ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iunxun Unicode version

Theorem iunxun 3978
Description: Separate a union in the index of an indexed union. (Contributed by NM, 26-Mar-2004.) (Proof shortened by Mario Carneiro, 17-Nov-2016.)
Assertion
Ref Expression
iunxun  |-  U_ x  e.  ( A  u.  B
) C  =  (
U_ x  e.  A  C  u.  U_ x  e.  B  C )

Proof of Theorem iunxun
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 rexun 3327 . . . 4  |-  ( E. x  e.  ( A  u.  B ) y  e.  C  <->  ( E. x  e.  A  y  e.  C  \/  E. x  e.  B  y  e.  C ) )
2 eliun 3902 . . . . 5  |-  ( y  e.  U_ x  e.  A  C  <->  E. x  e.  A  y  e.  C )
3 eliun 3902 . . . . 5  |-  ( y  e.  U_ x  e.  B  C  <->  E. x  e.  B  y  e.  C )
42, 3orbi12i 765 . . . 4  |-  ( ( y  e.  U_ x  e.  A  C  \/  y  e.  U_ x  e.  B  C )  <->  ( E. x  e.  A  y  e.  C  \/  E. x  e.  B  y  e.  C ) )
51, 4bitr4i 187 . . 3  |-  ( E. x  e.  ( A  u.  B ) y  e.  C  <->  ( y  e.  U_ x  e.  A  C  \/  y  e.  U_ x  e.  B  C
) )
6 eliun 3902 . . 3  |-  ( y  e.  U_ x  e.  ( A  u.  B
) C  <->  E. x  e.  ( A  u.  B
) y  e.  C
)
7 elun 3288 . . 3  |-  ( y  e.  ( U_ x  e.  A  C  u.  U_ x  e.  B  C
)  <->  ( y  e. 
U_ x  e.  A  C  \/  y  e.  U_ x  e.  B  C
) )
85, 6, 73bitr4i 212 . 2  |-  ( y  e.  U_ x  e.  ( A  u.  B
) C  <->  y  e.  ( U_ x  e.  A  C  u.  U_ x  e.  B  C ) )
98eqriv 2184 1  |-  U_ x  e.  ( A  u.  B
) C  =  (
U_ x  e.  A  C  u.  U_ x  e.  B  C )
Colors of variables: wff set class
Syntax hints:    \/ wo 709    = wceq 1363    e. wcel 2158   E.wrex 2466    u. cun 3139   U_ciun 3898
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1457  ax-7 1458  ax-gen 1459  ax-ie1 1503  ax-ie2 1504  ax-8 1514  ax-10 1515  ax-11 1516  ax-i12 1517  ax-bndl 1519  ax-4 1520  ax-17 1536  ax-i9 1540  ax-ial 1544  ax-i5r 1545  ax-ext 2169
This theorem depends on definitions:  df-bi 117  df-tru 1366  df-nf 1471  df-sb 1773  df-clab 2174  df-cleq 2180  df-clel 2183  df-nfc 2318  df-ral 2470  df-rex 2471  df-v 2751  df-un 3145  df-iun 3900
This theorem is referenced by:  iunxprg  3979  iunsuc  4432  rdgisuc1  6399  oasuc  6479  omsuc  6487  iunfidisj  6959  fsum2dlemstep  11456  fsumiun  11499  fprod2dlemstep  11644  iuncld  13911
  Copyright terms: Public domain W3C validator