ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  zfz1iso Unicode version

Theorem zfz1iso 10988
Description: A finite set of integers has an order isomorphism to a one-based finite sequence. (Contributed by Jim Kingdon, 3-Sep-2022.)
Assertion
Ref Expression
zfz1iso  |-  ( ( A  C_  ZZ  /\  A  e.  Fin )  ->  E. f 
f  Isom  <  ,  <  ( ( 1 ... ( `  A ) ) ,  A ) )
Distinct variable group:    A, f

Proof of Theorem zfz1iso
Dummy variables  n  x  a  k  m  w  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isfi 6854 . . . 4  |-  ( A  e.  Fin  <->  E. n  e.  om  A  ~~  n
)
21biimpi 120 . . 3  |-  ( A  e.  Fin  ->  E. n  e.  om  A  ~~  n
)
32adantl 277 . 2  |-  ( ( A  C_  ZZ  /\  A  e.  Fin )  ->  E. n  e.  om  A  ~~  n
)
4 simprlr 538 . . . 4  |-  ( ( n  e.  om  /\  ( ( A  C_  ZZ  /\  A  e.  Fin )  /\  A  ~~  n
) )  ->  A  e.  Fin )
5 breq2 4049 . . . . . . . . 9  |-  ( w  =  (/)  ->  ( x 
~~  w  <->  x  ~~  (/) ) )
65anbi2d 464 . . . . . . . 8  |-  ( w  =  (/)  ->  ( ( ( x  C_  ZZ  /\  x  e.  Fin )  /\  x  ~~  w )  <-> 
( ( x  C_  ZZ  /\  x  e.  Fin )  /\  x  ~~  (/) ) ) )
76imbi1d 231 . . . . . . 7  |-  ( w  =  (/)  ->  ( ( ( ( x  C_  ZZ  /\  x  e.  Fin )  /\  x  ~~  w
)  ->  E. f 
f  Isom  <  ,  <  ( ( 1 ... ( `  x ) ) ,  x ) )  <->  ( (
( x  C_  ZZ  /\  x  e.  Fin )  /\  x  ~~  (/) )  ->  E. f  f  Isom  <  ,  <  ( ( 1 ... ( `  x
) ) ,  x
) ) ) )
87albidv 1847 . . . . . 6  |-  ( w  =  (/)  ->  ( A. x ( ( ( x  C_  ZZ  /\  x  e.  Fin )  /\  x  ~~  w )  ->  E. f 
f  Isom  <  ,  <  ( ( 1 ... ( `  x ) ) ,  x ) )  <->  A. x
( ( ( x 
C_  ZZ  /\  x  e.  Fin )  /\  x  ~~  (/) )  ->  E. f 
f  Isom  <  ,  <  ( ( 1 ... ( `  x ) ) ,  x ) ) ) )
9 breq2 4049 . . . . . . . . 9  |-  ( w  =  k  ->  (
x  ~~  w  <->  x  ~~  k ) )
109anbi2d 464 . . . . . . . 8  |-  ( w  =  k  ->  (
( ( x  C_  ZZ  /\  x  e.  Fin )  /\  x  ~~  w
)  <->  ( ( x 
C_  ZZ  /\  x  e.  Fin )  /\  x  ~~  k ) ) )
1110imbi1d 231 . . . . . . 7  |-  ( w  =  k  ->  (
( ( ( x 
C_  ZZ  /\  x  e.  Fin )  /\  x  ~~  w )  ->  E. f 
f  Isom  <  ,  <  ( ( 1 ... ( `  x ) ) ,  x ) )  <->  ( (
( x  C_  ZZ  /\  x  e.  Fin )  /\  x  ~~  k )  ->  E. f  f  Isom  <  ,  <  ( ( 1 ... ( `  x
) ) ,  x
) ) ) )
1211albidv 1847 . . . . . 6  |-  ( w  =  k  ->  ( A. x ( ( ( x  C_  ZZ  /\  x  e.  Fin )  /\  x  ~~  w )  ->  E. f 
f  Isom  <  ,  <  ( ( 1 ... ( `  x ) ) ,  x ) )  <->  A. x
( ( ( x 
C_  ZZ  /\  x  e.  Fin )  /\  x  ~~  k )  ->  E. f 
f  Isom  <  ,  <  ( ( 1 ... ( `  x ) ) ,  x ) ) ) )
13 breq2 4049 . . . . . . . . 9  |-  ( w  =  suc  k  -> 
( x  ~~  w  <->  x 
~~  suc  k )
)
1413anbi2d 464 . . . . . . . 8  |-  ( w  =  suc  k  -> 
( ( ( x 
C_  ZZ  /\  x  e.  Fin )  /\  x  ~~  w )  <->  ( (
x  C_  ZZ  /\  x  e.  Fin )  /\  x  ~~  suc  k ) ) )
1514imbi1d 231 . . . . . . 7  |-  ( w  =  suc  k  -> 
( ( ( ( x  C_  ZZ  /\  x  e.  Fin )  /\  x  ~~  w )  ->  E. f 
f  Isom  <  ,  <  ( ( 1 ... ( `  x ) ) ,  x ) )  <->  ( (
( x  C_  ZZ  /\  x  e.  Fin )  /\  x  ~~  suc  k
)  ->  E. f 
f  Isom  <  ,  <  ( ( 1 ... ( `  x ) ) ,  x ) ) ) )
1615albidv 1847 . . . . . 6  |-  ( w  =  suc  k  -> 
( A. x ( ( ( x  C_  ZZ  /\  x  e.  Fin )  /\  x  ~~  w
)  ->  E. f 
f  Isom  <  ,  <  ( ( 1 ... ( `  x ) ) ,  x ) )  <->  A. x
( ( ( x 
C_  ZZ  /\  x  e.  Fin )  /\  x  ~~  suc  k )  ->  E. f  f  Isom  <  ,  <  ( ( 1 ... ( `  x
) ) ,  x
) ) ) )
17 breq2 4049 . . . . . . . . 9  |-  ( w  =  n  ->  (
x  ~~  w  <->  x  ~~  n ) )
1817anbi2d 464 . . . . . . . 8  |-  ( w  =  n  ->  (
( ( x  C_  ZZ  /\  x  e.  Fin )  /\  x  ~~  w
)  <->  ( ( x 
C_  ZZ  /\  x  e.  Fin )  /\  x  ~~  n ) ) )
1918imbi1d 231 . . . . . . 7  |-  ( w  =  n  ->  (
( ( ( x 
C_  ZZ  /\  x  e.  Fin )  /\  x  ~~  w )  ->  E. f 
f  Isom  <  ,  <  ( ( 1 ... ( `  x ) ) ,  x ) )  <->  ( (
( x  C_  ZZ  /\  x  e.  Fin )  /\  x  ~~  n )  ->  E. f  f  Isom  <  ,  <  ( ( 1 ... ( `  x
) ) ,  x
) ) ) )
2019albidv 1847 . . . . . 6  |-  ( w  =  n  ->  ( A. x ( ( ( x  C_  ZZ  /\  x  e.  Fin )  /\  x  ~~  w )  ->  E. f 
f  Isom  <  ,  <  ( ( 1 ... ( `  x ) ) ,  x ) )  <->  A. x
( ( ( x 
C_  ZZ  /\  x  e.  Fin )  /\  x  ~~  n )  ->  E. f 
f  Isom  <  ,  <  ( ( 1 ... ( `  x ) ) ,  x ) ) ) )
21 iso0 5888 . . . . . . . . . 10  |-  (/)  Isom  <  ,  <  ( (/) ,  (/) )
22 en0 6889 . . . . . . . . . . . . . . . . 17  |-  ( x 
~~  (/)  <->  x  =  (/) )
2322biimpi 120 . . . . . . . . . . . . . . . 16  |-  ( x 
~~  (/)  ->  x  =  (/) )
2423fveq2d 5582 . . . . . . . . . . . . . . 15  |-  ( x 
~~  (/)  ->  ( `  x
)  =  ( `  (/) ) )
25 hash0 10943 . . . . . . . . . . . . . . 15  |-  ( `  (/) )  =  0
2624, 25eqtrdi 2254 . . . . . . . . . . . . . 14  |-  ( x 
~~  (/)  ->  ( `  x
)  =  0 )
2726oveq2d 5962 . . . . . . . . . . . . 13  |-  ( x 
~~  (/)  ->  ( 1 ... ( `  x
) )  =  ( 1 ... 0 ) )
28 fz10 10170 . . . . . . . . . . . . 13  |-  ( 1 ... 0 )  =  (/)
2927, 28eqtrdi 2254 . . . . . . . . . . . 12  |-  ( x 
~~  (/)  ->  ( 1 ... ( `  x
) )  =  (/) )
30 isoeq4 5875 . . . . . . . . . . . 12  |-  ( ( 1 ... ( `  x
) )  =  (/)  ->  ( (/)  Isom  <  ,  <  ( ( 1 ... ( `  x )
) ,  x )  <->  (/) 
Isom  <  ,  <  ( (/)
,  x ) ) )
3129, 30syl 14 . . . . . . . . . . 11  |-  ( x 
~~  (/)  ->  ( (/)  Isom  <  ,  <  ( ( 1 ... ( `  x
) ) ,  x
)  <->  (/)  Isom  <  ,  <  (
(/) ,  x )
) )
32 isoeq5 5876 . . . . . . . . . . . 12  |-  ( x  =  (/)  ->  ( (/)  Isom 
<  ,  <  ( (/) ,  x )  <->  (/)  Isom  <  ,  <  ( (/) ,  (/) ) ) )
3323, 32syl 14 . . . . . . . . . . 11  |-  ( x 
~~  (/)  ->  ( (/)  Isom  <  ,  <  ( (/) ,  x
)  <->  (/)  Isom  <  ,  <  (
(/) ,  (/) ) ) )
3431, 33bitrd 188 . . . . . . . . . 10  |-  ( x 
~~  (/)  ->  ( (/)  Isom  <  ,  <  ( ( 1 ... ( `  x
) ) ,  x
)  <->  (/)  Isom  <  ,  <  (
(/) ,  (/) ) ) )
3521, 34mpbiri 168 . . . . . . . . 9  |-  ( x 
~~  (/)  ->  (/)  Isom  <  ,  <  ( ( 1 ... ( `  x
) ) ,  x
) )
36 0ex 4172 . . . . . . . . . 10  |-  (/)  e.  _V
37 isoeq1 5872 . . . . . . . . . 10  |-  ( f  =  (/)  ->  ( f 
Isom  <  ,  <  (
( 1 ... ( `  x ) ) ,  x )  <->  (/)  Isom  <  ,  <  ( ( 1 ... ( `  x
) ) ,  x
) ) )
3836, 37spcev 2868 . . . . . . . . 9  |-  ( (/)  Isom 
<  ,  <  ( ( 1 ... ( `  x
) ) ,  x
)  ->  E. f 
f  Isom  <  ,  <  ( ( 1 ... ( `  x ) ) ,  x ) )
3935, 38syl 14 . . . . . . . 8  |-  ( x 
~~  (/)  ->  E. f 
f  Isom  <  ,  <  ( ( 1 ... ( `  x ) ) ,  x ) )
4039adantl 277 . . . . . . 7  |-  ( ( ( x  C_  ZZ  /\  x  e.  Fin )  /\  x  ~~  (/) )  ->  E. f  f  Isom  <  ,  <  ( ( 1 ... ( `  x
) ) ,  x
) )
4140ax-gen 1472 . . . . . 6  |-  A. x
( ( ( x 
C_  ZZ  /\  x  e.  Fin )  /\  x  ~~  (/) )  ->  E. f 
f  Isom  <  ,  <  ( ( 1 ... ( `  x ) ) ,  x ) )
42 sseq1 3216 . . . . . . . . . . 11  |-  ( a  =  x  ->  (
a  C_  ZZ  <->  x  C_  ZZ ) )
43 eleq1 2268 . . . . . . . . . . 11  |-  ( a  =  x  ->  (
a  e.  Fin  <->  x  e.  Fin ) )
4442, 43anbi12d 473 . . . . . . . . . 10  |-  ( a  =  x  ->  (
( a  C_  ZZ  /\  a  e.  Fin )  <->  ( x  C_  ZZ  /\  x  e.  Fin ) ) )
45 breq1 4048 . . . . . . . . . 10  |-  ( a  =  x  ->  (
a  ~~  k  <->  x  ~~  k ) )
4644, 45anbi12d 473 . . . . . . . . 9  |-  ( a  =  x  ->  (
( ( a  C_  ZZ  /\  a  e.  Fin )  /\  a  ~~  k
)  <->  ( ( x 
C_  ZZ  /\  x  e.  Fin )  /\  x  ~~  k ) ) )
47 fveq2 5578 . . . . . . . . . . . . 13  |-  ( a  =  x  ->  ( `  a )  =  ( `  x ) )
4847oveq2d 5962 . . . . . . . . . . . 12  |-  ( a  =  x  ->  (
1 ... ( `  a
) )  =  ( 1 ... ( `  x
) ) )
49 isoeq4 5875 . . . . . . . . . . . 12  |-  ( ( 1 ... ( `  a
) )  =  ( 1 ... ( `  x
) )  ->  (
f  Isom  <  ,  <  ( ( 1 ... ( `  a ) ) ,  a )  <->  f  Isom  <  ,  <  ( ( 1 ... ( `  x
) ) ,  a ) ) )
5048, 49syl 14 . . . . . . . . . . 11  |-  ( a  =  x  ->  (
f  Isom  <  ,  <  ( ( 1 ... ( `  a ) ) ,  a )  <->  f  Isom  <  ,  <  ( ( 1 ... ( `  x
) ) ,  a ) ) )
51 isoeq5 5876 . . . . . . . . . . 11  |-  ( a  =  x  ->  (
f  Isom  <  ,  <  ( ( 1 ... ( `  x ) ) ,  a )  <->  f  Isom  <  ,  <  ( ( 1 ... ( `  x
) ) ,  x
) ) )
5250, 51bitrd 188 . . . . . . . . . 10  |-  ( a  =  x  ->  (
f  Isom  <  ,  <  ( ( 1 ... ( `  a ) ) ,  a )  <->  f  Isom  <  ,  <  ( ( 1 ... ( `  x
) ) ,  x
) ) )
5352exbidv 1848 . . . . . . . . 9  |-  ( a  =  x  ->  ( E. f  f  Isom  <  ,  <  ( ( 1 ... ( `  a
) ) ,  a )  <->  E. f  f  Isom  <  ,  <  ( ( 1 ... ( `  x
) ) ,  x
) ) )
5446, 53imbi12d 234 . . . . . . . 8  |-  ( a  =  x  ->  (
( ( ( a 
C_  ZZ  /\  a  e.  Fin )  /\  a  ~~  k )  ->  E. f 
f  Isom  <  ,  <  ( ( 1 ... ( `  a ) ) ,  a ) )  <->  ( (
( x  C_  ZZ  /\  x  e.  Fin )  /\  x  ~~  k )  ->  E. f  f  Isom  <  ,  <  ( ( 1 ... ( `  x
) ) ,  x
) ) ) )
5554cbvalv 1941 . . . . . . 7  |-  ( A. a ( ( ( a  C_  ZZ  /\  a  e.  Fin )  /\  a  ~~  k )  ->  E. f 
f  Isom  <  ,  <  ( ( 1 ... ( `  a ) ) ,  a ) )  <->  A. x
( ( ( x 
C_  ZZ  /\  x  e.  Fin )  /\  x  ~~  k )  ->  E. f 
f  Isom  <  ,  <  ( ( 1 ... ( `  x ) ) ,  x ) ) )
56 simprll 537 . . . . . . . . . . . . 13  |-  ( ( ( k  e.  om  /\ 
A. a ( ( ( a  C_  ZZ  /\  a  e.  Fin )  /\  a  ~~  k )  ->  E. f  f  Isom  <  ,  <  ( ( 1 ... ( `  a
) ) ,  a ) ) )  /\  ( ( x  C_  ZZ  /\  x  e.  Fin )  /\  x  ~~  suc  k ) )  ->  x  C_  ZZ )
57 zssq 9750 . . . . . . . . . . . . 13  |-  ZZ  C_  QQ
5856, 57sstrdi 3205 . . . . . . . . . . . 12  |-  ( ( ( k  e.  om  /\ 
A. a ( ( ( a  C_  ZZ  /\  a  e.  Fin )  /\  a  ~~  k )  ->  E. f  f  Isom  <  ,  <  ( ( 1 ... ( `  a
) ) ,  a ) ) )  /\  ( ( x  C_  ZZ  /\  x  e.  Fin )  /\  x  ~~  suc  k ) )  ->  x  C_  QQ )
59 simprlr 538 . . . . . . . . . . . 12  |-  ( ( ( k  e.  om  /\ 
A. a ( ( ( a  C_  ZZ  /\  a  e.  Fin )  /\  a  ~~  k )  ->  E. f  f  Isom  <  ,  <  ( ( 1 ... ( `  a
) ) ,  a ) ) )  /\  ( ( x  C_  ZZ  /\  x  e.  Fin )  /\  x  ~~  suc  k ) )  ->  x  e.  Fin )
60 vex 2775 . . . . . . . . . . . . . . . 16  |-  k  e. 
_V
61 nsuceq0g 4466 . . . . . . . . . . . . . . . 16  |-  ( k  e.  _V  ->  suc  k  =/=  (/) )
6260, 61ax-mp 5 . . . . . . . . . . . . . . 15  |-  suc  k  =/=  (/)
6362neii 2378 . . . . . . . . . . . . . 14  |-  -.  suc  k  =  (/)
64 simplrr 536 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( k  e. 
om  /\  A. a
( ( ( a 
C_  ZZ  /\  a  e.  Fin )  /\  a  ~~  k )  ->  E. f 
f  Isom  <  ,  <  ( ( 1 ... ( `  a ) ) ,  a ) ) )  /\  ( ( x 
C_  ZZ  /\  x  e.  Fin )  /\  x  ~~  suc  k ) )  /\  x  =  (/) )  ->  x  ~~  suc  k )
6564ensymd 6877 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( k  e. 
om  /\  A. a
( ( ( a 
C_  ZZ  /\  a  e.  Fin )  /\  a  ~~  k )  ->  E. f 
f  Isom  <  ,  <  ( ( 1 ... ( `  a ) ) ,  a ) ) )  /\  ( ( x 
C_  ZZ  /\  x  e.  Fin )  /\  x  ~~  suc  k ) )  /\  x  =  (/) )  ->  suc  k  ~~  x )
66 simpr 110 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( k  e. 
om  /\  A. a
( ( ( a 
C_  ZZ  /\  a  e.  Fin )  /\  a  ~~  k )  ->  E. f 
f  Isom  <  ,  <  ( ( 1 ... ( `  a ) ) ,  a ) ) )  /\  ( ( x 
C_  ZZ  /\  x  e.  Fin )  /\  x  ~~  suc  k ) )  /\  x  =  (/) )  ->  x  =  (/) )
6765, 66breqtrd 4071 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( k  e. 
om  /\  A. a
( ( ( a 
C_  ZZ  /\  a  e.  Fin )  /\  a  ~~  k )  ->  E. f 
f  Isom  <  ,  <  ( ( 1 ... ( `  a ) ) ,  a ) ) )  /\  ( ( x 
C_  ZZ  /\  x  e.  Fin )  /\  x  ~~  suc  k ) )  /\  x  =  (/) )  ->  suc  k  ~~  (/) )
68 en0 6889 . . . . . . . . . . . . . . . 16  |-  ( suc  k  ~~  (/)  <->  suc  k  =  (/) )
6967, 68sylib 122 . . . . . . . . . . . . . . 15  |-  ( ( ( ( k  e. 
om  /\  A. a
( ( ( a 
C_  ZZ  /\  a  e.  Fin )  /\  a  ~~  k )  ->  E. f 
f  Isom  <  ,  <  ( ( 1 ... ( `  a ) ) ,  a ) ) )  /\  ( ( x 
C_  ZZ  /\  x  e.  Fin )  /\  x  ~~  suc  k ) )  /\  x  =  (/) )  ->  suc  k  =  (/) )
7069ex 115 . . . . . . . . . . . . . 14  |-  ( ( ( k  e.  om  /\ 
A. a ( ( ( a  C_  ZZ  /\  a  e.  Fin )  /\  a  ~~  k )  ->  E. f  f  Isom  <  ,  <  ( ( 1 ... ( `  a
) ) ,  a ) ) )  /\  ( ( x  C_  ZZ  /\  x  e.  Fin )  /\  x  ~~  suc  k ) )  -> 
( x  =  (/)  ->  suc  k  =  (/) ) )
7163, 70mtoi 666 . . . . . . . . . . . . 13  |-  ( ( ( k  e.  om  /\ 
A. a ( ( ( a  C_  ZZ  /\  a  e.  Fin )  /\  a  ~~  k )  ->  E. f  f  Isom  <  ,  <  ( ( 1 ... ( `  a
) ) ,  a ) ) )  /\  ( ( x  C_  ZZ  /\  x  e.  Fin )  /\  x  ~~  suc  k ) )  ->  -.  x  =  (/) )
7271neqned 2383 . . . . . . . . . . . 12  |-  ( ( ( k  e.  om  /\ 
A. a ( ( ( a  C_  ZZ  /\  a  e.  Fin )  /\  a  ~~  k )  ->  E. f  f  Isom  <  ,  <  ( ( 1 ... ( `  a
) ) ,  a ) ) )  /\  ( ( x  C_  ZZ  /\  x  e.  Fin )  /\  x  ~~  suc  k ) )  ->  x  =/=  (/) )
73 fimaxq 10974 . . . . . . . . . . . 12  |-  ( ( x  C_  QQ  /\  x  e.  Fin  /\  x  =/=  (/) )  ->  E. m  e.  x  A. z  e.  x  z  <_  m )
7458, 59, 72, 73syl3anc 1250 . . . . . . . . . . 11  |-  ( ( ( k  e.  om  /\ 
A. a ( ( ( a  C_  ZZ  /\  a  e.  Fin )  /\  a  ~~  k )  ->  E. f  f  Isom  <  ,  <  ( ( 1 ... ( `  a
) ) ,  a ) ) )  /\  ( ( x  C_  ZZ  /\  x  e.  Fin )  /\  x  ~~  suc  k ) )  ->  E. m  e.  x  A. z  e.  x  z  <_  m )
75 simplll 533 . . . . . . . . . . . 12  |-  ( ( ( ( k  e. 
om  /\  A. a
( ( ( a 
C_  ZZ  /\  a  e.  Fin )  /\  a  ~~  k )  ->  E. f 
f  Isom  <  ,  <  ( ( 1 ... ( `  a ) ) ,  a ) ) )  /\  ( ( x 
C_  ZZ  /\  x  e.  Fin )  /\  x  ~~  suc  k ) )  /\  ( m  e.  x  /\  A. z  e.  x  z  <_  m ) )  ->  k  e.  om )
76 simpllr 534 . . . . . . . . . . . 12  |-  ( ( ( ( k  e. 
om  /\  A. a
( ( ( a 
C_  ZZ  /\  a  e.  Fin )  /\  a  ~~  k )  ->  E. f 
f  Isom  <  ,  <  ( ( 1 ... ( `  a ) ) ,  a ) ) )  /\  ( ( x 
C_  ZZ  /\  x  e.  Fin )  /\  x  ~~  suc  k ) )  /\  ( m  e.  x  /\  A. z  e.  x  z  <_  m ) )  ->  A. a
( ( ( a 
C_  ZZ  /\  a  e.  Fin )  /\  a  ~~  k )  ->  E. f 
f  Isom  <  ,  <  ( ( 1 ... ( `  a ) ) ,  a ) ) )
7756adantr 276 . . . . . . . . . . . 12  |-  ( ( ( ( k  e. 
om  /\  A. a
( ( ( a 
C_  ZZ  /\  a  e.  Fin )  /\  a  ~~  k )  ->  E. f 
f  Isom  <  ,  <  ( ( 1 ... ( `  a ) ) ,  a ) ) )  /\  ( ( x 
C_  ZZ  /\  x  e.  Fin )  /\  x  ~~  suc  k ) )  /\  ( m  e.  x  /\  A. z  e.  x  z  <_  m ) )  ->  x  C_  ZZ )
7859adantr 276 . . . . . . . . . . . 12  |-  ( ( ( ( k  e. 
om  /\  A. a
( ( ( a 
C_  ZZ  /\  a  e.  Fin )  /\  a  ~~  k )  ->  E. f 
f  Isom  <  ,  <  ( ( 1 ... ( `  a ) ) ,  a ) ) )  /\  ( ( x 
C_  ZZ  /\  x  e.  Fin )  /\  x  ~~  suc  k ) )  /\  ( m  e.  x  /\  A. z  e.  x  z  <_  m ) )  ->  x  e.  Fin )
79 simplrr 536 . . . . . . . . . . . 12  |-  ( ( ( ( k  e. 
om  /\  A. a
( ( ( a 
C_  ZZ  /\  a  e.  Fin )  /\  a  ~~  k )  ->  E. f 
f  Isom  <  ,  <  ( ( 1 ... ( `  a ) ) ,  a ) ) )  /\  ( ( x 
C_  ZZ  /\  x  e.  Fin )  /\  x  ~~  suc  k ) )  /\  ( m  e.  x  /\  A. z  e.  x  z  <_  m ) )  ->  x  ~~  suc  k )
80 simprl 529 . . . . . . . . . . . 12  |-  ( ( ( ( k  e. 
om  /\  A. a
( ( ( a 
C_  ZZ  /\  a  e.  Fin )  /\  a  ~~  k )  ->  E. f 
f  Isom  <  ,  <  ( ( 1 ... ( `  a ) ) ,  a ) ) )  /\  ( ( x 
C_  ZZ  /\  x  e.  Fin )  /\  x  ~~  suc  k ) )  /\  ( m  e.  x  /\  A. z  e.  x  z  <_  m ) )  ->  m  e.  x )
81 simprr 531 . . . . . . . . . . . 12  |-  ( ( ( ( k  e. 
om  /\  A. a
( ( ( a 
C_  ZZ  /\  a  e.  Fin )  /\  a  ~~  k )  ->  E. f 
f  Isom  <  ,  <  ( ( 1 ... ( `  a ) ) ,  a ) ) )  /\  ( ( x 
C_  ZZ  /\  x  e.  Fin )  /\  x  ~~  suc  k ) )  /\  ( m  e.  x  /\  A. z  e.  x  z  <_  m ) )  ->  A. z  e.  x  z  <_  m )
8275, 76, 77, 78, 79, 80, 81zfz1isolem1 10987 . . . . . . . . . . 11  |-  ( ( ( ( k  e. 
om  /\  A. a
( ( ( a 
C_  ZZ  /\  a  e.  Fin )  /\  a  ~~  k )  ->  E. f 
f  Isom  <  ,  <  ( ( 1 ... ( `  a ) ) ,  a ) ) )  /\  ( ( x 
C_  ZZ  /\  x  e.  Fin )  /\  x  ~~  suc  k ) )  /\  ( m  e.  x  /\  A. z  e.  x  z  <_  m ) )  ->  E. f 
f  Isom  <  ,  <  ( ( 1 ... ( `  x ) ) ,  x ) )
8374, 82rexlimddv 2628 . . . . . . . . . 10  |-  ( ( ( k  e.  om  /\ 
A. a ( ( ( a  C_  ZZ  /\  a  e.  Fin )  /\  a  ~~  k )  ->  E. f  f  Isom  <  ,  <  ( ( 1 ... ( `  a
) ) ,  a ) ) )  /\  ( ( x  C_  ZZ  /\  x  e.  Fin )  /\  x  ~~  suc  k ) )  ->  E. f  f  Isom  <  ,  <  ( ( 1 ... ( `  x
) ) ,  x
) )
8483ex 115 . . . . . . . . 9  |-  ( ( k  e.  om  /\  A. a ( ( ( a  C_  ZZ  /\  a  e.  Fin )  /\  a  ~~  k )  ->  E. f 
f  Isom  <  ,  <  ( ( 1 ... ( `  a ) ) ,  a ) ) )  ->  ( ( ( x  C_  ZZ  /\  x  e.  Fin )  /\  x  ~~  suc  k )  ->  E. f  f  Isom  <  ,  <  ( ( 1 ... ( `  x
) ) ,  x
) ) )
8584alrimiv 1897 . . . . . . . 8  |-  ( ( k  e.  om  /\  A. a ( ( ( a  C_  ZZ  /\  a  e.  Fin )  /\  a  ~~  k )  ->  E. f 
f  Isom  <  ,  <  ( ( 1 ... ( `  a ) ) ,  a ) ) )  ->  A. x ( ( ( x  C_  ZZ  /\  x  e.  Fin )  /\  x  ~~  suc  k
)  ->  E. f 
f  Isom  <  ,  <  ( ( 1 ... ( `  x ) ) ,  x ) ) )
8685ex 115 . . . . . . 7  |-  ( k  e.  om  ->  ( A. a ( ( ( a  C_  ZZ  /\  a  e.  Fin )  /\  a  ~~  k )  ->  E. f 
f  Isom  <  ,  <  ( ( 1 ... ( `  a ) ) ,  a ) )  ->  A. x ( ( ( x  C_  ZZ  /\  x  e.  Fin )  /\  x  ~~  suc  k )  ->  E. f  f  Isom  <  ,  <  ( ( 1 ... ( `  x
) ) ,  x
) ) ) )
8755, 86biimtrrid 153 . . . . . 6  |-  ( k  e.  om  ->  ( A. x ( ( ( x  C_  ZZ  /\  x  e.  Fin )  /\  x  ~~  k )  ->  E. f 
f  Isom  <  ,  <  ( ( 1 ... ( `  x ) ) ,  x ) )  ->  A. x ( ( ( x  C_  ZZ  /\  x  e.  Fin )  /\  x  ~~  suc  k )  ->  E. f  f  Isom  <  ,  <  ( ( 1 ... ( `  x
) ) ,  x
) ) ) )
888, 12, 16, 20, 41, 87finds 4649 . . . . 5  |-  ( n  e.  om  ->  A. x
( ( ( x 
C_  ZZ  /\  x  e.  Fin )  /\  x  ~~  n )  ->  E. f 
f  Isom  <  ,  <  ( ( 1 ... ( `  x ) ) ,  x ) ) )
8988adantr 276 . . . 4  |-  ( ( n  e.  om  /\  ( ( A  C_  ZZ  /\  A  e.  Fin )  /\  A  ~~  n
) )  ->  A. x
( ( ( x 
C_  ZZ  /\  x  e.  Fin )  /\  x  ~~  n )  ->  E. f 
f  Isom  <  ,  <  ( ( 1 ... ( `  x ) ) ,  x ) ) )
90 simpr 110 . . . 4  |-  ( ( n  e.  om  /\  ( ( A  C_  ZZ  /\  A  e.  Fin )  /\  A  ~~  n
) )  ->  (
( A  C_  ZZ  /\  A  e.  Fin )  /\  A  ~~  n ) )
91 sseq1 3216 . . . . . . . 8  |-  ( x  =  A  ->  (
x  C_  ZZ  <->  A  C_  ZZ ) )
92 eleq1 2268 . . . . . . . 8  |-  ( x  =  A  ->  (
x  e.  Fin  <->  A  e.  Fin ) )
9391, 92anbi12d 473 . . . . . . 7  |-  ( x  =  A  ->  (
( x  C_  ZZ  /\  x  e.  Fin )  <->  ( A  C_  ZZ  /\  A  e.  Fin ) ) )
94 breq1 4048 . . . . . . 7  |-  ( x  =  A  ->  (
x  ~~  n  <->  A  ~~  n ) )
9593, 94anbi12d 473 . . . . . 6  |-  ( x  =  A  ->  (
( ( x  C_  ZZ  /\  x  e.  Fin )  /\  x  ~~  n
)  <->  ( ( A 
C_  ZZ  /\  A  e. 
Fin )  /\  A  ~~  n ) ) )
96 fveq2 5578 . . . . . . . . . 10  |-  ( x  =  A  ->  ( `  x )  =  ( `  A ) )
9796oveq2d 5962 . . . . . . . . 9  |-  ( x  =  A  ->  (
1 ... ( `  x
) )  =  ( 1 ... ( `  A
) ) )
98 isoeq4 5875 . . . . . . . . 9  |-  ( ( 1 ... ( `  x
) )  =  ( 1 ... ( `  A
) )  ->  (
f  Isom  <  ,  <  ( ( 1 ... ( `  x ) ) ,  x )  <->  f  Isom  <  ,  <  ( ( 1 ... ( `  A
) ) ,  x
) ) )
9997, 98syl 14 . . . . . . . 8  |-  ( x  =  A  ->  (
f  Isom  <  ,  <  ( ( 1 ... ( `  x ) ) ,  x )  <->  f  Isom  <  ,  <  ( ( 1 ... ( `  A
) ) ,  x
) ) )
100 isoeq5 5876 . . . . . . . 8  |-  ( x  =  A  ->  (
f  Isom  <  ,  <  ( ( 1 ... ( `  A ) ) ,  x )  <->  f  Isom  <  ,  <  ( ( 1 ... ( `  A
) ) ,  A
) ) )
10199, 100bitrd 188 . . . . . . 7  |-  ( x  =  A  ->  (
f  Isom  <  ,  <  ( ( 1 ... ( `  x ) ) ,  x )  <->  f  Isom  <  ,  <  ( ( 1 ... ( `  A
) ) ,  A
) ) )
102101exbidv 1848 . . . . . 6  |-  ( x  =  A  ->  ( E. f  f  Isom  <  ,  <  ( ( 1 ... ( `  x
) ) ,  x
)  <->  E. f  f  Isom  <  ,  <  ( ( 1 ... ( `  A
) ) ,  A
) ) )
10395, 102imbi12d 234 . . . . 5  |-  ( x  =  A  ->  (
( ( ( x 
C_  ZZ  /\  x  e.  Fin )  /\  x  ~~  n )  ->  E. f 
f  Isom  <  ,  <  ( ( 1 ... ( `  x ) ) ,  x ) )  <->  ( (
( A  C_  ZZ  /\  A  e.  Fin )  /\  A  ~~  n )  ->  E. f  f  Isom  <  ,  <  ( ( 1 ... ( `  A
) ) ,  A
) ) ) )
104103spcgv 2860 . . . 4  |-  ( A  e.  Fin  ->  ( A. x ( ( ( x  C_  ZZ  /\  x  e.  Fin )  /\  x  ~~  n )  ->  E. f 
f  Isom  <  ,  <  ( ( 1 ... ( `  x ) ) ,  x ) )  -> 
( ( ( A 
C_  ZZ  /\  A  e. 
Fin )  /\  A  ~~  n )  ->  E. f 
f  Isom  <  ,  <  ( ( 1 ... ( `  A ) ) ,  A ) ) ) )
1054, 89, 90, 104syl3c 63 . . 3  |-  ( ( n  e.  om  /\  ( ( A  C_  ZZ  /\  A  e.  Fin )  /\  A  ~~  n
) )  ->  E. f 
f  Isom  <  ,  <  ( ( 1 ... ( `  A ) ) ,  A ) )
106105an12s 565 . 2  |-  ( ( ( A  C_  ZZ  /\  A  e.  Fin )  /\  ( n  e.  om  /\  A  ~~  n ) )  ->  E. f 
f  Isom  <  ,  <  ( ( 1 ... ( `  A ) ) ,  A ) )
1073, 106rexlimddv 2628 1  |-  ( ( A  C_  ZZ  /\  A  e.  Fin )  ->  E. f 
f  Isom  <  ,  <  ( ( 1 ... ( `  A ) ) ,  A ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105   A.wal 1371    = wceq 1373   E.wex 1515    e. wcel 2176    =/= wne 2376   A.wral 2484   E.wrex 2485   _Vcvv 2772    C_ wss 3166   (/)c0 3460   class class class wbr 4045   suc csuc 4413   omcom 4639   ` cfv 5272    Isom wiso 5273  (class class class)co 5946    ~~ cen 6827   Fincfn 6829   0cc0 7927   1c1 7928    < clt 8109    <_ cle 8110   ZZcz 9374   QQcq 9742   ...cfz 10132  ♯chash 10922
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-coll 4160  ax-sep 4163  ax-nul 4171  ax-pow 4219  ax-pr 4254  ax-un 4481  ax-setind 4586  ax-iinf 4637  ax-cnex 8018  ax-resscn 8019  ax-1cn 8020  ax-1re 8021  ax-icn 8022  ax-addcl 8023  ax-addrcl 8024  ax-mulcl 8025  ax-mulrcl 8026  ax-addcom 8027  ax-mulcom 8028  ax-addass 8029  ax-mulass 8030  ax-distr 8031  ax-i2m1 8032  ax-0lt1 8033  ax-1rid 8034  ax-0id 8035  ax-rnegex 8036  ax-precex 8037  ax-cnre 8038  ax-pre-ltirr 8039  ax-pre-ltwlin 8040  ax-pre-lttrn 8041  ax-pre-apti 8042  ax-pre-ltadd 8043  ax-pre-mulgt0 8044  ax-pre-mulext 8045
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-nel 2472  df-ral 2489  df-rex 2490  df-reu 2491  df-rmo 2492  df-rab 2493  df-v 2774  df-sbc 2999  df-csb 3094  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3461  df-if 3572  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-iun 3929  df-br 4046  df-opab 4107  df-mpt 4108  df-tr 4144  df-id 4341  df-po 4344  df-iso 4345  df-iord 4414  df-on 4416  df-ilim 4417  df-suc 4419  df-iom 4640  df-xp 4682  df-rel 4683  df-cnv 4684  df-co 4685  df-dm 4686  df-rn 4687  df-res 4688  df-ima 4689  df-iota 5233  df-fun 5274  df-fn 5275  df-f 5276  df-f1 5277  df-fo 5278  df-f1o 5279  df-fv 5280  df-isom 5281  df-riota 5901  df-ov 5949  df-oprab 5950  df-mpo 5951  df-1st 6228  df-2nd 6229  df-recs 6393  df-irdg 6458  df-frec 6479  df-1o 6504  df-oadd 6508  df-er 6622  df-en 6830  df-dom 6831  df-fin 6832  df-pnf 8111  df-mnf 8112  df-xr 8113  df-ltxr 8114  df-le 8115  df-sub 8247  df-neg 8248  df-reap 8650  df-ap 8657  df-div 8748  df-inn 9039  df-n0 9298  df-z 9375  df-uz 9651  df-q 9743  df-rp 9778  df-fz 10133  df-ihash 10923
This theorem is referenced by:  summodclem2  11726  zsumdc  11728  prodmodclem2  11921  zproddc  11923
  Copyright terms: Public domain W3C validator