ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  zfz1iso Unicode version

Theorem zfz1iso 10912
Description: A finite set of integers has an order isomorphism to a one-based finite sequence. (Contributed by Jim Kingdon, 3-Sep-2022.)
Assertion
Ref Expression
zfz1iso  |-  ( ( A  C_  ZZ  /\  A  e.  Fin )  ->  E. f 
f  Isom  <  ,  <  ( ( 1 ... ( `  A ) ) ,  A ) )
Distinct variable group:    A, f

Proof of Theorem zfz1iso
Dummy variables  n  x  a  k  m  w  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isfi 6815 . . . 4  |-  ( A  e.  Fin  <->  E. n  e.  om  A  ~~  n
)
21biimpi 120 . . 3  |-  ( A  e.  Fin  ->  E. n  e.  om  A  ~~  n
)
32adantl 277 . 2  |-  ( ( A  C_  ZZ  /\  A  e.  Fin )  ->  E. n  e.  om  A  ~~  n
)
4 simprlr 538 . . . 4  |-  ( ( n  e.  om  /\  ( ( A  C_  ZZ  /\  A  e.  Fin )  /\  A  ~~  n
) )  ->  A  e.  Fin )
5 breq2 4033 . . . . . . . . 9  |-  ( w  =  (/)  ->  ( x 
~~  w  <->  x  ~~  (/) ) )
65anbi2d 464 . . . . . . . 8  |-  ( w  =  (/)  ->  ( ( ( x  C_  ZZ  /\  x  e.  Fin )  /\  x  ~~  w )  <-> 
( ( x  C_  ZZ  /\  x  e.  Fin )  /\  x  ~~  (/) ) ) )
76imbi1d 231 . . . . . . 7  |-  ( w  =  (/)  ->  ( ( ( ( x  C_  ZZ  /\  x  e.  Fin )  /\  x  ~~  w
)  ->  E. f 
f  Isom  <  ,  <  ( ( 1 ... ( `  x ) ) ,  x ) )  <->  ( (
( x  C_  ZZ  /\  x  e.  Fin )  /\  x  ~~  (/) )  ->  E. f  f  Isom  <  ,  <  ( ( 1 ... ( `  x
) ) ,  x
) ) ) )
87albidv 1835 . . . . . 6  |-  ( w  =  (/)  ->  ( A. x ( ( ( x  C_  ZZ  /\  x  e.  Fin )  /\  x  ~~  w )  ->  E. f 
f  Isom  <  ,  <  ( ( 1 ... ( `  x ) ) ,  x ) )  <->  A. x
( ( ( x 
C_  ZZ  /\  x  e.  Fin )  /\  x  ~~  (/) )  ->  E. f 
f  Isom  <  ,  <  ( ( 1 ... ( `  x ) ) ,  x ) ) ) )
9 breq2 4033 . . . . . . . . 9  |-  ( w  =  k  ->  (
x  ~~  w  <->  x  ~~  k ) )
109anbi2d 464 . . . . . . . 8  |-  ( w  =  k  ->  (
( ( x  C_  ZZ  /\  x  e.  Fin )  /\  x  ~~  w
)  <->  ( ( x 
C_  ZZ  /\  x  e.  Fin )  /\  x  ~~  k ) ) )
1110imbi1d 231 . . . . . . 7  |-  ( w  =  k  ->  (
( ( ( x 
C_  ZZ  /\  x  e.  Fin )  /\  x  ~~  w )  ->  E. f 
f  Isom  <  ,  <  ( ( 1 ... ( `  x ) ) ,  x ) )  <->  ( (
( x  C_  ZZ  /\  x  e.  Fin )  /\  x  ~~  k )  ->  E. f  f  Isom  <  ,  <  ( ( 1 ... ( `  x
) ) ,  x
) ) ) )
1211albidv 1835 . . . . . 6  |-  ( w  =  k  ->  ( A. x ( ( ( x  C_  ZZ  /\  x  e.  Fin )  /\  x  ~~  w )  ->  E. f 
f  Isom  <  ,  <  ( ( 1 ... ( `  x ) ) ,  x ) )  <->  A. x
( ( ( x 
C_  ZZ  /\  x  e.  Fin )  /\  x  ~~  k )  ->  E. f 
f  Isom  <  ,  <  ( ( 1 ... ( `  x ) ) ,  x ) ) ) )
13 breq2 4033 . . . . . . . . 9  |-  ( w  =  suc  k  -> 
( x  ~~  w  <->  x 
~~  suc  k )
)
1413anbi2d 464 . . . . . . . 8  |-  ( w  =  suc  k  -> 
( ( ( x 
C_  ZZ  /\  x  e.  Fin )  /\  x  ~~  w )  <->  ( (
x  C_  ZZ  /\  x  e.  Fin )  /\  x  ~~  suc  k ) ) )
1514imbi1d 231 . . . . . . 7  |-  ( w  =  suc  k  -> 
( ( ( ( x  C_  ZZ  /\  x  e.  Fin )  /\  x  ~~  w )  ->  E. f 
f  Isom  <  ,  <  ( ( 1 ... ( `  x ) ) ,  x ) )  <->  ( (
( x  C_  ZZ  /\  x  e.  Fin )  /\  x  ~~  suc  k
)  ->  E. f 
f  Isom  <  ,  <  ( ( 1 ... ( `  x ) ) ,  x ) ) ) )
1615albidv 1835 . . . . . 6  |-  ( w  =  suc  k  -> 
( A. x ( ( ( x  C_  ZZ  /\  x  e.  Fin )  /\  x  ~~  w
)  ->  E. f 
f  Isom  <  ,  <  ( ( 1 ... ( `  x ) ) ,  x ) )  <->  A. x
( ( ( x 
C_  ZZ  /\  x  e.  Fin )  /\  x  ~~  suc  k )  ->  E. f  f  Isom  <  ,  <  ( ( 1 ... ( `  x
) ) ,  x
) ) ) )
17 breq2 4033 . . . . . . . . 9  |-  ( w  =  n  ->  (
x  ~~  w  <->  x  ~~  n ) )
1817anbi2d 464 . . . . . . . 8  |-  ( w  =  n  ->  (
( ( x  C_  ZZ  /\  x  e.  Fin )  /\  x  ~~  w
)  <->  ( ( x 
C_  ZZ  /\  x  e.  Fin )  /\  x  ~~  n ) ) )
1918imbi1d 231 . . . . . . 7  |-  ( w  =  n  ->  (
( ( ( x 
C_  ZZ  /\  x  e.  Fin )  /\  x  ~~  w )  ->  E. f 
f  Isom  <  ,  <  ( ( 1 ... ( `  x ) ) ,  x ) )  <->  ( (
( x  C_  ZZ  /\  x  e.  Fin )  /\  x  ~~  n )  ->  E. f  f  Isom  <  ,  <  ( ( 1 ... ( `  x
) ) ,  x
) ) ) )
2019albidv 1835 . . . . . 6  |-  ( w  =  n  ->  ( A. x ( ( ( x  C_  ZZ  /\  x  e.  Fin )  /\  x  ~~  w )  ->  E. f 
f  Isom  <  ,  <  ( ( 1 ... ( `  x ) ) ,  x ) )  <->  A. x
( ( ( x 
C_  ZZ  /\  x  e.  Fin )  /\  x  ~~  n )  ->  E. f 
f  Isom  <  ,  <  ( ( 1 ... ( `  x ) ) ,  x ) ) ) )
21 iso0 5860 . . . . . . . . . 10  |-  (/)  Isom  <  ,  <  ( (/) ,  (/) )
22 en0 6849 . . . . . . . . . . . . . . . . 17  |-  ( x 
~~  (/)  <->  x  =  (/) )
2322biimpi 120 . . . . . . . . . . . . . . . 16  |-  ( x 
~~  (/)  ->  x  =  (/) )
2423fveq2d 5558 . . . . . . . . . . . . . . 15  |-  ( x 
~~  (/)  ->  ( `  x
)  =  ( `  (/) ) )
25 hash0 10867 . . . . . . . . . . . . . . 15  |-  ( `  (/) )  =  0
2624, 25eqtrdi 2242 . . . . . . . . . . . . . 14  |-  ( x 
~~  (/)  ->  ( `  x
)  =  0 )
2726oveq2d 5934 . . . . . . . . . . . . 13  |-  ( x 
~~  (/)  ->  ( 1 ... ( `  x
) )  =  ( 1 ... 0 ) )
28 fz10 10112 . . . . . . . . . . . . 13  |-  ( 1 ... 0 )  =  (/)
2927, 28eqtrdi 2242 . . . . . . . . . . . 12  |-  ( x 
~~  (/)  ->  ( 1 ... ( `  x
) )  =  (/) )
30 isoeq4 5847 . . . . . . . . . . . 12  |-  ( ( 1 ... ( `  x
) )  =  (/)  ->  ( (/)  Isom  <  ,  <  ( ( 1 ... ( `  x )
) ,  x )  <->  (/) 
Isom  <  ,  <  ( (/)
,  x ) ) )
3129, 30syl 14 . . . . . . . . . . 11  |-  ( x 
~~  (/)  ->  ( (/)  Isom  <  ,  <  ( ( 1 ... ( `  x
) ) ,  x
)  <->  (/)  Isom  <  ,  <  (
(/) ,  x )
) )
32 isoeq5 5848 . . . . . . . . . . . 12  |-  ( x  =  (/)  ->  ( (/)  Isom 
<  ,  <  ( (/) ,  x )  <->  (/)  Isom  <  ,  <  ( (/) ,  (/) ) ) )
3323, 32syl 14 . . . . . . . . . . 11  |-  ( x 
~~  (/)  ->  ( (/)  Isom  <  ,  <  ( (/) ,  x
)  <->  (/)  Isom  <  ,  <  (
(/) ,  (/) ) ) )
3431, 33bitrd 188 . . . . . . . . . 10  |-  ( x 
~~  (/)  ->  ( (/)  Isom  <  ,  <  ( ( 1 ... ( `  x
) ) ,  x
)  <->  (/)  Isom  <  ,  <  (
(/) ,  (/) ) ) )
3521, 34mpbiri 168 . . . . . . . . 9  |-  ( x 
~~  (/)  ->  (/)  Isom  <  ,  <  ( ( 1 ... ( `  x
) ) ,  x
) )
36 0ex 4156 . . . . . . . . . 10  |-  (/)  e.  _V
37 isoeq1 5844 . . . . . . . . . 10  |-  ( f  =  (/)  ->  ( f 
Isom  <  ,  <  (
( 1 ... ( `  x ) ) ,  x )  <->  (/)  Isom  <  ,  <  ( ( 1 ... ( `  x
) ) ,  x
) ) )
3836, 37spcev 2855 . . . . . . . . 9  |-  ( (/)  Isom 
<  ,  <  ( ( 1 ... ( `  x
) ) ,  x
)  ->  E. f 
f  Isom  <  ,  <  ( ( 1 ... ( `  x ) ) ,  x ) )
3935, 38syl 14 . . . . . . . 8  |-  ( x 
~~  (/)  ->  E. f 
f  Isom  <  ,  <  ( ( 1 ... ( `  x ) ) ,  x ) )
4039adantl 277 . . . . . . 7  |-  ( ( ( x  C_  ZZ  /\  x  e.  Fin )  /\  x  ~~  (/) )  ->  E. f  f  Isom  <  ,  <  ( ( 1 ... ( `  x
) ) ,  x
) )
4140ax-gen 1460 . . . . . 6  |-  A. x
( ( ( x 
C_  ZZ  /\  x  e.  Fin )  /\  x  ~~  (/) )  ->  E. f 
f  Isom  <  ,  <  ( ( 1 ... ( `  x ) ) ,  x ) )
42 sseq1 3202 . . . . . . . . . . 11  |-  ( a  =  x  ->  (
a  C_  ZZ  <->  x  C_  ZZ ) )
43 eleq1 2256 . . . . . . . . . . 11  |-  ( a  =  x  ->  (
a  e.  Fin  <->  x  e.  Fin ) )
4442, 43anbi12d 473 . . . . . . . . . 10  |-  ( a  =  x  ->  (
( a  C_  ZZ  /\  a  e.  Fin )  <->  ( x  C_  ZZ  /\  x  e.  Fin ) ) )
45 breq1 4032 . . . . . . . . . 10  |-  ( a  =  x  ->  (
a  ~~  k  <->  x  ~~  k ) )
4644, 45anbi12d 473 . . . . . . . . 9  |-  ( a  =  x  ->  (
( ( a  C_  ZZ  /\  a  e.  Fin )  /\  a  ~~  k
)  <->  ( ( x 
C_  ZZ  /\  x  e.  Fin )  /\  x  ~~  k ) ) )
47 fveq2 5554 . . . . . . . . . . . . 13  |-  ( a  =  x  ->  ( `  a )  =  ( `  x ) )
4847oveq2d 5934 . . . . . . . . . . . 12  |-  ( a  =  x  ->  (
1 ... ( `  a
) )  =  ( 1 ... ( `  x
) ) )
49 isoeq4 5847 . . . . . . . . . . . 12  |-  ( ( 1 ... ( `  a
) )  =  ( 1 ... ( `  x
) )  ->  (
f  Isom  <  ,  <  ( ( 1 ... ( `  a ) ) ,  a )  <->  f  Isom  <  ,  <  ( ( 1 ... ( `  x
) ) ,  a ) ) )
5048, 49syl 14 . . . . . . . . . . 11  |-  ( a  =  x  ->  (
f  Isom  <  ,  <  ( ( 1 ... ( `  a ) ) ,  a )  <->  f  Isom  <  ,  <  ( ( 1 ... ( `  x
) ) ,  a ) ) )
51 isoeq5 5848 . . . . . . . . . . 11  |-  ( a  =  x  ->  (
f  Isom  <  ,  <  ( ( 1 ... ( `  x ) ) ,  a )  <->  f  Isom  <  ,  <  ( ( 1 ... ( `  x
) ) ,  x
) ) )
5250, 51bitrd 188 . . . . . . . . . 10  |-  ( a  =  x  ->  (
f  Isom  <  ,  <  ( ( 1 ... ( `  a ) ) ,  a )  <->  f  Isom  <  ,  <  ( ( 1 ... ( `  x
) ) ,  x
) ) )
5352exbidv 1836 . . . . . . . . 9  |-  ( a  =  x  ->  ( E. f  f  Isom  <  ,  <  ( ( 1 ... ( `  a
) ) ,  a )  <->  E. f  f  Isom  <  ,  <  ( ( 1 ... ( `  x
) ) ,  x
) ) )
5446, 53imbi12d 234 . . . . . . . 8  |-  ( a  =  x  ->  (
( ( ( a 
C_  ZZ  /\  a  e.  Fin )  /\  a  ~~  k )  ->  E. f 
f  Isom  <  ,  <  ( ( 1 ... ( `  a ) ) ,  a ) )  <->  ( (
( x  C_  ZZ  /\  x  e.  Fin )  /\  x  ~~  k )  ->  E. f  f  Isom  <  ,  <  ( ( 1 ... ( `  x
) ) ,  x
) ) ) )
5554cbvalv 1929 . . . . . . 7  |-  ( A. a ( ( ( a  C_  ZZ  /\  a  e.  Fin )  /\  a  ~~  k )  ->  E. f 
f  Isom  <  ,  <  ( ( 1 ... ( `  a ) ) ,  a ) )  <->  A. x
( ( ( x 
C_  ZZ  /\  x  e.  Fin )  /\  x  ~~  k )  ->  E. f 
f  Isom  <  ,  <  ( ( 1 ... ( `  x ) ) ,  x ) ) )
56 simprll 537 . . . . . . . . . . . . 13  |-  ( ( ( k  e.  om  /\ 
A. a ( ( ( a  C_  ZZ  /\  a  e.  Fin )  /\  a  ~~  k )  ->  E. f  f  Isom  <  ,  <  ( ( 1 ... ( `  a
) ) ,  a ) ) )  /\  ( ( x  C_  ZZ  /\  x  e.  Fin )  /\  x  ~~  suc  k ) )  ->  x  C_  ZZ )
57 zssq 9692 . . . . . . . . . . . . 13  |-  ZZ  C_  QQ
5856, 57sstrdi 3191 . . . . . . . . . . . 12  |-  ( ( ( k  e.  om  /\ 
A. a ( ( ( a  C_  ZZ  /\  a  e.  Fin )  /\  a  ~~  k )  ->  E. f  f  Isom  <  ,  <  ( ( 1 ... ( `  a
) ) ,  a ) ) )  /\  ( ( x  C_  ZZ  /\  x  e.  Fin )  /\  x  ~~  suc  k ) )  ->  x  C_  QQ )
59 simprlr 538 . . . . . . . . . . . 12  |-  ( ( ( k  e.  om  /\ 
A. a ( ( ( a  C_  ZZ  /\  a  e.  Fin )  /\  a  ~~  k )  ->  E. f  f  Isom  <  ,  <  ( ( 1 ... ( `  a
) ) ,  a ) ) )  /\  ( ( x  C_  ZZ  /\  x  e.  Fin )  /\  x  ~~  suc  k ) )  ->  x  e.  Fin )
60 vex 2763 . . . . . . . . . . . . . . . 16  |-  k  e. 
_V
61 nsuceq0g 4449 . . . . . . . . . . . . . . . 16  |-  ( k  e.  _V  ->  suc  k  =/=  (/) )
6260, 61ax-mp 5 . . . . . . . . . . . . . . 15  |-  suc  k  =/=  (/)
6362neii 2366 . . . . . . . . . . . . . 14  |-  -.  suc  k  =  (/)
64 simplrr 536 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( k  e. 
om  /\  A. a
( ( ( a 
C_  ZZ  /\  a  e.  Fin )  /\  a  ~~  k )  ->  E. f 
f  Isom  <  ,  <  ( ( 1 ... ( `  a ) ) ,  a ) ) )  /\  ( ( x 
C_  ZZ  /\  x  e.  Fin )  /\  x  ~~  suc  k ) )  /\  x  =  (/) )  ->  x  ~~  suc  k )
6564ensymd 6837 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( k  e. 
om  /\  A. a
( ( ( a 
C_  ZZ  /\  a  e.  Fin )  /\  a  ~~  k )  ->  E. f 
f  Isom  <  ,  <  ( ( 1 ... ( `  a ) ) ,  a ) ) )  /\  ( ( x 
C_  ZZ  /\  x  e.  Fin )  /\  x  ~~  suc  k ) )  /\  x  =  (/) )  ->  suc  k  ~~  x )
66 simpr 110 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( k  e. 
om  /\  A. a
( ( ( a 
C_  ZZ  /\  a  e.  Fin )  /\  a  ~~  k )  ->  E. f 
f  Isom  <  ,  <  ( ( 1 ... ( `  a ) ) ,  a ) ) )  /\  ( ( x 
C_  ZZ  /\  x  e.  Fin )  /\  x  ~~  suc  k ) )  /\  x  =  (/) )  ->  x  =  (/) )
6765, 66breqtrd 4055 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( k  e. 
om  /\  A. a
( ( ( a 
C_  ZZ  /\  a  e.  Fin )  /\  a  ~~  k )  ->  E. f 
f  Isom  <  ,  <  ( ( 1 ... ( `  a ) ) ,  a ) ) )  /\  ( ( x 
C_  ZZ  /\  x  e.  Fin )  /\  x  ~~  suc  k ) )  /\  x  =  (/) )  ->  suc  k  ~~  (/) )
68 en0 6849 . . . . . . . . . . . . . . . 16  |-  ( suc  k  ~~  (/)  <->  suc  k  =  (/) )
6967, 68sylib 122 . . . . . . . . . . . . . . 15  |-  ( ( ( ( k  e. 
om  /\  A. a
( ( ( a 
C_  ZZ  /\  a  e.  Fin )  /\  a  ~~  k )  ->  E. f 
f  Isom  <  ,  <  ( ( 1 ... ( `  a ) ) ,  a ) ) )  /\  ( ( x 
C_  ZZ  /\  x  e.  Fin )  /\  x  ~~  suc  k ) )  /\  x  =  (/) )  ->  suc  k  =  (/) )
7069ex 115 . . . . . . . . . . . . . 14  |-  ( ( ( k  e.  om  /\ 
A. a ( ( ( a  C_  ZZ  /\  a  e.  Fin )  /\  a  ~~  k )  ->  E. f  f  Isom  <  ,  <  ( ( 1 ... ( `  a
) ) ,  a ) ) )  /\  ( ( x  C_  ZZ  /\  x  e.  Fin )  /\  x  ~~  suc  k ) )  -> 
( x  =  (/)  ->  suc  k  =  (/) ) )
7163, 70mtoi 665 . . . . . . . . . . . . 13  |-  ( ( ( k  e.  om  /\ 
A. a ( ( ( a  C_  ZZ  /\  a  e.  Fin )  /\  a  ~~  k )  ->  E. f  f  Isom  <  ,  <  ( ( 1 ... ( `  a
) ) ,  a ) ) )  /\  ( ( x  C_  ZZ  /\  x  e.  Fin )  /\  x  ~~  suc  k ) )  ->  -.  x  =  (/) )
7271neqned 2371 . . . . . . . . . . . 12  |-  ( ( ( k  e.  om  /\ 
A. a ( ( ( a  C_  ZZ  /\  a  e.  Fin )  /\  a  ~~  k )  ->  E. f  f  Isom  <  ,  <  ( ( 1 ... ( `  a
) ) ,  a ) ) )  /\  ( ( x  C_  ZZ  /\  x  e.  Fin )  /\  x  ~~  suc  k ) )  ->  x  =/=  (/) )
73 fimaxq 10898 . . . . . . . . . . . 12  |-  ( ( x  C_  QQ  /\  x  e.  Fin  /\  x  =/=  (/) )  ->  E. m  e.  x  A. z  e.  x  z  <_  m )
7458, 59, 72, 73syl3anc 1249 . . . . . . . . . . 11  |-  ( ( ( k  e.  om  /\ 
A. a ( ( ( a  C_  ZZ  /\  a  e.  Fin )  /\  a  ~~  k )  ->  E. f  f  Isom  <  ,  <  ( ( 1 ... ( `  a
) ) ,  a ) ) )  /\  ( ( x  C_  ZZ  /\  x  e.  Fin )  /\  x  ~~  suc  k ) )  ->  E. m  e.  x  A. z  e.  x  z  <_  m )
75 simplll 533 . . . . . . . . . . . 12  |-  ( ( ( ( k  e. 
om  /\  A. a
( ( ( a 
C_  ZZ  /\  a  e.  Fin )  /\  a  ~~  k )  ->  E. f 
f  Isom  <  ,  <  ( ( 1 ... ( `  a ) ) ,  a ) ) )  /\  ( ( x 
C_  ZZ  /\  x  e.  Fin )  /\  x  ~~  suc  k ) )  /\  ( m  e.  x  /\  A. z  e.  x  z  <_  m ) )  ->  k  e.  om )
76 simpllr 534 . . . . . . . . . . . 12  |-  ( ( ( ( k  e. 
om  /\  A. a
( ( ( a 
C_  ZZ  /\  a  e.  Fin )  /\  a  ~~  k )  ->  E. f 
f  Isom  <  ,  <  ( ( 1 ... ( `  a ) ) ,  a ) ) )  /\  ( ( x 
C_  ZZ  /\  x  e.  Fin )  /\  x  ~~  suc  k ) )  /\  ( m  e.  x  /\  A. z  e.  x  z  <_  m ) )  ->  A. a
( ( ( a 
C_  ZZ  /\  a  e.  Fin )  /\  a  ~~  k )  ->  E. f 
f  Isom  <  ,  <  ( ( 1 ... ( `  a ) ) ,  a ) ) )
7756adantr 276 . . . . . . . . . . . 12  |-  ( ( ( ( k  e. 
om  /\  A. a
( ( ( a 
C_  ZZ  /\  a  e.  Fin )  /\  a  ~~  k )  ->  E. f 
f  Isom  <  ,  <  ( ( 1 ... ( `  a ) ) ,  a ) ) )  /\  ( ( x 
C_  ZZ  /\  x  e.  Fin )  /\  x  ~~  suc  k ) )  /\  ( m  e.  x  /\  A. z  e.  x  z  <_  m ) )  ->  x  C_  ZZ )
7859adantr 276 . . . . . . . . . . . 12  |-  ( ( ( ( k  e. 
om  /\  A. a
( ( ( a 
C_  ZZ  /\  a  e.  Fin )  /\  a  ~~  k )  ->  E. f 
f  Isom  <  ,  <  ( ( 1 ... ( `  a ) ) ,  a ) ) )  /\  ( ( x 
C_  ZZ  /\  x  e.  Fin )  /\  x  ~~  suc  k ) )  /\  ( m  e.  x  /\  A. z  e.  x  z  <_  m ) )  ->  x  e.  Fin )
79 simplrr 536 . . . . . . . . . . . 12  |-  ( ( ( ( k  e. 
om  /\  A. a
( ( ( a 
C_  ZZ  /\  a  e.  Fin )  /\  a  ~~  k )  ->  E. f 
f  Isom  <  ,  <  ( ( 1 ... ( `  a ) ) ,  a ) ) )  /\  ( ( x 
C_  ZZ  /\  x  e.  Fin )  /\  x  ~~  suc  k ) )  /\  ( m  e.  x  /\  A. z  e.  x  z  <_  m ) )  ->  x  ~~  suc  k )
80 simprl 529 . . . . . . . . . . . 12  |-  ( ( ( ( k  e. 
om  /\  A. a
( ( ( a 
C_  ZZ  /\  a  e.  Fin )  /\  a  ~~  k )  ->  E. f 
f  Isom  <  ,  <  ( ( 1 ... ( `  a ) ) ,  a ) ) )  /\  ( ( x 
C_  ZZ  /\  x  e.  Fin )  /\  x  ~~  suc  k ) )  /\  ( m  e.  x  /\  A. z  e.  x  z  <_  m ) )  ->  m  e.  x )
81 simprr 531 . . . . . . . . . . . 12  |-  ( ( ( ( k  e. 
om  /\  A. a
( ( ( a 
C_  ZZ  /\  a  e.  Fin )  /\  a  ~~  k )  ->  E. f 
f  Isom  <  ,  <  ( ( 1 ... ( `  a ) ) ,  a ) ) )  /\  ( ( x 
C_  ZZ  /\  x  e.  Fin )  /\  x  ~~  suc  k ) )  /\  ( m  e.  x  /\  A. z  e.  x  z  <_  m ) )  ->  A. z  e.  x  z  <_  m )
8275, 76, 77, 78, 79, 80, 81zfz1isolem1 10911 . . . . . . . . . . 11  |-  ( ( ( ( k  e. 
om  /\  A. a
( ( ( a 
C_  ZZ  /\  a  e.  Fin )  /\  a  ~~  k )  ->  E. f 
f  Isom  <  ,  <  ( ( 1 ... ( `  a ) ) ,  a ) ) )  /\  ( ( x 
C_  ZZ  /\  x  e.  Fin )  /\  x  ~~  suc  k ) )  /\  ( m  e.  x  /\  A. z  e.  x  z  <_  m ) )  ->  E. f 
f  Isom  <  ,  <  ( ( 1 ... ( `  x ) ) ,  x ) )
8374, 82rexlimddv 2616 . . . . . . . . . 10  |-  ( ( ( k  e.  om  /\ 
A. a ( ( ( a  C_  ZZ  /\  a  e.  Fin )  /\  a  ~~  k )  ->  E. f  f  Isom  <  ,  <  ( ( 1 ... ( `  a
) ) ,  a ) ) )  /\  ( ( x  C_  ZZ  /\  x  e.  Fin )  /\  x  ~~  suc  k ) )  ->  E. f  f  Isom  <  ,  <  ( ( 1 ... ( `  x
) ) ,  x
) )
8483ex 115 . . . . . . . . 9  |-  ( ( k  e.  om  /\  A. a ( ( ( a  C_  ZZ  /\  a  e.  Fin )  /\  a  ~~  k )  ->  E. f 
f  Isom  <  ,  <  ( ( 1 ... ( `  a ) ) ,  a ) ) )  ->  ( ( ( x  C_  ZZ  /\  x  e.  Fin )  /\  x  ~~  suc  k )  ->  E. f  f  Isom  <  ,  <  ( ( 1 ... ( `  x
) ) ,  x
) ) )
8584alrimiv 1885 . . . . . . . 8  |-  ( ( k  e.  om  /\  A. a ( ( ( a  C_  ZZ  /\  a  e.  Fin )  /\  a  ~~  k )  ->  E. f 
f  Isom  <  ,  <  ( ( 1 ... ( `  a ) ) ,  a ) ) )  ->  A. x ( ( ( x  C_  ZZ  /\  x  e.  Fin )  /\  x  ~~  suc  k
)  ->  E. f 
f  Isom  <  ,  <  ( ( 1 ... ( `  x ) ) ,  x ) ) )
8685ex 115 . . . . . . 7  |-  ( k  e.  om  ->  ( A. a ( ( ( a  C_  ZZ  /\  a  e.  Fin )  /\  a  ~~  k )  ->  E. f 
f  Isom  <  ,  <  ( ( 1 ... ( `  a ) ) ,  a ) )  ->  A. x ( ( ( x  C_  ZZ  /\  x  e.  Fin )  /\  x  ~~  suc  k )  ->  E. f  f  Isom  <  ,  <  ( ( 1 ... ( `  x
) ) ,  x
) ) ) )
8755, 86biimtrrid 153 . . . . . 6  |-  ( k  e.  om  ->  ( A. x ( ( ( x  C_  ZZ  /\  x  e.  Fin )  /\  x  ~~  k )  ->  E. f 
f  Isom  <  ,  <  ( ( 1 ... ( `  x ) ) ,  x ) )  ->  A. x ( ( ( x  C_  ZZ  /\  x  e.  Fin )  /\  x  ~~  suc  k )  ->  E. f  f  Isom  <  ,  <  ( ( 1 ... ( `  x
) ) ,  x
) ) ) )
888, 12, 16, 20, 41, 87finds 4632 . . . . 5  |-  ( n  e.  om  ->  A. x
( ( ( x 
C_  ZZ  /\  x  e.  Fin )  /\  x  ~~  n )  ->  E. f 
f  Isom  <  ,  <  ( ( 1 ... ( `  x ) ) ,  x ) ) )
8988adantr 276 . . . 4  |-  ( ( n  e.  om  /\  ( ( A  C_  ZZ  /\  A  e.  Fin )  /\  A  ~~  n
) )  ->  A. x
( ( ( x 
C_  ZZ  /\  x  e.  Fin )  /\  x  ~~  n )  ->  E. f 
f  Isom  <  ,  <  ( ( 1 ... ( `  x ) ) ,  x ) ) )
90 simpr 110 . . . 4  |-  ( ( n  e.  om  /\  ( ( A  C_  ZZ  /\  A  e.  Fin )  /\  A  ~~  n
) )  ->  (
( A  C_  ZZ  /\  A  e.  Fin )  /\  A  ~~  n ) )
91 sseq1 3202 . . . . . . . 8  |-  ( x  =  A  ->  (
x  C_  ZZ  <->  A  C_  ZZ ) )
92 eleq1 2256 . . . . . . . 8  |-  ( x  =  A  ->  (
x  e.  Fin  <->  A  e.  Fin ) )
9391, 92anbi12d 473 . . . . . . 7  |-  ( x  =  A  ->  (
( x  C_  ZZ  /\  x  e.  Fin )  <->  ( A  C_  ZZ  /\  A  e.  Fin ) ) )
94 breq1 4032 . . . . . . 7  |-  ( x  =  A  ->  (
x  ~~  n  <->  A  ~~  n ) )
9593, 94anbi12d 473 . . . . . 6  |-  ( x  =  A  ->  (
( ( x  C_  ZZ  /\  x  e.  Fin )  /\  x  ~~  n
)  <->  ( ( A 
C_  ZZ  /\  A  e. 
Fin )  /\  A  ~~  n ) ) )
96 fveq2 5554 . . . . . . . . . 10  |-  ( x  =  A  ->  ( `  x )  =  ( `  A ) )
9796oveq2d 5934 . . . . . . . . 9  |-  ( x  =  A  ->  (
1 ... ( `  x
) )  =  ( 1 ... ( `  A
) ) )
98 isoeq4 5847 . . . . . . . . 9  |-  ( ( 1 ... ( `  x
) )  =  ( 1 ... ( `  A
) )  ->  (
f  Isom  <  ,  <  ( ( 1 ... ( `  x ) ) ,  x )  <->  f  Isom  <  ,  <  ( ( 1 ... ( `  A
) ) ,  x
) ) )
9997, 98syl 14 . . . . . . . 8  |-  ( x  =  A  ->  (
f  Isom  <  ,  <  ( ( 1 ... ( `  x ) ) ,  x )  <->  f  Isom  <  ,  <  ( ( 1 ... ( `  A
) ) ,  x
) ) )
100 isoeq5 5848 . . . . . . . 8  |-  ( x  =  A  ->  (
f  Isom  <  ,  <  ( ( 1 ... ( `  A ) ) ,  x )  <->  f  Isom  <  ,  <  ( ( 1 ... ( `  A
) ) ,  A
) ) )
10199, 100bitrd 188 . . . . . . 7  |-  ( x  =  A  ->  (
f  Isom  <  ,  <  ( ( 1 ... ( `  x ) ) ,  x )  <->  f  Isom  <  ,  <  ( ( 1 ... ( `  A
) ) ,  A
) ) )
102101exbidv 1836 . . . . . 6  |-  ( x  =  A  ->  ( E. f  f  Isom  <  ,  <  ( ( 1 ... ( `  x
) ) ,  x
)  <->  E. f  f  Isom  <  ,  <  ( ( 1 ... ( `  A
) ) ,  A
) ) )
10395, 102imbi12d 234 . . . . 5  |-  ( x  =  A  ->  (
( ( ( x 
C_  ZZ  /\  x  e.  Fin )  /\  x  ~~  n )  ->  E. f 
f  Isom  <  ,  <  ( ( 1 ... ( `  x ) ) ,  x ) )  <->  ( (
( A  C_  ZZ  /\  A  e.  Fin )  /\  A  ~~  n )  ->  E. f  f  Isom  <  ,  <  ( ( 1 ... ( `  A
) ) ,  A
) ) ) )
104103spcgv 2847 . . . 4  |-  ( A  e.  Fin  ->  ( A. x ( ( ( x  C_  ZZ  /\  x  e.  Fin )  /\  x  ~~  n )  ->  E. f 
f  Isom  <  ,  <  ( ( 1 ... ( `  x ) ) ,  x ) )  -> 
( ( ( A 
C_  ZZ  /\  A  e. 
Fin )  /\  A  ~~  n )  ->  E. f 
f  Isom  <  ,  <  ( ( 1 ... ( `  A ) ) ,  A ) ) ) )
1054, 89, 90, 104syl3c 63 . . 3  |-  ( ( n  e.  om  /\  ( ( A  C_  ZZ  /\  A  e.  Fin )  /\  A  ~~  n
) )  ->  E. f 
f  Isom  <  ,  <  ( ( 1 ... ( `  A ) ) ,  A ) )
106105an12s 565 . 2  |-  ( ( ( A  C_  ZZ  /\  A  e.  Fin )  /\  ( n  e.  om  /\  A  ~~  n ) )  ->  E. f 
f  Isom  <  ,  <  ( ( 1 ... ( `  A ) ) ,  A ) )
1073, 106rexlimddv 2616 1  |-  ( ( A  C_  ZZ  /\  A  e.  Fin )  ->  E. f 
f  Isom  <  ,  <  ( ( 1 ... ( `  A ) ) ,  A ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105   A.wal 1362    = wceq 1364   E.wex 1503    e. wcel 2164    =/= wne 2364   A.wral 2472   E.wrex 2473   _Vcvv 2760    C_ wss 3153   (/)c0 3446   class class class wbr 4029   suc csuc 4396   omcom 4622   ` cfv 5254    Isom wiso 5255  (class class class)co 5918    ~~ cen 6792   Fincfn 6794   0cc0 7872   1c1 7873    < clt 8054    <_ cle 8055   ZZcz 9317   QQcq 9684   ...cfz 10074  ♯chash 10846
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-nul 4155  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-iinf 4620  ax-cnex 7963  ax-resscn 7964  ax-1cn 7965  ax-1re 7966  ax-icn 7967  ax-addcl 7968  ax-addrcl 7969  ax-mulcl 7970  ax-mulrcl 7971  ax-addcom 7972  ax-mulcom 7973  ax-addass 7974  ax-mulass 7975  ax-distr 7976  ax-i2m1 7977  ax-0lt1 7978  ax-1rid 7979  ax-0id 7980  ax-rnegex 7981  ax-precex 7982  ax-cnre 7983  ax-pre-ltirr 7984  ax-pre-ltwlin 7985  ax-pre-lttrn 7986  ax-pre-apti 7987  ax-pre-ltadd 7988  ax-pre-mulgt0 7989  ax-pre-mulext 7990
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-if 3558  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-tr 4128  df-id 4324  df-po 4327  df-iso 4328  df-iord 4397  df-on 4399  df-ilim 4400  df-suc 4402  df-iom 4623  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-isom 5263  df-riota 5873  df-ov 5921  df-oprab 5922  df-mpo 5923  df-1st 6193  df-2nd 6194  df-recs 6358  df-irdg 6423  df-frec 6444  df-1o 6469  df-oadd 6473  df-er 6587  df-en 6795  df-dom 6796  df-fin 6797  df-pnf 8056  df-mnf 8057  df-xr 8058  df-ltxr 8059  df-le 8060  df-sub 8192  df-neg 8193  df-reap 8594  df-ap 8601  df-div 8692  df-inn 8983  df-n0 9241  df-z 9318  df-uz 9593  df-q 9685  df-rp 9720  df-fz 10075  df-ihash 10847
This theorem is referenced by:  summodclem2  11525  zsumdc  11527  prodmodclem2  11720  zproddc  11722
  Copyright terms: Public domain W3C validator