ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iunsuc GIF version

Theorem iunsuc 4380
Description: Inductive definition for the indexed union at a successor. (Contributed by Mario Carneiro, 4-Feb-2013.) (Proof shortened by Mario Carneiro, 18-Nov-2016.)
Hypotheses
Ref Expression
iunsuc.1 𝐴 ∈ V
iunsuc.2 (𝑥 = 𝐴𝐵 = 𝐶)
Assertion
Ref Expression
iunsuc 𝑥 ∈ suc 𝐴𝐵 = ( 𝑥𝐴 𝐵𝐶)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐶
Allowed substitution hint:   𝐵(𝑥)

Proof of Theorem iunsuc
StepHypRef Expression
1 df-suc 4331 . . 3 suc 𝐴 = (𝐴 ∪ {𝐴})
2 iuneq1 3862 . . 3 (suc 𝐴 = (𝐴 ∪ {𝐴}) → 𝑥 ∈ suc 𝐴𝐵 = 𝑥 ∈ (𝐴 ∪ {𝐴})𝐵)
31, 2ax-mp 5 . 2 𝑥 ∈ suc 𝐴𝐵 = 𝑥 ∈ (𝐴 ∪ {𝐴})𝐵
4 iunxun 3928 . 2 𝑥 ∈ (𝐴 ∪ {𝐴})𝐵 = ( 𝑥𝐴 𝐵 𝑥 ∈ {𝐴}𝐵)
5 iunsuc.1 . . . 4 𝐴 ∈ V
6 iunsuc.2 . . . 4 (𝑥 = 𝐴𝐵 = 𝐶)
75, 6iunxsn 3925 . . 3 𝑥 ∈ {𝐴}𝐵 = 𝐶
87uneq2i 3258 . 2 ( 𝑥𝐴 𝐵 𝑥 ∈ {𝐴}𝐵) = ( 𝑥𝐴 𝐵𝐶)
93, 4, 83eqtri 2182 1 𝑥 ∈ suc 𝐴𝐵 = ( 𝑥𝐴 𝐵𝐶)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1335  wcel 2128  Vcvv 2712  cun 3100  {csn 3560   ciun 3849  suc csuc 4325
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2139
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1338  df-nf 1441  df-sb 1743  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-ral 2440  df-rex 2441  df-v 2714  df-sbc 2938  df-un 3106  df-in 3108  df-ss 3115  df-sn 3566  df-iun 3851  df-suc 4331
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator