ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iunxun Unicode version

Theorem iunxun 3952
Description: Separate a union in the index of an indexed union. (Contributed by NM, 26-Mar-2004.) (Proof shortened by Mario Carneiro, 17-Nov-2016.)
Assertion
Ref Expression
iunxun  |-  U_ x  e.  ( A  u.  B
) C  =  (
U_ x  e.  A  C  u.  U_ x  e.  B  C )

Proof of Theorem iunxun
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 rexun 3307 . . . 4  |-  ( E. x  e.  ( A  u.  B ) y  e.  C  <->  ( E. x  e.  A  y  e.  C  \/  E. x  e.  B  y  e.  C ) )
2 eliun 3877 . . . . 5  |-  ( y  e.  U_ x  e.  A  C  <->  E. x  e.  A  y  e.  C )
3 eliun 3877 . . . . 5  |-  ( y  e.  U_ x  e.  B  C  <->  E. x  e.  B  y  e.  C )
42, 3orbi12i 759 . . . 4  |-  ( ( y  e.  U_ x  e.  A  C  \/  y  e.  U_ x  e.  B  C )  <->  ( E. x  e.  A  y  e.  C  \/  E. x  e.  B  y  e.  C ) )
51, 4bitr4i 186 . . 3  |-  ( E. x  e.  ( A  u.  B ) y  e.  C  <->  ( y  e.  U_ x  e.  A  C  \/  y  e.  U_ x  e.  B  C
) )
6 eliun 3877 . . 3  |-  ( y  e.  U_ x  e.  ( A  u.  B
) C  <->  E. x  e.  ( A  u.  B
) y  e.  C
)
7 elun 3268 . . 3  |-  ( y  e.  ( U_ x  e.  A  C  u.  U_ x  e.  B  C
)  <->  ( y  e. 
U_ x  e.  A  C  \/  y  e.  U_ x  e.  B  C
) )
85, 6, 73bitr4i 211 . 2  |-  ( y  e.  U_ x  e.  ( A  u.  B
) C  <->  y  e.  ( U_ x  e.  A  C  u.  U_ x  e.  B  C ) )
98eqriv 2167 1  |-  U_ x  e.  ( A  u.  B
) C  =  (
U_ x  e.  A  C  u.  U_ x  e.  B  C )
Colors of variables: wff set class
Syntax hints:    \/ wo 703    = wceq 1348    e. wcel 2141   E.wrex 2449    u. cun 3119   U_ciun 3873
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-v 2732  df-un 3125  df-iun 3875
This theorem is referenced by:  iunxprg  3953  iunsuc  4405  rdgisuc1  6363  oasuc  6443  omsuc  6451  iunfidisj  6923  fsum2dlemstep  11397  fsumiun  11440  fprod2dlemstep  11585  iuncld  12909
  Copyright terms: Public domain W3C validator