ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  zfz1iso Unicode version

Theorem zfz1iso 10776
Description: A finite set of integers has an order isomorphism to a one-based finite sequence. (Contributed by Jim Kingdon, 3-Sep-2022.)
Assertion
Ref Expression
zfz1iso  |-  ( ( A  C_  ZZ  /\  A  e.  Fin )  ->  E. f 
f  Isom  <  ,  <  ( ( 1 ... ( `  A ) ) ,  A ) )
Distinct variable group:    A, f

Proof of Theorem zfz1iso
Dummy variables  n  x  a  k  m  w  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isfi 6739 . . . 4  |-  ( A  e.  Fin  <->  E. n  e.  om  A  ~~  n
)
21biimpi 119 . . 3  |-  ( A  e.  Fin  ->  E. n  e.  om  A  ~~  n
)
32adantl 275 . 2  |-  ( ( A  C_  ZZ  /\  A  e.  Fin )  ->  E. n  e.  om  A  ~~  n
)
4 simprlr 533 . . . 4  |-  ( ( n  e.  om  /\  ( ( A  C_  ZZ  /\  A  e.  Fin )  /\  A  ~~  n
) )  ->  A  e.  Fin )
5 breq2 3993 . . . . . . . . 9  |-  ( w  =  (/)  ->  ( x 
~~  w  <->  x  ~~  (/) ) )
65anbi2d 461 . . . . . . . 8  |-  ( w  =  (/)  ->  ( ( ( x  C_  ZZ  /\  x  e.  Fin )  /\  x  ~~  w )  <-> 
( ( x  C_  ZZ  /\  x  e.  Fin )  /\  x  ~~  (/) ) ) )
76imbi1d 230 . . . . . . 7  |-  ( w  =  (/)  ->  ( ( ( ( x  C_  ZZ  /\  x  e.  Fin )  /\  x  ~~  w
)  ->  E. f 
f  Isom  <  ,  <  ( ( 1 ... ( `  x ) ) ,  x ) )  <->  ( (
( x  C_  ZZ  /\  x  e.  Fin )  /\  x  ~~  (/) )  ->  E. f  f  Isom  <  ,  <  ( ( 1 ... ( `  x
) ) ,  x
) ) ) )
87albidv 1817 . . . . . 6  |-  ( w  =  (/)  ->  ( A. x ( ( ( x  C_  ZZ  /\  x  e.  Fin )  /\  x  ~~  w )  ->  E. f 
f  Isom  <  ,  <  ( ( 1 ... ( `  x ) ) ,  x ) )  <->  A. x
( ( ( x 
C_  ZZ  /\  x  e.  Fin )  /\  x  ~~  (/) )  ->  E. f 
f  Isom  <  ,  <  ( ( 1 ... ( `  x ) ) ,  x ) ) ) )
9 breq2 3993 . . . . . . . . 9  |-  ( w  =  k  ->  (
x  ~~  w  <->  x  ~~  k ) )
109anbi2d 461 . . . . . . . 8  |-  ( w  =  k  ->  (
( ( x  C_  ZZ  /\  x  e.  Fin )  /\  x  ~~  w
)  <->  ( ( x 
C_  ZZ  /\  x  e.  Fin )  /\  x  ~~  k ) ) )
1110imbi1d 230 . . . . . . 7  |-  ( w  =  k  ->  (
( ( ( x 
C_  ZZ  /\  x  e.  Fin )  /\  x  ~~  w )  ->  E. f 
f  Isom  <  ,  <  ( ( 1 ... ( `  x ) ) ,  x ) )  <->  ( (
( x  C_  ZZ  /\  x  e.  Fin )  /\  x  ~~  k )  ->  E. f  f  Isom  <  ,  <  ( ( 1 ... ( `  x
) ) ,  x
) ) ) )
1211albidv 1817 . . . . . 6  |-  ( w  =  k  ->  ( A. x ( ( ( x  C_  ZZ  /\  x  e.  Fin )  /\  x  ~~  w )  ->  E. f 
f  Isom  <  ,  <  ( ( 1 ... ( `  x ) ) ,  x ) )  <->  A. x
( ( ( x 
C_  ZZ  /\  x  e.  Fin )  /\  x  ~~  k )  ->  E. f 
f  Isom  <  ,  <  ( ( 1 ... ( `  x ) ) ,  x ) ) ) )
13 breq2 3993 . . . . . . . . 9  |-  ( w  =  suc  k  -> 
( x  ~~  w  <->  x 
~~  suc  k )
)
1413anbi2d 461 . . . . . . . 8  |-  ( w  =  suc  k  -> 
( ( ( x 
C_  ZZ  /\  x  e.  Fin )  /\  x  ~~  w )  <->  ( (
x  C_  ZZ  /\  x  e.  Fin )  /\  x  ~~  suc  k ) ) )
1514imbi1d 230 . . . . . . 7  |-  ( w  =  suc  k  -> 
( ( ( ( x  C_  ZZ  /\  x  e.  Fin )  /\  x  ~~  w )  ->  E. f 
f  Isom  <  ,  <  ( ( 1 ... ( `  x ) ) ,  x ) )  <->  ( (
( x  C_  ZZ  /\  x  e.  Fin )  /\  x  ~~  suc  k
)  ->  E. f 
f  Isom  <  ,  <  ( ( 1 ... ( `  x ) ) ,  x ) ) ) )
1615albidv 1817 . . . . . 6  |-  ( w  =  suc  k  -> 
( A. x ( ( ( x  C_  ZZ  /\  x  e.  Fin )  /\  x  ~~  w
)  ->  E. f 
f  Isom  <  ,  <  ( ( 1 ... ( `  x ) ) ,  x ) )  <->  A. x
( ( ( x 
C_  ZZ  /\  x  e.  Fin )  /\  x  ~~  suc  k )  ->  E. f  f  Isom  <  ,  <  ( ( 1 ... ( `  x
) ) ,  x
) ) ) )
17 breq2 3993 . . . . . . . . 9  |-  ( w  =  n  ->  (
x  ~~  w  <->  x  ~~  n ) )
1817anbi2d 461 . . . . . . . 8  |-  ( w  =  n  ->  (
( ( x  C_  ZZ  /\  x  e.  Fin )  /\  x  ~~  w
)  <->  ( ( x 
C_  ZZ  /\  x  e.  Fin )  /\  x  ~~  n ) ) )
1918imbi1d 230 . . . . . . 7  |-  ( w  =  n  ->  (
( ( ( x 
C_  ZZ  /\  x  e.  Fin )  /\  x  ~~  w )  ->  E. f 
f  Isom  <  ,  <  ( ( 1 ... ( `  x ) ) ,  x ) )  <->  ( (
( x  C_  ZZ  /\  x  e.  Fin )  /\  x  ~~  n )  ->  E. f  f  Isom  <  ,  <  ( ( 1 ... ( `  x
) ) ,  x
) ) ) )
2019albidv 1817 . . . . . 6  |-  ( w  =  n  ->  ( A. x ( ( ( x  C_  ZZ  /\  x  e.  Fin )  /\  x  ~~  w )  ->  E. f 
f  Isom  <  ,  <  ( ( 1 ... ( `  x ) ) ,  x ) )  <->  A. x
( ( ( x 
C_  ZZ  /\  x  e.  Fin )  /\  x  ~~  n )  ->  E. f 
f  Isom  <  ,  <  ( ( 1 ... ( `  x ) ) ,  x ) ) ) )
21 iso0 5796 . . . . . . . . . 10  |-  (/)  Isom  <  ,  <  ( (/) ,  (/) )
22 en0 6773 . . . . . . . . . . . . . . . . 17  |-  ( x 
~~  (/)  <->  x  =  (/) )
2322biimpi 119 . . . . . . . . . . . . . . . 16  |-  ( x 
~~  (/)  ->  x  =  (/) )
2423fveq2d 5500 . . . . . . . . . . . . . . 15  |-  ( x 
~~  (/)  ->  ( `  x
)  =  ( `  (/) ) )
25 hash0 10731 . . . . . . . . . . . . . . 15  |-  ( `  (/) )  =  0
2624, 25eqtrdi 2219 . . . . . . . . . . . . . 14  |-  ( x 
~~  (/)  ->  ( `  x
)  =  0 )
2726oveq2d 5869 . . . . . . . . . . . . 13  |-  ( x 
~~  (/)  ->  ( 1 ... ( `  x
) )  =  ( 1 ... 0 ) )
28 fz10 10002 . . . . . . . . . . . . 13  |-  ( 1 ... 0 )  =  (/)
2927, 28eqtrdi 2219 . . . . . . . . . . . 12  |-  ( x 
~~  (/)  ->  ( 1 ... ( `  x
) )  =  (/) )
30 isoeq4 5783 . . . . . . . . . . . 12  |-  ( ( 1 ... ( `  x
) )  =  (/)  ->  ( (/)  Isom  <  ,  <  ( ( 1 ... ( `  x )
) ,  x )  <->  (/) 
Isom  <  ,  <  ( (/)
,  x ) ) )
3129, 30syl 14 . . . . . . . . . . 11  |-  ( x 
~~  (/)  ->  ( (/)  Isom  <  ,  <  ( ( 1 ... ( `  x
) ) ,  x
)  <->  (/)  Isom  <  ,  <  (
(/) ,  x )
) )
32 isoeq5 5784 . . . . . . . . . . . 12  |-  ( x  =  (/)  ->  ( (/)  Isom 
<  ,  <  ( (/) ,  x )  <->  (/)  Isom  <  ,  <  ( (/) ,  (/) ) ) )
3323, 32syl 14 . . . . . . . . . . 11  |-  ( x 
~~  (/)  ->  ( (/)  Isom  <  ,  <  ( (/) ,  x
)  <->  (/)  Isom  <  ,  <  (
(/) ,  (/) ) ) )
3431, 33bitrd 187 . . . . . . . . . 10  |-  ( x 
~~  (/)  ->  ( (/)  Isom  <  ,  <  ( ( 1 ... ( `  x
) ) ,  x
)  <->  (/)  Isom  <  ,  <  (
(/) ,  (/) ) ) )
3521, 34mpbiri 167 . . . . . . . . 9  |-  ( x 
~~  (/)  ->  (/)  Isom  <  ,  <  ( ( 1 ... ( `  x
) ) ,  x
) )
36 0ex 4116 . . . . . . . . . 10  |-  (/)  e.  _V
37 isoeq1 5780 . . . . . . . . . 10  |-  ( f  =  (/)  ->  ( f 
Isom  <  ,  <  (
( 1 ... ( `  x ) ) ,  x )  <->  (/)  Isom  <  ,  <  ( ( 1 ... ( `  x
) ) ,  x
) ) )
3836, 37spcev 2825 . . . . . . . . 9  |-  ( (/)  Isom 
<  ,  <  ( ( 1 ... ( `  x
) ) ,  x
)  ->  E. f 
f  Isom  <  ,  <  ( ( 1 ... ( `  x ) ) ,  x ) )
3935, 38syl 14 . . . . . . . 8  |-  ( x 
~~  (/)  ->  E. f 
f  Isom  <  ,  <  ( ( 1 ... ( `  x ) ) ,  x ) )
4039adantl 275 . . . . . . 7  |-  ( ( ( x  C_  ZZ  /\  x  e.  Fin )  /\  x  ~~  (/) )  ->  E. f  f  Isom  <  ,  <  ( ( 1 ... ( `  x
) ) ,  x
) )
4140ax-gen 1442 . . . . . 6  |-  A. x
( ( ( x 
C_  ZZ  /\  x  e.  Fin )  /\  x  ~~  (/) )  ->  E. f 
f  Isom  <  ,  <  ( ( 1 ... ( `  x ) ) ,  x ) )
42 sseq1 3170 . . . . . . . . . . 11  |-  ( a  =  x  ->  (
a  C_  ZZ  <->  x  C_  ZZ ) )
43 eleq1 2233 . . . . . . . . . . 11  |-  ( a  =  x  ->  (
a  e.  Fin  <->  x  e.  Fin ) )
4442, 43anbi12d 470 . . . . . . . . . 10  |-  ( a  =  x  ->  (
( a  C_  ZZ  /\  a  e.  Fin )  <->  ( x  C_  ZZ  /\  x  e.  Fin ) ) )
45 breq1 3992 . . . . . . . . . 10  |-  ( a  =  x  ->  (
a  ~~  k  <->  x  ~~  k ) )
4644, 45anbi12d 470 . . . . . . . . 9  |-  ( a  =  x  ->  (
( ( a  C_  ZZ  /\  a  e.  Fin )  /\  a  ~~  k
)  <->  ( ( x 
C_  ZZ  /\  x  e.  Fin )  /\  x  ~~  k ) ) )
47 fveq2 5496 . . . . . . . . . . . . 13  |-  ( a  =  x  ->  ( `  a )  =  ( `  x ) )
4847oveq2d 5869 . . . . . . . . . . . 12  |-  ( a  =  x  ->  (
1 ... ( `  a
) )  =  ( 1 ... ( `  x
) ) )
49 isoeq4 5783 . . . . . . . . . . . 12  |-  ( ( 1 ... ( `  a
) )  =  ( 1 ... ( `  x
) )  ->  (
f  Isom  <  ,  <  ( ( 1 ... ( `  a ) ) ,  a )  <->  f  Isom  <  ,  <  ( ( 1 ... ( `  x
) ) ,  a ) ) )
5048, 49syl 14 . . . . . . . . . . 11  |-  ( a  =  x  ->  (
f  Isom  <  ,  <  ( ( 1 ... ( `  a ) ) ,  a )  <->  f  Isom  <  ,  <  ( ( 1 ... ( `  x
) ) ,  a ) ) )
51 isoeq5 5784 . . . . . . . . . . 11  |-  ( a  =  x  ->  (
f  Isom  <  ,  <  ( ( 1 ... ( `  x ) ) ,  a )  <->  f  Isom  <  ,  <  ( ( 1 ... ( `  x
) ) ,  x
) ) )
5250, 51bitrd 187 . . . . . . . . . 10  |-  ( a  =  x  ->  (
f  Isom  <  ,  <  ( ( 1 ... ( `  a ) ) ,  a )  <->  f  Isom  <  ,  <  ( ( 1 ... ( `  x
) ) ,  x
) ) )
5352exbidv 1818 . . . . . . . . 9  |-  ( a  =  x  ->  ( E. f  f  Isom  <  ,  <  ( ( 1 ... ( `  a
) ) ,  a )  <->  E. f  f  Isom  <  ,  <  ( ( 1 ... ( `  x
) ) ,  x
) ) )
5446, 53imbi12d 233 . . . . . . . 8  |-  ( a  =  x  ->  (
( ( ( a 
C_  ZZ  /\  a  e.  Fin )  /\  a  ~~  k )  ->  E. f 
f  Isom  <  ,  <  ( ( 1 ... ( `  a ) ) ,  a ) )  <->  ( (
( x  C_  ZZ  /\  x  e.  Fin )  /\  x  ~~  k )  ->  E. f  f  Isom  <  ,  <  ( ( 1 ... ( `  x
) ) ,  x
) ) ) )
5554cbvalv 1910 . . . . . . 7  |-  ( A. a ( ( ( a  C_  ZZ  /\  a  e.  Fin )  /\  a  ~~  k )  ->  E. f 
f  Isom  <  ,  <  ( ( 1 ... ( `  a ) ) ,  a ) )  <->  A. x
( ( ( x 
C_  ZZ  /\  x  e.  Fin )  /\  x  ~~  k )  ->  E. f 
f  Isom  <  ,  <  ( ( 1 ... ( `  x ) ) ,  x ) ) )
56 simprll 532 . . . . . . . . . . . . 13  |-  ( ( ( k  e.  om  /\ 
A. a ( ( ( a  C_  ZZ  /\  a  e.  Fin )  /\  a  ~~  k )  ->  E. f  f  Isom  <  ,  <  ( ( 1 ... ( `  a
) ) ,  a ) ) )  /\  ( ( x  C_  ZZ  /\  x  e.  Fin )  /\  x  ~~  suc  k ) )  ->  x  C_  ZZ )
57 zssq 9586 . . . . . . . . . . . . 13  |-  ZZ  C_  QQ
5856, 57sstrdi 3159 . . . . . . . . . . . 12  |-  ( ( ( k  e.  om  /\ 
A. a ( ( ( a  C_  ZZ  /\  a  e.  Fin )  /\  a  ~~  k )  ->  E. f  f  Isom  <  ,  <  ( ( 1 ... ( `  a
) ) ,  a ) ) )  /\  ( ( x  C_  ZZ  /\  x  e.  Fin )  /\  x  ~~  suc  k ) )  ->  x  C_  QQ )
59 simprlr 533 . . . . . . . . . . . 12  |-  ( ( ( k  e.  om  /\ 
A. a ( ( ( a  C_  ZZ  /\  a  e.  Fin )  /\  a  ~~  k )  ->  E. f  f  Isom  <  ,  <  ( ( 1 ... ( `  a
) ) ,  a ) ) )  /\  ( ( x  C_  ZZ  /\  x  e.  Fin )  /\  x  ~~  suc  k ) )  ->  x  e.  Fin )
60 vex 2733 . . . . . . . . . . . . . . . 16  |-  k  e. 
_V
61 nsuceq0g 4403 . . . . . . . . . . . . . . . 16  |-  ( k  e.  _V  ->  suc  k  =/=  (/) )
6260, 61ax-mp 5 . . . . . . . . . . . . . . 15  |-  suc  k  =/=  (/)
6362neii 2342 . . . . . . . . . . . . . 14  |-  -.  suc  k  =  (/)
64 simplrr 531 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( k  e. 
om  /\  A. a
( ( ( a 
C_  ZZ  /\  a  e.  Fin )  /\  a  ~~  k )  ->  E. f 
f  Isom  <  ,  <  ( ( 1 ... ( `  a ) ) ,  a ) ) )  /\  ( ( x 
C_  ZZ  /\  x  e.  Fin )  /\  x  ~~  suc  k ) )  /\  x  =  (/) )  ->  x  ~~  suc  k )
6564ensymd 6761 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( k  e. 
om  /\  A. a
( ( ( a 
C_  ZZ  /\  a  e.  Fin )  /\  a  ~~  k )  ->  E. f 
f  Isom  <  ,  <  ( ( 1 ... ( `  a ) ) ,  a ) ) )  /\  ( ( x 
C_  ZZ  /\  x  e.  Fin )  /\  x  ~~  suc  k ) )  /\  x  =  (/) )  ->  suc  k  ~~  x )
66 simpr 109 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( k  e. 
om  /\  A. a
( ( ( a 
C_  ZZ  /\  a  e.  Fin )  /\  a  ~~  k )  ->  E. f 
f  Isom  <  ,  <  ( ( 1 ... ( `  a ) ) ,  a ) ) )  /\  ( ( x 
C_  ZZ  /\  x  e.  Fin )  /\  x  ~~  suc  k ) )  /\  x  =  (/) )  ->  x  =  (/) )
6765, 66breqtrd 4015 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( k  e. 
om  /\  A. a
( ( ( a 
C_  ZZ  /\  a  e.  Fin )  /\  a  ~~  k )  ->  E. f 
f  Isom  <  ,  <  ( ( 1 ... ( `  a ) ) ,  a ) ) )  /\  ( ( x 
C_  ZZ  /\  x  e.  Fin )  /\  x  ~~  suc  k ) )  /\  x  =  (/) )  ->  suc  k  ~~  (/) )
68 en0 6773 . . . . . . . . . . . . . . . 16  |-  ( suc  k  ~~  (/)  <->  suc  k  =  (/) )
6967, 68sylib 121 . . . . . . . . . . . . . . 15  |-  ( ( ( ( k  e. 
om  /\  A. a
( ( ( a 
C_  ZZ  /\  a  e.  Fin )  /\  a  ~~  k )  ->  E. f 
f  Isom  <  ,  <  ( ( 1 ... ( `  a ) ) ,  a ) ) )  /\  ( ( x 
C_  ZZ  /\  x  e.  Fin )  /\  x  ~~  suc  k ) )  /\  x  =  (/) )  ->  suc  k  =  (/) )
7069ex 114 . . . . . . . . . . . . . 14  |-  ( ( ( k  e.  om  /\ 
A. a ( ( ( a  C_  ZZ  /\  a  e.  Fin )  /\  a  ~~  k )  ->  E. f  f  Isom  <  ,  <  ( ( 1 ... ( `  a
) ) ,  a ) ) )  /\  ( ( x  C_  ZZ  /\  x  e.  Fin )  /\  x  ~~  suc  k ) )  -> 
( x  =  (/)  ->  suc  k  =  (/) ) )
7163, 70mtoi 659 . . . . . . . . . . . . 13  |-  ( ( ( k  e.  om  /\ 
A. a ( ( ( a  C_  ZZ  /\  a  e.  Fin )  /\  a  ~~  k )  ->  E. f  f  Isom  <  ,  <  ( ( 1 ... ( `  a
) ) ,  a ) ) )  /\  ( ( x  C_  ZZ  /\  x  e.  Fin )  /\  x  ~~  suc  k ) )  ->  -.  x  =  (/) )
7271neqned 2347 . . . . . . . . . . . 12  |-  ( ( ( k  e.  om  /\ 
A. a ( ( ( a  C_  ZZ  /\  a  e.  Fin )  /\  a  ~~  k )  ->  E. f  f  Isom  <  ,  <  ( ( 1 ... ( `  a
) ) ,  a ) ) )  /\  ( ( x  C_  ZZ  /\  x  e.  Fin )  /\  x  ~~  suc  k ) )  ->  x  =/=  (/) )
73 fimaxq 10762 . . . . . . . . . . . 12  |-  ( ( x  C_  QQ  /\  x  e.  Fin  /\  x  =/=  (/) )  ->  E. m  e.  x  A. z  e.  x  z  <_  m )
7458, 59, 72, 73syl3anc 1233 . . . . . . . . . . 11  |-  ( ( ( k  e.  om  /\ 
A. a ( ( ( a  C_  ZZ  /\  a  e.  Fin )  /\  a  ~~  k )  ->  E. f  f  Isom  <  ,  <  ( ( 1 ... ( `  a
) ) ,  a ) ) )  /\  ( ( x  C_  ZZ  /\  x  e.  Fin )  /\  x  ~~  suc  k ) )  ->  E. m  e.  x  A. z  e.  x  z  <_  m )
75 simplll 528 . . . . . . . . . . . 12  |-  ( ( ( ( k  e. 
om  /\  A. a
( ( ( a 
C_  ZZ  /\  a  e.  Fin )  /\  a  ~~  k )  ->  E. f 
f  Isom  <  ,  <  ( ( 1 ... ( `  a ) ) ,  a ) ) )  /\  ( ( x 
C_  ZZ  /\  x  e.  Fin )  /\  x  ~~  suc  k ) )  /\  ( m  e.  x  /\  A. z  e.  x  z  <_  m ) )  ->  k  e.  om )
76 simpllr 529 . . . . . . . . . . . 12  |-  ( ( ( ( k  e. 
om  /\  A. a
( ( ( a 
C_  ZZ  /\  a  e.  Fin )  /\  a  ~~  k )  ->  E. f 
f  Isom  <  ,  <  ( ( 1 ... ( `  a ) ) ,  a ) ) )  /\  ( ( x 
C_  ZZ  /\  x  e.  Fin )  /\  x  ~~  suc  k ) )  /\  ( m  e.  x  /\  A. z  e.  x  z  <_  m ) )  ->  A. a
( ( ( a 
C_  ZZ  /\  a  e.  Fin )  /\  a  ~~  k )  ->  E. f 
f  Isom  <  ,  <  ( ( 1 ... ( `  a ) ) ,  a ) ) )
7756adantr 274 . . . . . . . . . . . 12  |-  ( ( ( ( k  e. 
om  /\  A. a
( ( ( a 
C_  ZZ  /\  a  e.  Fin )  /\  a  ~~  k )  ->  E. f 
f  Isom  <  ,  <  ( ( 1 ... ( `  a ) ) ,  a ) ) )  /\  ( ( x 
C_  ZZ  /\  x  e.  Fin )  /\  x  ~~  suc  k ) )  /\  ( m  e.  x  /\  A. z  e.  x  z  <_  m ) )  ->  x  C_  ZZ )
7859adantr 274 . . . . . . . . . . . 12  |-  ( ( ( ( k  e. 
om  /\  A. a
( ( ( a 
C_  ZZ  /\  a  e.  Fin )  /\  a  ~~  k )  ->  E. f 
f  Isom  <  ,  <  ( ( 1 ... ( `  a ) ) ,  a ) ) )  /\  ( ( x 
C_  ZZ  /\  x  e.  Fin )  /\  x  ~~  suc  k ) )  /\  ( m  e.  x  /\  A. z  e.  x  z  <_  m ) )  ->  x  e.  Fin )
79 simplrr 531 . . . . . . . . . . . 12  |-  ( ( ( ( k  e. 
om  /\  A. a
( ( ( a 
C_  ZZ  /\  a  e.  Fin )  /\  a  ~~  k )  ->  E. f 
f  Isom  <  ,  <  ( ( 1 ... ( `  a ) ) ,  a ) ) )  /\  ( ( x 
C_  ZZ  /\  x  e.  Fin )  /\  x  ~~  suc  k ) )  /\  ( m  e.  x  /\  A. z  e.  x  z  <_  m ) )  ->  x  ~~  suc  k )
80 simprl 526 . . . . . . . . . . . 12  |-  ( ( ( ( k  e. 
om  /\  A. a
( ( ( a 
C_  ZZ  /\  a  e.  Fin )  /\  a  ~~  k )  ->  E. f 
f  Isom  <  ,  <  ( ( 1 ... ( `  a ) ) ,  a ) ) )  /\  ( ( x 
C_  ZZ  /\  x  e.  Fin )  /\  x  ~~  suc  k ) )  /\  ( m  e.  x  /\  A. z  e.  x  z  <_  m ) )  ->  m  e.  x )
81 simprr 527 . . . . . . . . . . . 12  |-  ( ( ( ( k  e. 
om  /\  A. a
( ( ( a 
C_  ZZ  /\  a  e.  Fin )  /\  a  ~~  k )  ->  E. f 
f  Isom  <  ,  <  ( ( 1 ... ( `  a ) ) ,  a ) ) )  /\  ( ( x 
C_  ZZ  /\  x  e.  Fin )  /\  x  ~~  suc  k ) )  /\  ( m  e.  x  /\  A. z  e.  x  z  <_  m ) )  ->  A. z  e.  x  z  <_  m )
8275, 76, 77, 78, 79, 80, 81zfz1isolem1 10775 . . . . . . . . . . 11  |-  ( ( ( ( k  e. 
om  /\  A. a
( ( ( a 
C_  ZZ  /\  a  e.  Fin )  /\  a  ~~  k )  ->  E. f 
f  Isom  <  ,  <  ( ( 1 ... ( `  a ) ) ,  a ) ) )  /\  ( ( x 
C_  ZZ  /\  x  e.  Fin )  /\  x  ~~  suc  k ) )  /\  ( m  e.  x  /\  A. z  e.  x  z  <_  m ) )  ->  E. f 
f  Isom  <  ,  <  ( ( 1 ... ( `  x ) ) ,  x ) )
8374, 82rexlimddv 2592 . . . . . . . . . 10  |-  ( ( ( k  e.  om  /\ 
A. a ( ( ( a  C_  ZZ  /\  a  e.  Fin )  /\  a  ~~  k )  ->  E. f  f  Isom  <  ,  <  ( ( 1 ... ( `  a
) ) ,  a ) ) )  /\  ( ( x  C_  ZZ  /\  x  e.  Fin )  /\  x  ~~  suc  k ) )  ->  E. f  f  Isom  <  ,  <  ( ( 1 ... ( `  x
) ) ,  x
) )
8483ex 114 . . . . . . . . 9  |-  ( ( k  e.  om  /\  A. a ( ( ( a  C_  ZZ  /\  a  e.  Fin )  /\  a  ~~  k )  ->  E. f 
f  Isom  <  ,  <  ( ( 1 ... ( `  a ) ) ,  a ) ) )  ->  ( ( ( x  C_  ZZ  /\  x  e.  Fin )  /\  x  ~~  suc  k )  ->  E. f  f  Isom  <  ,  <  ( ( 1 ... ( `  x
) ) ,  x
) ) )
8584alrimiv 1867 . . . . . . . 8  |-  ( ( k  e.  om  /\  A. a ( ( ( a  C_  ZZ  /\  a  e.  Fin )  /\  a  ~~  k )  ->  E. f 
f  Isom  <  ,  <  ( ( 1 ... ( `  a ) ) ,  a ) ) )  ->  A. x ( ( ( x  C_  ZZ  /\  x  e.  Fin )  /\  x  ~~  suc  k
)  ->  E. f 
f  Isom  <  ,  <  ( ( 1 ... ( `  x ) ) ,  x ) ) )
8685ex 114 . . . . . . 7  |-  ( k  e.  om  ->  ( A. a ( ( ( a  C_  ZZ  /\  a  e.  Fin )  /\  a  ~~  k )  ->  E. f 
f  Isom  <  ,  <  ( ( 1 ... ( `  a ) ) ,  a ) )  ->  A. x ( ( ( x  C_  ZZ  /\  x  e.  Fin )  /\  x  ~~  suc  k )  ->  E. f  f  Isom  <  ,  <  ( ( 1 ... ( `  x
) ) ,  x
) ) ) )
8755, 86syl5bir 152 . . . . . 6  |-  ( k  e.  om  ->  ( A. x ( ( ( x  C_  ZZ  /\  x  e.  Fin )  /\  x  ~~  k )  ->  E. f 
f  Isom  <  ,  <  ( ( 1 ... ( `  x ) ) ,  x ) )  ->  A. x ( ( ( x  C_  ZZ  /\  x  e.  Fin )  /\  x  ~~  suc  k )  ->  E. f  f  Isom  <  ,  <  ( ( 1 ... ( `  x
) ) ,  x
) ) ) )
888, 12, 16, 20, 41, 87finds 4584 . . . . 5  |-  ( n  e.  om  ->  A. x
( ( ( x 
C_  ZZ  /\  x  e.  Fin )  /\  x  ~~  n )  ->  E. f 
f  Isom  <  ,  <  ( ( 1 ... ( `  x ) ) ,  x ) ) )
8988adantr 274 . . . 4  |-  ( ( n  e.  om  /\  ( ( A  C_  ZZ  /\  A  e.  Fin )  /\  A  ~~  n
) )  ->  A. x
( ( ( x 
C_  ZZ  /\  x  e.  Fin )  /\  x  ~~  n )  ->  E. f 
f  Isom  <  ,  <  ( ( 1 ... ( `  x ) ) ,  x ) ) )
90 simpr 109 . . . 4  |-  ( ( n  e.  om  /\  ( ( A  C_  ZZ  /\  A  e.  Fin )  /\  A  ~~  n
) )  ->  (
( A  C_  ZZ  /\  A  e.  Fin )  /\  A  ~~  n ) )
91 sseq1 3170 . . . . . . . 8  |-  ( x  =  A  ->  (
x  C_  ZZ  <->  A  C_  ZZ ) )
92 eleq1 2233 . . . . . . . 8  |-  ( x  =  A  ->  (
x  e.  Fin  <->  A  e.  Fin ) )
9391, 92anbi12d 470 . . . . . . 7  |-  ( x  =  A  ->  (
( x  C_  ZZ  /\  x  e.  Fin )  <->  ( A  C_  ZZ  /\  A  e.  Fin ) ) )
94 breq1 3992 . . . . . . 7  |-  ( x  =  A  ->  (
x  ~~  n  <->  A  ~~  n ) )
9593, 94anbi12d 470 . . . . . 6  |-  ( x  =  A  ->  (
( ( x  C_  ZZ  /\  x  e.  Fin )  /\  x  ~~  n
)  <->  ( ( A 
C_  ZZ  /\  A  e. 
Fin )  /\  A  ~~  n ) ) )
96 fveq2 5496 . . . . . . . . . 10  |-  ( x  =  A  ->  ( `  x )  =  ( `  A ) )
9796oveq2d 5869 . . . . . . . . 9  |-  ( x  =  A  ->  (
1 ... ( `  x
) )  =  ( 1 ... ( `  A
) ) )
98 isoeq4 5783 . . . . . . . . 9  |-  ( ( 1 ... ( `  x
) )  =  ( 1 ... ( `  A
) )  ->  (
f  Isom  <  ,  <  ( ( 1 ... ( `  x ) ) ,  x )  <->  f  Isom  <  ,  <  ( ( 1 ... ( `  A
) ) ,  x
) ) )
9997, 98syl 14 . . . . . . . 8  |-  ( x  =  A  ->  (
f  Isom  <  ,  <  ( ( 1 ... ( `  x ) ) ,  x )  <->  f  Isom  <  ,  <  ( ( 1 ... ( `  A
) ) ,  x
) ) )
100 isoeq5 5784 . . . . . . . 8  |-  ( x  =  A  ->  (
f  Isom  <  ,  <  ( ( 1 ... ( `  A ) ) ,  x )  <->  f  Isom  <  ,  <  ( ( 1 ... ( `  A
) ) ,  A
) ) )
10199, 100bitrd 187 . . . . . . 7  |-  ( x  =  A  ->  (
f  Isom  <  ,  <  ( ( 1 ... ( `  x ) ) ,  x )  <->  f  Isom  <  ,  <  ( ( 1 ... ( `  A
) ) ,  A
) ) )
102101exbidv 1818 . . . . . 6  |-  ( x  =  A  ->  ( E. f  f  Isom  <  ,  <  ( ( 1 ... ( `  x
) ) ,  x
)  <->  E. f  f  Isom  <  ,  <  ( ( 1 ... ( `  A
) ) ,  A
) ) )
10395, 102imbi12d 233 . . . . 5  |-  ( x  =  A  ->  (
( ( ( x 
C_  ZZ  /\  x  e.  Fin )  /\  x  ~~  n )  ->  E. f 
f  Isom  <  ,  <  ( ( 1 ... ( `  x ) ) ,  x ) )  <->  ( (
( A  C_  ZZ  /\  A  e.  Fin )  /\  A  ~~  n )  ->  E. f  f  Isom  <  ,  <  ( ( 1 ... ( `  A
) ) ,  A
) ) ) )
104103spcgv 2817 . . . 4  |-  ( A  e.  Fin  ->  ( A. x ( ( ( x  C_  ZZ  /\  x  e.  Fin )  /\  x  ~~  n )  ->  E. f 
f  Isom  <  ,  <  ( ( 1 ... ( `  x ) ) ,  x ) )  -> 
( ( ( A 
C_  ZZ  /\  A  e. 
Fin )  /\  A  ~~  n )  ->  E. f 
f  Isom  <  ,  <  ( ( 1 ... ( `  A ) ) ,  A ) ) ) )
1054, 89, 90, 104syl3c 63 . . 3  |-  ( ( n  e.  om  /\  ( ( A  C_  ZZ  /\  A  e.  Fin )  /\  A  ~~  n
) )  ->  E. f 
f  Isom  <  ,  <  ( ( 1 ... ( `  A ) ) ,  A ) )
106105an12s 560 . 2  |-  ( ( ( A  C_  ZZ  /\  A  e.  Fin )  /\  ( n  e.  om  /\  A  ~~  n ) )  ->  E. f 
f  Isom  <  ,  <  ( ( 1 ... ( `  A ) ) ,  A ) )
1073, 106rexlimddv 2592 1  |-  ( ( A  C_  ZZ  /\  A  e.  Fin )  ->  E. f 
f  Isom  <  ,  <  ( ( 1 ... ( `  A ) ) ,  A ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104   A.wal 1346    = wceq 1348   E.wex 1485    e. wcel 2141    =/= wne 2340   A.wral 2448   E.wrex 2449   _Vcvv 2730    C_ wss 3121   (/)c0 3414   class class class wbr 3989   suc csuc 4350   omcom 4574   ` cfv 5198    Isom wiso 5199  (class class class)co 5853    ~~ cen 6716   Fincfn 6718   0cc0 7774   1c1 7775    < clt 7954    <_ cle 7955   ZZcz 9212   QQcq 9578   ...cfz 9965  ♯chash 10709
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4104  ax-sep 4107  ax-nul 4115  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-iinf 4572  ax-cnex 7865  ax-resscn 7866  ax-1cn 7867  ax-1re 7868  ax-icn 7869  ax-addcl 7870  ax-addrcl 7871  ax-mulcl 7872  ax-mulrcl 7873  ax-addcom 7874  ax-mulcom 7875  ax-addass 7876  ax-mulass 7877  ax-distr 7878  ax-i2m1 7879  ax-0lt1 7880  ax-1rid 7881  ax-0id 7882  ax-rnegex 7883  ax-precex 7884  ax-cnre 7885  ax-pre-ltirr 7886  ax-pre-ltwlin 7887  ax-pre-lttrn 7888  ax-pre-apti 7889  ax-pre-ltadd 7890  ax-pre-mulgt0 7891  ax-pre-mulext 7892
This theorem depends on definitions:  df-bi 116  df-dc 830  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-nel 2436  df-ral 2453  df-rex 2454  df-reu 2455  df-rmo 2456  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-if 3527  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-iun 3875  df-br 3990  df-opab 4051  df-mpt 4052  df-tr 4088  df-id 4278  df-po 4281  df-iso 4282  df-iord 4351  df-on 4353  df-ilim 4354  df-suc 4356  df-iom 4575  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-fv 5206  df-isom 5207  df-riota 5809  df-ov 5856  df-oprab 5857  df-mpo 5858  df-1st 6119  df-2nd 6120  df-recs 6284  df-irdg 6349  df-frec 6370  df-1o 6395  df-oadd 6399  df-er 6513  df-en 6719  df-dom 6720  df-fin 6721  df-pnf 7956  df-mnf 7957  df-xr 7958  df-ltxr 7959  df-le 7960  df-sub 8092  df-neg 8093  df-reap 8494  df-ap 8501  df-div 8590  df-inn 8879  df-n0 9136  df-z 9213  df-uz 9488  df-q 9579  df-rp 9611  df-fz 9966  df-ihash 10710
This theorem is referenced by:  summodclem2  11345  zsumdc  11347  prodmodclem2  11540  zproddc  11542
  Copyright terms: Public domain W3C validator