ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iunsuc GIF version

Theorem iunsuc 4432
Description: Inductive definition for the indexed union at a successor. (Contributed by Mario Carneiro, 4-Feb-2013.) (Proof shortened by Mario Carneiro, 18-Nov-2016.)
Hypotheses
Ref Expression
iunsuc.1 𝐴 ∈ V
iunsuc.2 (𝑥 = 𝐴𝐵 = 𝐶)
Assertion
Ref Expression
iunsuc 𝑥 ∈ suc 𝐴𝐵 = ( 𝑥𝐴 𝐵𝐶)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐶
Allowed substitution hint:   𝐵(𝑥)

Proof of Theorem iunsuc
StepHypRef Expression
1 df-suc 4383 . . 3 suc 𝐴 = (𝐴 ∪ {𝐴})
2 iuneq1 3911 . . 3 (suc 𝐴 = (𝐴 ∪ {𝐴}) → 𝑥 ∈ suc 𝐴𝐵 = 𝑥 ∈ (𝐴 ∪ {𝐴})𝐵)
31, 2ax-mp 5 . 2 𝑥 ∈ suc 𝐴𝐵 = 𝑥 ∈ (𝐴 ∪ {𝐴})𝐵
4 iunxun 3978 . 2 𝑥 ∈ (𝐴 ∪ {𝐴})𝐵 = ( 𝑥𝐴 𝐵 𝑥 ∈ {𝐴}𝐵)
5 iunsuc.1 . . . 4 𝐴 ∈ V
6 iunsuc.2 . . . 4 (𝑥 = 𝐴𝐵 = 𝐶)
75, 6iunxsn 3975 . . 3 𝑥 ∈ {𝐴}𝐵 = 𝐶
87uneq2i 3298 . 2 ( 𝑥𝐴 𝐵 𝑥 ∈ {𝐴}𝐵) = ( 𝑥𝐴 𝐵𝐶)
93, 4, 83eqtri 2212 1 𝑥 ∈ suc 𝐴𝐵 = ( 𝑥𝐴 𝐵𝐶)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1363  wcel 2158  Vcvv 2749  cun 3139  {csn 3604   ciun 3898  suc csuc 4377
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1457  ax-7 1458  ax-gen 1459  ax-ie1 1503  ax-ie2 1504  ax-8 1514  ax-10 1515  ax-11 1516  ax-i12 1517  ax-bndl 1519  ax-4 1520  ax-17 1536  ax-i9 1540  ax-ial 1544  ax-i5r 1545  ax-ext 2169
This theorem depends on definitions:  df-bi 117  df-3an 981  df-tru 1366  df-nf 1471  df-sb 1773  df-clab 2174  df-cleq 2180  df-clel 2183  df-nfc 2318  df-ral 2470  df-rex 2471  df-v 2751  df-sbc 2975  df-un 3145  df-in 3147  df-ss 3154  df-sn 3610  df-iun 3900  df-suc 4383
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator