![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > iunrab | GIF version |
Description: The indexed union of a restricted class abstraction. (Contributed by NM, 3-Jan-2004.) (Proof shortened by Mario Carneiro, 14-Nov-2016.) |
Ref | Expression |
---|---|
iunrab | ⊢ ∪ 𝑥 ∈ 𝐴 {𝑦 ∈ 𝐵 ∣ 𝜑} = {𝑦 ∈ 𝐵 ∣ ∃𝑥 ∈ 𝐴 𝜑} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iunab 3945 | . 2 ⊢ ∪ 𝑥 ∈ 𝐴 {𝑦 ∣ (𝑦 ∈ 𝐵 ∧ 𝜑)} = {𝑦 ∣ ∃𝑥 ∈ 𝐴 (𝑦 ∈ 𝐵 ∧ 𝜑)} | |
2 | df-rab 2474 | . . . 4 ⊢ {𝑦 ∈ 𝐵 ∣ 𝜑} = {𝑦 ∣ (𝑦 ∈ 𝐵 ∧ 𝜑)} | |
3 | 2 | a1i 9 | . . 3 ⊢ (𝑥 ∈ 𝐴 → {𝑦 ∈ 𝐵 ∣ 𝜑} = {𝑦 ∣ (𝑦 ∈ 𝐵 ∧ 𝜑)}) |
4 | 3 | iuneq2i 3916 | . 2 ⊢ ∪ 𝑥 ∈ 𝐴 {𝑦 ∈ 𝐵 ∣ 𝜑} = ∪ 𝑥 ∈ 𝐴 {𝑦 ∣ (𝑦 ∈ 𝐵 ∧ 𝜑)} |
5 | df-rab 2474 | . . 3 ⊢ {𝑦 ∈ 𝐵 ∣ ∃𝑥 ∈ 𝐴 𝜑} = {𝑦 ∣ (𝑦 ∈ 𝐵 ∧ ∃𝑥 ∈ 𝐴 𝜑)} | |
6 | r19.42v 2644 | . . . 4 ⊢ (∃𝑥 ∈ 𝐴 (𝑦 ∈ 𝐵 ∧ 𝜑) ↔ (𝑦 ∈ 𝐵 ∧ ∃𝑥 ∈ 𝐴 𝜑)) | |
7 | 6 | abbii 2303 | . . 3 ⊢ {𝑦 ∣ ∃𝑥 ∈ 𝐴 (𝑦 ∈ 𝐵 ∧ 𝜑)} = {𝑦 ∣ (𝑦 ∈ 𝐵 ∧ ∃𝑥 ∈ 𝐴 𝜑)} |
8 | 5, 7 | eqtr4i 2211 | . 2 ⊢ {𝑦 ∈ 𝐵 ∣ ∃𝑥 ∈ 𝐴 𝜑} = {𝑦 ∣ ∃𝑥 ∈ 𝐴 (𝑦 ∈ 𝐵 ∧ 𝜑)} |
9 | 1, 4, 8 | 3eqtr4i 2218 | 1 ⊢ ∪ 𝑥 ∈ 𝐴 {𝑦 ∈ 𝐵 ∣ 𝜑} = {𝑦 ∈ 𝐵 ∣ ∃𝑥 ∈ 𝐴 𝜑} |
Colors of variables: wff set class |
Syntax hints: ∧ wa 104 = wceq 1363 ∈ wcel 2158 {cab 2173 ∃wrex 2466 {crab 2469 ∪ ciun 3898 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1457 ax-7 1458 ax-gen 1459 ax-ie1 1503 ax-ie2 1504 ax-8 1514 ax-10 1515 ax-11 1516 ax-i12 1517 ax-bndl 1519 ax-4 1520 ax-17 1536 ax-i9 1540 ax-ial 1544 ax-i5r 1545 ax-ext 2169 |
This theorem depends on definitions: df-bi 117 df-tru 1366 df-nf 1471 df-sb 1773 df-clab 2174 df-cleq 2180 df-clel 2183 df-nfc 2318 df-ral 2470 df-rex 2471 df-rab 2474 df-v 2751 df-in 3147 df-ss 3154 df-iun 3900 |
This theorem is referenced by: hashrabrex 11503 phisum 12254 |
Copyright terms: Public domain | W3C validator |