![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > iunsuc | GIF version |
Description: Inductive definition for the indexed union at a successor. (Contributed by Mario Carneiro, 4-Feb-2013.) (Proof shortened by Mario Carneiro, 18-Nov-2016.) |
Ref | Expression |
---|---|
iunsuc.1 | ⊢ 𝐴 ∈ V |
iunsuc.2 | ⊢ (𝑥 = 𝐴 → 𝐵 = 𝐶) |
Ref | Expression |
---|---|
iunsuc | ⊢ ∪ 𝑥 ∈ suc 𝐴𝐵 = (∪ 𝑥 ∈ 𝐴 𝐵 ∪ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-suc 4402 | . . 3 ⊢ suc 𝐴 = (𝐴 ∪ {𝐴}) | |
2 | iuneq1 3925 | . . 3 ⊢ (suc 𝐴 = (𝐴 ∪ {𝐴}) → ∪ 𝑥 ∈ suc 𝐴𝐵 = ∪ 𝑥 ∈ (𝐴 ∪ {𝐴})𝐵) | |
3 | 1, 2 | ax-mp 5 | . 2 ⊢ ∪ 𝑥 ∈ suc 𝐴𝐵 = ∪ 𝑥 ∈ (𝐴 ∪ {𝐴})𝐵 |
4 | iunxun 3992 | . 2 ⊢ ∪ 𝑥 ∈ (𝐴 ∪ {𝐴})𝐵 = (∪ 𝑥 ∈ 𝐴 𝐵 ∪ ∪ 𝑥 ∈ {𝐴}𝐵) | |
5 | iunsuc.1 | . . . 4 ⊢ 𝐴 ∈ V | |
6 | iunsuc.2 | . . . 4 ⊢ (𝑥 = 𝐴 → 𝐵 = 𝐶) | |
7 | 5, 6 | iunxsn 3989 | . . 3 ⊢ ∪ 𝑥 ∈ {𝐴}𝐵 = 𝐶 |
8 | 7 | uneq2i 3310 | . 2 ⊢ (∪ 𝑥 ∈ 𝐴 𝐵 ∪ ∪ 𝑥 ∈ {𝐴}𝐵) = (∪ 𝑥 ∈ 𝐴 𝐵 ∪ 𝐶) |
9 | 3, 4, 8 | 3eqtri 2218 | 1 ⊢ ∪ 𝑥 ∈ suc 𝐴𝐵 = (∪ 𝑥 ∈ 𝐴 𝐵 ∪ 𝐶) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1364 ∈ wcel 2164 Vcvv 2760 ∪ cun 3151 {csn 3618 ∪ ciun 3912 suc csuc 4396 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ral 2477 df-rex 2478 df-v 2762 df-sbc 2986 df-un 3157 df-in 3159 df-ss 3166 df-sn 3624 df-iun 3914 df-suc 4402 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |