . 13  |-  ( x 
~~  (/)  ->  ( 1 ... ( `  x
) )  =  ( 1 ... 0 ) )
28 fz10 10048 . . . . . . . . . . . . 13  |-  ( 1 ... 0 )  =  (/)
2927, 28eqtrdi 2226 . . . . . . . . . . . 12  |-  ( x 
~~  (/)  ->  ( 1 ... ( `  x
) )  =  (/) )
30 isoeq4 5807 . . . . . . . . . . . 12  |-  ( ( 1 ... ( `  x
) )  =  (/)  ->  ( (/)  Isom  <  ,  <  ( ( 1 ... ( `  x )
) ,  x )  <->  (/) 
Isom  <  ,  <  ( (/)
,  x ) ) )
3129, 30syl 14 . . . . . . . . . . 11  |-  ( x 
~~  (/)  ->  ( (/)  Isom  <  ,  <  ( ( 1 ... ( `  x
) ) ,  x
)  <->  (/)  Isom  <  ,  <  (
(/) ,  x )
) )
32 isoeq5 5808 . . . . . . . . . . . 12  |-  ( x  =  (/)  ->  ( (/)  Isom 
<  ,  <  ( (/) ,  x )  <->  (/)  Isom  <  ,  <  ( (/) ,  (/) ) ) )
3323, 32syl 14 . . . . . . . . . . 11  |-  ( x 
~~  (/)  ->  ( (/)  Isom  <  ,  <  ( (/) ,  x
)  <->  (/)  Isom  <  ,  <  (
(/) ,  (/) ) ) )
3431, 33bitrd 188 . . . . . . . . . 10  |-  ( x 
~~  (/)  ->  ( (/)  Isom  <  ,  <  ( ( 1 ... ( `  x
) ) ,  x
)  <->  (/)  Isom  <  ,  <  (
(/) ,  (/) ) ) )
3521, 34mpbiri 168 . . . . . . . . 9  |-  ( x 
~~  (/)  ->  (/)  Isom  <  ,  <  ( ( 1 ... ( `  x
) ) ,  x
) )
36 0ex 4132 . . . . . . . . . 10  |-  (/)  e.  _V
37 isoeq1 5804 . . . . . . . . . 10  |-  ( f  =  (/)  ->  ( f 
Isom  <  ,  <  (
( 1 ... ( `  x ) ) ,  x )  <->  (/)  Isom  <  ,  <  ( ( 1 ... ( `  x
) ) ,  x
) ) )
3836, 37spcev 2834 . . . . . . . . 9  |-  ( (/)  Isom 
<  ,  <  ( ( 1 ... ( `  x
) ) ,  x
)  ->  E. f 
f  Isom  <  ,  <  ( ( 1 ... ( `  x ) ) ,  x ) )
3935, 38syl 14 . . . . . . . 8  |-  ( x 
~~  (/)  ->  E. f 
f  Isom  <  ,  <  ( ( 1 ... ( `  x ) ) ,  x ) )
4039adantl 277 . . . . . . 7  |-  ( ( ( x  C_  ZZ  /\  x  e.  Fin )  /\  x  ~~  (/) )  ->  E. f  f  Isom  <  ,  <  ( ( 1 ... ( `  x
) ) ,  x
) )
4140ax-gen 1449 . . . . . 6  |-  A. x
( ( ( x 
C_  ZZ  /\  x  e.  Fin )  /\  x  ~~  (/) )  ->  E. f 
f  Isom  <  ,  <  ( ( 1 ... ( `  x ) ) ,  x ) )
42 sseq1 3180 . . . . . . . . . . 11  |-  ( a  =  x  ->  (
a  C_  ZZ  <->  x  C_  ZZ ) )
43 eleq1 2240 . . . . . . . . . . 11  |-  ( a  =  x  ->  (
a  e.  Fin  <->  x  e.  Fin ) )
4442, 43anbi12d 473 . . . . . . . . . 10  |-  ( a  =  x  ->  (
( a  C_  ZZ  /\  a  e.  Fin )  <->  ( x  C_  ZZ  /\  x  e.  Fin ) ) )
45 breq1 4008 . . . . . . . . . 10  |-  ( a  =  x  ->  (
a  ~~  k  <->  x  ~~  k ) )
4644, 45anbi12d 473 . . . . . . . . 9  |-  ( a  =  x  ->  (
( ( a  C_  ZZ  /\  a  e.  Fin )  /\  a  ~~  k
)  <->  ( ( x 
C_  ZZ  /\  x  e.  Fin )  /\  x  ~~  k ) ) )
47 fveq2 5517 . . . . . . . . . . . . 13  |-  ( a  =  x  ->  ( `  a )  =  ( `  x ) )
4847oveq2d 5893 . . . . . . . . . . . 12  |-  ( a  =  x  ->  (
1 ... ( `  a
) )  =  ( 1 ... ( `  x
) ) )
49 isoeq4 5807 . . . . . . . . . . . 12  |-  ( ( 1 ... ( `  a
) )  =  ( 1 ... ( `  x
) )  ->  (
f  Isom  <  ,  <  ( ( 1 ... ( `  a ) ) ,  a )  <->  f  Isom  <  ,  <  ( ( 1 ... ( `  x
) ) ,  a ) ) )
5048, 49syl 14 . . . . . . . . . . 11  |-  ( a  =  x  ->  (
f  Isom  <  ,  <  ( ( 1 ... ( `  a ) ) ,  a )  <->  f  Isom  <  ,  <  ( ( 1 ... ( `  x
) ) ,  a ) ) )
51 isoeq5 5808 . . . . . . . . . . 11  |-  ( a  =  x  ->  (
f  Isom  <  ,  <  ( ( 1 ... ( `  x ) ) ,  a )  <->  f  Isom  <  ,  <  ( ( 1 ... ( `  x
) ) ,  x
) ) )
5250, 51bitrd 188 . . . . . . . . . 10  |-  ( a  =  x  ->  (
f  Isom  <  ,  <  ( ( 1 ... ( `  a ) ) ,  a )  <->  f  Isom  <  ,  <  ( ( 1 ... ( `  x
) ) ,  x
) ) )
5352exbidv 1825 . . . . . . . . 9  |-  ( a  =  x  ->  ( E. f  f  Isom  <  ,  <  ( ( 1 ... ( `  a
) ) ,  a )  <->  E. f  f  Isom  <  ,  <  ( ( 1 ... ( `  x
) ) ,  x
) ) )
5446, 53imbi12d 234 . . . . . . . 8  |-  ( a  =  x  ->  (
( ( ( a 
C_  ZZ  /\  a  e.  Fin )  /\  a  ~~  k )  ->  E. f 
f  Isom  <  ,  <  ( ( 1 ... ( `  a ) ) ,  a ) )  <->  ( (
( x  C_  ZZ  /\  x  e.  Fin )  /\  x  ~~  k )  ->  E. f  f  Isom  <  ,  <  ( ( 1 ... ( `  x
) ) ,  x
) ) ) )
5554cbvalv 1917 . . . . . . 7  |-  ( A. a ( ( ( a  C_  ZZ  /\  a  e.  Fin )  /\  a  ~~  k )  ->  E. f 
f  Isom  <  ,  <  ( ( 1 ... ( `  a ) ) ,  a ) )  <->  A. x
( ( ( x 
C_  ZZ  /\  x  e.  Fin )  /\  x  ~~  k )  ->  E. f 
f  Isom  <  ,  <  ( ( 1 ... ( `  x ) ) ,  x ) ) )
56 simprll 537 . . . . . . . . . . . . 13  |-  ( ( ( k  e.  om  /\ 
A. a ( ( ( a  C_  ZZ  /\  a  e.  Fin )  /\  a  ~~  k )  ->  E. f  f  Isom  <  ,  <  ( ( 1 ... ( `  a
) ) ,  a ) ) )  /\  ( ( x  C_  ZZ  /\  x  e.  Fin )  /\  x  ~~  suc  k ) )  ->  x  C_  ZZ )
57 zssq 9629 . . . . . . . . . . . . 13  |-  ZZ  C_  QQ
5856, 57sstrdi 3169 . . . . . . . . . . . 12  |-  ( ( ( k  e.  om  /\ 
A. a ( ( ( a  C_  ZZ  /\  a  e.  Fin )  /\  a  ~~  k )  ->  E. f  f  Isom  <  ,  <  ( ( 1 ... ( `  a
) ) ,  a ) ) )  /\  ( ( x  C_  ZZ  /\  x  e.  Fin )  /\  x  ~~  suc  k ) )  ->  x  C_  QQ )
59 simprlr 538 . . . . . . . . . . . 12  |-  ( ( ( k  e.  om  /\ 
A. a ( ( ( a  C_  ZZ  /\  a  e.  Fin )  /\  a  ~~  k )  ->  E. f  f  Isom  <  ,  <  ( ( 1 ... ( `  a
) ) ,  a ) ) )  /\  ( ( x  C_  ZZ  /\  x  e.  Fin )  /\  x  ~~  suc  k ) )  ->  x  e.  Fin )
60 vex 2742 . . . . . . . . . . . . . . . 16  |-  k  e. 
_V
61 nsuceq0g 4420 . . . . . . . . . . . . . . . 16  |-  ( k  e.  _V  ->  suc  k  =/=  (/) )
6260, 61ax-mp 5 . . . . . . . . . . . . . . 15  |-  suc  k  =/=  (/)
6362neii 2349 . . . . . . . . . . . . . 14  |-  -.  suc  k  =  (/)
64 simplrr 536 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( k  e. 
om  /\  A. a
( ( ( a 
C_  ZZ  /\  a  e.  Fin )  /\  a  ~~  k )  ->  E. f 
f  Isom  <  ,  <  ( ( 1 ... ( `  a ) ) ,  a ) ) )  /\  ( ( x 
C_  ZZ  /\  x  e.  Fin )  /\  x  ~~  suc  k ) )  /\  x  =  (/) )  ->  x  ~~  suc  k )
6564ensymd 6785 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( k  e. 
om  /\  A. a
( ( ( a 
C_  ZZ  /\  a  e.  Fin )  /\  a  ~~  k )  ->  E. f 
f  Isom  <  ,  <  ( ( 1 ... ( `  a ) ) ,  a ) ) )  /\  ( ( x 
C_  ZZ  /\  x  e.  Fin )  /\  x  ~~  suc  k ) )  /\  x  =  (/) )  ->  suc  k  ~~  x )
66 simpr 110 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( k  e. 
om  /\  A. a
( ( ( a 
C_  ZZ  /\  a  e.  Fin )  /\  a  ~~  k )  ->  E. f 
f  Isom  <  ,  <  ( ( 1 ... ( `  a ) ) ,  a ) ) )  /\  ( ( x 
C_  ZZ  /\  x  e.  Fin )  /\  x  ~~  suc  k ) )  /\  x  =  (/) )  ->  x  =  (/) )
6765, 66breqtrd 4031 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( k  e. 
om  /\  A. a
( ( ( a 
C_  ZZ  /\  a  e.  Fin )  /\  a  ~~  k )  ->  E. f 
f  Isom  <  ,  <  ( ( 1 ... ( `  a ) ) ,  a ) ) )  /\  ( ( x 
C_  ZZ  /\  x  e.  Fin )  /\  x  ~~  suc  k ) )  /\  x  =  (/) )  ->  suc  k  ~~  (/) )
68 en0 6797 . . . . . . . . . . . . . . . 16  |-  ( suc  k  ~~  (/)  <->  suc  k  =  (/) )
6967, 68sylib 122 . . . . . . . . . . . . . . 15  |-  ( ( ( ( k  e. 
om  /\  A. a
( ( ( a 
C_  ZZ  /\  a  e.  Fin )  /\  a  ~~  k )  ->  E. f 
f  Isom  <  ,  <  ( ( 1 ... ( `  a ) ) ,  a ) ) )  /\  ( ( x 
C_  ZZ  /\  x  e.  Fin )  /\  x  ~~  suc  k ) )  /\  x  =  (/) )  ->  suc  k  =  (/) )
7069ex 115 . . . . . . . . . . . . . 14  |-  ( ( ( k  e.  om  /\ 
A. a ( ( ( a  C_  ZZ  /\  a  e.  Fin )  /\  a  ~~  k )  ->  E. f  f  Isom  <  ,  <  ( ( 1 ... ( `  a
) ) ,  a ) ) )  /\  ( ( x  C_  ZZ  /\  x  e.  Fin )  /\  x  ~~  suc  k ) )  -> 
( x  =  (/)  ->  suc  k  =  (/) ) )
7163, 70mtoi 664 . . . . . . . . . . . . 13  |-  ( ( ( k  e.  om  /\ 
A. a ( ( ( a  C_  ZZ  /\  a  e.  Fin )  /\  a  ~~  k )  ->  E. f  f  Isom  <  ,  <  ( ( 1 ... ( `  a
) ) ,  a ) ) )  /\  ( ( x  C_  ZZ  /\  x  e.  Fin )  /\  x  ~~  suc  k ) )  ->  -.  x  =  (/) )
7271neqned 2354 . . . . . . . . . . . 12  |-  ( ( ( k  e.  om  /\ 
A. a ( ( ( a  C_  ZZ  /\  a  e.  Fin )  /\  a  ~~  k )  ->  E. f  f  Isom  <  ,  <  ( ( 1 ... ( `  a
) ) ,  a ) ) )  /\  ( ( x  C_  ZZ  /\  x  e.  Fin )  /\  x  ~~  suc  k ) )  ->  x  =/=  (/) )
73 fimaxq 10809 . . . . . . . . . . . 12  |-  ( ( x  C_  QQ  /\  x  e.  Fin  /\  x  =/=  (/) )  ->  E. m  e.  x  A. z  e.  x  z  <_  m )
7458, 59, 72, 73syl3anc 1238 . . . . . . . . . . 11  |-  ( ( ( k  e.  om  /\ 
A. a ( ( ( a  C_  ZZ  /\  a  e.  Fin )  /\  a  ~~  k )  ->  E. f  f  Isom  <  ,  <  ( ( 1 ... ( `  a
) ) ,  a ) ) )  /\  ( ( x  C_  ZZ  /\  x  e.  Fin )  /\  x  ~~  suc  k ) )  ->  E. m  e.  x  A. z  e.  x  z  <_  m )
75 simplll 533 . . . . . . . . . . . 12  |-  ( ( ( ( k  e. 
om  /\  A. a
( ( ( a 
C_  ZZ  /\  a  e.  Fin )  /\  a  ~~  k )  ->  E. f 
f  Isom  <  ,  <  ( ( 1 ... ( `  a ) ) ,  a ) ) )  /\  ( ( x 
C_  ZZ  /\  x  e.  Fin )  /\  x  ~~  suc  k ) )  /\  ( m  e.  x  /\  A. z  e.  x  z  <_  m ) )  ->  k  e.  om )
76 simpllr 534 . . . . . . . . . . . 12  |-  ( ( ( ( k  e. 
om  /\  A. a
( ( ( a 
C_  ZZ  /\  a  e.  Fin )  /\  a  ~~  k )  ->  E. f 
f  Isom  <  ,  <  ( ( 1 ... ( `  a ) ) ,  a ) ) )  /\  ( ( x 
C_  ZZ  /\  x  e.  Fin )  /\  x  ~~  suc  k ) )  /\  ( m  e.  x  /\  A. z  e.  x  z  <_  m ) )  ->  A. a
( ( ( a 
C_  ZZ  /\  a  e.  Fin )  /\  a  ~~  k )  ->  E. f 
f  Isom  <  ,  <  ( ( 1 ... ( `  a ) ) ,  a ) ) )
7756adantr 276 . . . . . . . . . . . 12  |-  ( ( ( ( k  e. 
om  /\  A. a
( ( ( a 
C_  ZZ  /\  a  e.  Fin )  /\  a  ~~  k )  ->  E. f 
f  Isom  <  ,  <  ( ( 1 ... ( `  a ) ) ,  a ) ) )  /\  ( ( x 
C_  ZZ  /\  x  e.  Fin )  /\  x  ~~  suc  k ) )  /\  ( m  e.  x  /\  A. z  e.  x  z  <_  m ) )  ->  x  C_  ZZ )
7859adantr 276 . . . . . . . . . . . 12  |-  ( ( ( ( k  e. 
om  /\  A. a
( ( ( a 
C_  ZZ  /\  a  e.  Fin )  /\  a  ~~  k )  ->  E. f 
f  Isom  <  ,  <  ( ( 1 ... ( `  a ) ) ,  a ) ) )  /\  ( ( x 
C_  ZZ  /\  x  e.  Fin )  /\  x  ~~  suc  k ) )  /\  ( m  e.  x  /\  A. z  e.  x  z  <_  m ) )  ->  x  e.  Fin )
79 simplrr 536 . . . . . . . . . . . 12  |-  ( ( ( ( k  e. 
om  /\  A. a
( ( ( a 
C_  ZZ  /\  a  e.  Fin )  /\  a  ~~  k )  ->  E. f 
f  Isom  <  ,  <  ( ( 1 ... ( `  a ) ) ,  a ) ) )  /\  ( ( x 
C_  ZZ  /\  x  e.  Fin )  /\  x  ~~  suc  k ) )  /\  ( m  e.  x  /\  A. z  e.  x  z  <_  m ) )  ->  x  ~~  suc  k )
80 simprl 529 . . . . . . . . . . . 12  |-  ( ( ( ( k  e. 
om  /\  A. a
( ( ( a 
C_  ZZ  /\  a  e.  Fin )  /\  a  ~~  k )  ->  E. f 
f  Isom  <  ,  <  ( ( 1 ... ( `  a ) ) ,  a ) ) )  /\  ( ( x 
C_  ZZ  /\  x  e.  Fin )  /\  x  ~~  suc  k ) )  /\  ( m  e.  x  /\  A. z  e.  x  z  <_  m ) )  ->  m  e.  x )
81 simprr 531 . . . . . . . . . . . 12  |-  ( ( ( ( k  e. 
om  /\  A. a
( ( ( a 
C_  ZZ  /\  a  e.  Fin )  /\  a  ~~  k )  ->  E. f 
f  Isom  <  ,  <  ( ( 1 ... ( `  a ) ) ,  a ) ) )  /\  ( ( x 
C_  ZZ  /\  x  e.  Fin )  /\  x  ~~  suc  k ) )  /\  ( m  e.  x  /\  A. z  e.  x  z  <_  m ) )  ->  A. z  e.  x  z  <_  m )
8275, 76, 77, 78, 79, 80, 81zfz1isolem1 10822 . . . . . . . . . . 11  |-  ( ( ( ( k  e. 
om  /\  A. a
( ( ( a 
C_  ZZ  /\  a  e.  Fin )  /\  a  ~~  k )  ->  E. f 
f  Isom  <  ,  <  ( ( 1 ... ( `  a ) ) ,  a ) ) )  /\  ( ( x 
C_  ZZ  /\  x  e.  Fin )  /\  x  ~~  suc  k ) )  /\  ( m  e.  x  /\  A. z  e.  x  z  <_  m ) )  ->  E. f 
f  Isom  <  ,  <  ( ( 1 ... ( `  x ) ) ,  x ) )
8374, 82rexlimddv 2599 . . . . . . . . . 10  |-  ( ( ( k  e.  om  /\ 
A. a ( ( ( a  C_  ZZ  /\  a  e.  Fin )  /\  a  ~~  k )  ->  E. f  f  Isom  <  ,  <  ( ( 1 ... ( `  a
) ) ,  a ) ) )  /\  ( ( x  C_  ZZ  /\  x  e.  Fin )  /\  x  ~~  suc  k ) )  ->  E. f  f  Isom  <  ,  <  ( ( 1 ... ( `  x
) ) ,  x
) )
8483ex 115 . . . . . . . . 9  |-  ( ( k  e.  om  /\  A. a ( ( ( a  C_  ZZ  /\  a  e.  Fin )  /\  a  ~~  k )  ->  E. f 
f  Isom  <  ,  <  ( ( 1 ... ( `  a ) ) ,  a ) ) )  ->  ( ( ( x  C_  ZZ  /\  x  e.  Fin )  /\  x  ~~  suc  k )  ->  E. f  f  Isom  <  ,  <  ( ( 1 ... ( `  x
) ) ,  x
) ) )
8584alrimiv 1874 . . . . . . . 8  |-  ( ( k  e.  om  /\  A. a ( ( ( a  C_  ZZ  /\  a  e.  Fin )  /\  a  ~~  k )  ->  E. f 
f  Isom  <  ,  <  ( ( 1 ... ( `  a ) ) ,  a ) ) )  ->  A. x ( ( ( x  C_  ZZ  /\  x  e.  Fin )  /\  x  ~~  suc  k
)  ->  E. f 
f  Isom  <  ,  <  ( ( 1 ... ( `  x ) ) ,  x ) ) )
8685ex 115 . . . . . . 7  |-  ( k  e.  om  ->  ( A. a ( ( ( a  C_  ZZ  /\  a  e.  Fin )  /\  a  ~~  k )  ->  E. f 
f  Isom  <  ,  <  ( ( 1 ... ( `  a ) ) ,  a ) )  ->  A. x ( ( ( x  C_  ZZ  /\  x  e.  Fin )  /\  x  ~~  suc  k )  ->  E. f  f  Isom  <  ,  <  ( ( 1 ... ( `  x
) ) ,  x
) ) ) )
8755, 86biimtrrid 153 . . . . . 6  |-  ( k  e.  om  ->  ( A. x ( ( ( x  C_  ZZ  /\  x  e.  Fin )  /\  x  ~~  k )  ->  E. f 
f  Isom  <  ,  <  ( ( 1 ... ( `  x ) ) ,  x ) )  ->  A. x ( ( ( x  C_  ZZ  /\  x  e.  Fin )  /\  x  ~~  suc  k )  ->  E. f  f  Isom  <  ,  <  ( ( 1 ... ( `  x
) ) ,  x
) ) ) )
888, 12, 16, 20, 41, 87finds 4601 . . . . 5  |-  ( n  e.  om  ->  A. x
( ( ( x 
C_  ZZ  /\  x  e.  Fin )  /\  x  ~~  n )  ->  E. f 
f  Isom  <  ,  <  ( ( 1 ... ( `  x ) ) ,  x ) ) )
8988adantr 276 . . . 4  |-  ( ( n  e.  om  /\  ( ( A  C_  ZZ  /\  A  e.  Fin )  /\  A  ~~  n
) )  ->  A. x
( ( ( x 
C_  ZZ  /\  x  e.  Fin )  /\  x  ~~  n )  ->  E. f 
f  Isom  <  ,  <  ( ( 1 ... ( `  x ) ) ,  x ) ) )
90 simpr 110 . . . 4  |-  ( ( n  e.  om  /\  ( ( A  C_  ZZ  /\  A  e.  Fin )  /\  A  ~~  n
) )  ->  (
( A  C_  ZZ  /\  A  e.  Fin )  /\  A  ~~  n ) )
91 sseq1 3180 . . . . . . . 8  |-  ( x  =  A  ->  (
x  C_  ZZ  <->  A  C_  ZZ ) )
92 eleq1 2240 . . . . . . . 8  |-  ( x  =  A  ->  (
x  e.  Fin  <->  A  e.  Fin ) )
9391, 92anbi12d 473 . . . . . . 7  |-  ( x  =  A  ->  (
( x  C_  ZZ  /\  x  e.  Fin )  <->  ( A  C_  ZZ  /\  A  e.  Fin ) ) )
94 breq1 4008 . . . . . . 7  |-  ( x  =  A  ->  (
x  ~~  n  <->  A  ~~  n ) )
9593, 94anbi12d 473 . . . . . 6  |-  ( x  =  A  ->  (
( ( x  C_  ZZ  /\  x  e.  Fin )  /\  x  ~~  n
)  <->  ( ( A 
C_  ZZ  /\  A  e. 
Fin )  /\  A  ~~  n ) ) )
96 fveq2 5517 . . . . . . . . . 10  |-  ( x  =  A  ->  ( `  x )  =  ( `  A ) )
9796oveq2d 5893 . . . . . . . . 9  |-  ( x  =  A  ->  (
1 ... ( `  x
) )  =  ( 1 ... ( `  A
) ) )
98 isoeq4 5807 . . . . . . . . 9  |-  ( ( 1 ... ( `  x
) )  =  ( 1 ... ( `  A
) )  ->  (
f  Isom  <  ,  <  ( ( 1 ... ( `  x ) ) ,  x )  <->  f  Isom  <  ,  <  ( ( 1 ... ( `  A
) ) ,  x
) ) )
9997, 98syl 14 . . . . . . . 8  |-  ( x  =  A  ->  (
f  Isom  <  ,  <  ( ( 1 ... ( `  x ) ) ,  x )  <->  f  Isom  <  ,  <  ( ( 1 ... ( `  A
) ) ,  x
) ) )
100 isoeq5 5808 . . . . . . . 8  |-  ( x  =  A  ->  (
f  Isom  <  ,  <  ( ( 1 ... ( `  A ) ) ,  x )  <->  f  Isom  <  ,  <  ( ( 1 ... ( `  A
) ) ,  A
) ) )
10199, 100bitrd 188 . . . . . . 7  |-  ( x  =  A  ->  (
f  Isom  <  ,  <  ( ( 1 ... ( `  x ) ) ,  x )  <->  f  Isom  <  ,  <  ( ( 1 ... ( `  A
) ) ,  A
) ) )
102101exbidv 1825 . . . . . 6  |-  ( x  =  A  ->  ( E. f  f  Isom  <  ,  <  ( ( 1 ... ( `  x
) ) ,  x
)  <->  E. f  f  Isom  <  ,  <  ( ( 1 ... ( `  A
) ) ,  A
) ) )
10395, 102imbi12d 234 . . . . 5  |-  ( x  =  A  ->  (
( ( ( x 
C_  ZZ  /\  x  e.  Fin )  /\  x  ~~  n )  ->  E. f 
f  Isom  <  ,  <  ( ( 1 ... ( `  x ) ) ,  x ) )  <->  ( (
( A  C_  ZZ  /\  A  e.  Fin )  /\  A  ~~  n )  ->  E. f  f  Isom  <  ,  <  ( ( 1 ... ( `  A
) ) ,  A
) ) ) )
104103spcgv 2826 . . . 4  |-  ( A  e.  Fin  ->  ( A. x ( ( ( x  C_  ZZ  /\  x  e.  Fin )  /\  x  ~~  n )  ->  E. f 
f  Isom  <  ,  <  ( ( 1 ... ( `  x ) ) ,  x ) )  -> 
( ( ( A 
C_  ZZ  /\  A  e. 
Fin )  /\  A  ~~  n )  ->  E. f 
f  Isom  <  ,  <  ( ( 1 ... ( `  A ) ) ,  A ) ) ) )
1054, 89, 90, 104syl3c 63 . . 3  |-  ( ( n  e.  om  /\  ( ( A  C_  ZZ  /\  A  e.  Fin )  /\  A  ~~  n
) )  ->  E. f 
f  Isom  <  ,  <  ( ( 1 ... ( `  A ) ) ,  A ) )
106105an12s 565 . 2  |-  ( ( ( A  C_  ZZ  /\  A  e.  Fin )  /\  ( n  e.  om  /\  A  ~~  n ) )  ->  E. f 
f  Isom  <  ,  <  ( ( 1 ... ( `  A ) ) ,  A ) )
1073, 106rexlimddv 2599 1  |-  ( ( A  C_  ZZ  /\  A  e.  Fin )  ->  E. f 
f  Isom  <  ,  <  ( ( 1 ... ( `  A ) ) ,  A ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105   A.wal 1351    = wceq 1353   E.wex 1492    e. wcel 2148    =/= wne 2347   A.wral 2455   E.wrex 2456   _Vcvv 2739    C_ wss 3131   (/)c0 3424   class class class wbr 4005   suc csuc 4367   omcom 4591   ` cfv 5218    Isom wiso 5219  (class class class)co 5877    ~~ cen 6740   Fincfn 6742   0cc0 7813   1c1 7814    < clt 7994    <_ cle 7995   ZZcz 9255   QQcq 9621   ...cfz 10010  ♯chash 10757
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4120  ax-sep 4123  ax-nul 4131  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-setind 4538  ax-iinf 4589  ax-cnex 7904  ax-resscn 7905  ax-1cn 7906  ax-1re 7907  ax-icn 7908  ax-addcl 7909  ax-addrcl 7910  ax-mulcl 7911  ax-mulrcl 7912  ax-addcom 7913  ax-mulcom 7914  ax-addass 7915  ax-mulass 7916  ax-distr 7917  ax-i2m1 7918  ax-0lt1 7919  ax-1rid 7920  ax-0id 7921  ax-rnegex 7922  ax-precex 7923  ax-cnre 7924  ax-pre-ltirr 7925  ax-pre-ltwlin 7926  ax-pre-lttrn 7927  ax-pre-apti 7928  ax-pre-ltadd 7929  ax-pre-mulgt0 7930  ax-pre-mulext 7931
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2741  df-sbc 2965  df-csb 3060  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-nul 3425  df-if 3537  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-int 3847  df-iun 3890  df-br 4006  df-opab 4067  df-mpt 4068  df-tr 4104  df-id 4295  df-po 4298  df-iso 4299  df-iord 4368  df-on 4370  df-ilim 4371  df-suc 4373  df-iom 4592  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-res 4640  df-ima 4641  df-iota 5180  df-fun 5220  df-fn 5221  df-f 5222  df-f1 5223  df-fo 5224  df-f1o 5225  df-fv 5226  df-isom 5227  df-riota 5833  df-ov 5880  df-oprab 5881  df-mpo 5882  df-1st 6143  df-2nd 6144  df-recs 6308  df-irdg 6373  df-frec 6394  df-1o 6419  df-oadd 6423  df-er 6537  df-en 6743  df-dom 6744  df-fin 6745  df-pnf 7996  df-mnf 7997  df-xr 7998  df-ltxr 7999  df-le 8000  df-sub 8132  df-neg 8133  df-reap 8534  df-ap 8541  df-div 8632  df-inn 8922  df-n0 9179  df-z 9256  df-uz 9531  df-q 9622  df-rp 9656  df-fz 10011  df-ihash 10758
This theorem is referenced by:  summodclem2  11392  zsumdc  11394  prodmodclem2  11587  zproddc  11589
  Copyright terms: Public domain W3C validator