ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iuncld Unicode version

Theorem iuncld 11967
Description: A finite indexed union of closed sets is closed. (Contributed by Mario Carneiro, 19-Sep-2015.) (Revised by Jim Kingdon, 10-Mar-2023.)
Hypothesis
Ref Expression
iuncld.1  |-  X  = 
U. J
Assertion
Ref Expression
iuncld  |-  ( ( J  e.  Top  /\  A  e.  Fin  /\  A. x  e.  A  B  e.  ( Clsd `  J
) )  ->  U_ x  e.  A  B  e.  ( Clsd `  J )
)
Distinct variable groups:    x, J    x, A
Allowed substitution hints:    B( x)    X( x)

Proof of Theorem iuncld
Dummy variables  y  z  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 iuneq1 3765 . . 3  |-  ( w  =  (/)  ->  U_ x  e.  w  B  =  U_ x  e.  (/)  B )
21eleq1d 2163 . 2  |-  ( w  =  (/)  ->  ( U_ x  e.  w  B  e.  ( Clsd `  J
)  <->  U_ x  e.  (/)  B  e.  ( Clsd `  J
) ) )
3 iuneq1 3765 . . 3  |-  ( w  =  y  ->  U_ x  e.  w  B  =  U_ x  e.  y  B )
43eleq1d 2163 . 2  |-  ( w  =  y  ->  ( U_ x  e.  w  B  e.  ( Clsd `  J )  <->  U_ x  e.  y  B  e.  (
Clsd `  J )
) )
5 iuneq1 3765 . . 3  |-  ( w  =  ( y  u. 
{ z } )  ->  U_ x  e.  w  B  =  U_ x  e.  ( y  u.  {
z } ) B )
65eleq1d 2163 . 2  |-  ( w  =  ( y  u. 
{ z } )  ->  ( U_ x  e.  w  B  e.  ( Clsd `  J )  <->  U_ x  e.  ( y  u.  { z } ) B  e.  (
Clsd `  J )
) )
7 iuneq1 3765 . . 3  |-  ( w  =  A  ->  U_ x  e.  w  B  =  U_ x  e.  A  B
)
87eleq1d 2163 . 2  |-  ( w  =  A  ->  ( U_ x  e.  w  B  e.  ( Clsd `  J )  <->  U_ x  e.  A  B  e.  (
Clsd `  J )
) )
9 0iun 3809 . . . 4  |-  U_ x  e.  (/)  B  =  (/)
10 0cld 11964 . . . 4  |-  ( J  e.  Top  ->  (/)  e.  (
Clsd `  J )
)
119, 10syl5eqel 2181 . . 3  |-  ( J  e.  Top  ->  U_ x  e.  (/)  B  e.  (
Clsd `  J )
)
12113ad2ant1 967 . 2  |-  ( ( J  e.  Top  /\  A  e.  Fin  /\  A. x  e.  A  B  e.  ( Clsd `  J
) )  ->  U_ x  e.  (/)  B  e.  (
Clsd `  J )
)
13 simpr 109 . . . 4  |-  ( ( ( ( ( J  e.  Top  /\  A  e.  Fin  /\  A. x  e.  A  B  e.  ( Clsd `  J )
)  /\  y  e.  Fin )  /\  (
y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\  U_ x  e.  y  B  e.  (
Clsd `  J )
)  ->  U_ x  e.  y  B  e.  (
Clsd `  J )
)
14 nfcsb1v 2977 . . . . . . . 8  |-  F/_ x [_ z  /  x ]_ B
15 csbeq1a 2955 . . . . . . . 8  |-  ( x  =  z  ->  B  =  [_ z  /  x ]_ B )
1614, 15iunxsngf 3829 . . . . . . 7  |-  ( z  e.  _V  ->  U_ x  e.  { z } B  =  [_ z  /  x ]_ B )
1716elv 2637 . . . . . 6  |-  U_ x  e.  { z } B  =  [_ z  /  x ]_ B
18 simprr 500 . . . . . . . 8  |-  ( ( ( ( J  e. 
Top  /\  A  e.  Fin  /\  A. x  e.  A  B  e.  (
Clsd `  J )
)  /\  y  e.  Fin )  /\  (
y  C_  A  /\  z  e.  ( A  \  y ) ) )  ->  z  e.  ( A  \  y ) )
1918eldifad 3024 . . . . . . 7  |-  ( ( ( ( J  e. 
Top  /\  A  e.  Fin  /\  A. x  e.  A  B  e.  (
Clsd `  J )
)  /\  y  e.  Fin )  /\  (
y  C_  A  /\  z  e.  ( A  \  y ) ) )  ->  z  e.  A
)
20 simpll3 987 . . . . . . 7  |-  ( ( ( ( J  e. 
Top  /\  A  e.  Fin  /\  A. x  e.  A  B  e.  (
Clsd `  J )
)  /\  y  e.  Fin )  /\  (
y  C_  A  /\  z  e.  ( A  \  y ) ) )  ->  A. x  e.  A  B  e.  ( Clsd `  J ) )
2114nfel1 2246 . . . . . . . 8  |-  F/ x [_ z  /  x ]_ B  e.  ( Clsd `  J )
2215eleq1d 2163 . . . . . . . 8  |-  ( x  =  z  ->  ( B  e.  ( Clsd `  J )  <->  [_ z  /  x ]_ B  e.  (
Clsd `  J )
) )
2321, 22rspc 2730 . . . . . . 7  |-  ( z  e.  A  ->  ( A. x  e.  A  B  e.  ( Clsd `  J )  ->  [_ z  /  x ]_ B  e.  ( Clsd `  J
) ) )
2419, 20, 23sylc 62 . . . . . 6  |-  ( ( ( ( J  e. 
Top  /\  A  e.  Fin  /\  A. x  e.  A  B  e.  (
Clsd `  J )
)  /\  y  e.  Fin )  /\  (
y  C_  A  /\  z  e.  ( A  \  y ) ) )  ->  [_ z  /  x ]_ B  e.  ( Clsd `  J ) )
2517, 24syl5eqel 2181 . . . . 5  |-  ( ( ( ( J  e. 
Top  /\  A  e.  Fin  /\  A. x  e.  A  B  e.  (
Clsd `  J )
)  /\  y  e.  Fin )  /\  (
y  C_  A  /\  z  e.  ( A  \  y ) ) )  ->  U_ x  e.  {
z } B  e.  ( Clsd `  J
) )
2625adantr 271 . . . 4  |-  ( ( ( ( ( J  e.  Top  /\  A  e.  Fin  /\  A. x  e.  A  B  e.  ( Clsd `  J )
)  /\  y  e.  Fin )  /\  (
y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\  U_ x  e.  y  B  e.  (
Clsd `  J )
)  ->  U_ x  e. 
{ z } B  e.  ( Clsd `  J
) )
27 iunxun 3831 . . . . 5  |-  U_ x  e.  ( y  u.  {
z } ) B  =  ( U_ x  e.  y  B  u.  U_ x  e.  { z } B )
28 uncld 11965 . . . . 5  |-  ( (
U_ x  e.  y  B  e.  ( Clsd `  J )  /\  U_ x  e.  { z } B  e.  ( Clsd `  J ) )  ->  ( U_ x  e.  y  B  u.  U_ x  e.  { z } B )  e.  ( Clsd `  J
) )
2927, 28syl5eqel 2181 . . . 4  |-  ( (
U_ x  e.  y  B  e.  ( Clsd `  J )  /\  U_ x  e.  { z } B  e.  ( Clsd `  J ) )  ->  U_ x  e.  ( y  u.  { z } ) B  e.  ( Clsd `  J
) )
3013, 26, 29syl2anc 404 . . 3  |-  ( ( ( ( ( J  e.  Top  /\  A  e.  Fin  /\  A. x  e.  A  B  e.  ( Clsd `  J )
)  /\  y  e.  Fin )  /\  (
y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\  U_ x  e.  y  B  e.  (
Clsd `  J )
)  ->  U_ x  e.  ( y  u.  {
z } ) B  e.  ( Clsd `  J
) )
3130ex 114 . 2  |-  ( ( ( ( J  e. 
Top  /\  A  e.  Fin  /\  A. x  e.  A  B  e.  (
Clsd `  J )
)  /\  y  e.  Fin )  /\  (
y  C_  A  /\  z  e.  ( A  \  y ) ) )  ->  ( U_ x  e.  y  B  e.  ( Clsd `  J )  ->  U_ x  e.  ( y  u.  { z } ) B  e.  ( Clsd `  J
) ) )
32 simp2 947 . 2  |-  ( ( J  e.  Top  /\  A  e.  Fin  /\  A. x  e.  A  B  e.  ( Clsd `  J
) )  ->  A  e.  Fin )
332, 4, 6, 8, 12, 31, 32findcard2sd 6688 1  |-  ( ( J  e.  Top  /\  A  e.  Fin  /\  A. x  e.  A  B  e.  ( Clsd `  J
) )  ->  U_ x  e.  A  B  e.  ( Clsd `  J )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    /\ w3a 927    = wceq 1296    e. wcel 1445   A.wral 2370   _Vcvv 2633   [_csb 2947    \ cdif 3010    u. cun 3011    C_ wss 3013   (/)c0 3302   {csn 3466   U.cuni 3675   U_ciun 3752   ` cfv 5049   Fincfn 6537   Topctop 11848   Clsdccld 11944
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 582  ax-in2 583  ax-io 668  ax-5 1388  ax-7 1389  ax-gen 1390  ax-ie1 1434  ax-ie2 1435  ax-8 1447  ax-10 1448  ax-11 1449  ax-i12 1450  ax-bndl 1451  ax-4 1452  ax-13 1456  ax-14 1457  ax-17 1471  ax-i9 1475  ax-ial 1479  ax-i5r 1480  ax-ext 2077  ax-coll 3975  ax-sep 3978  ax-nul 3986  ax-pow 4030  ax-pr 4060  ax-un 4284  ax-setind 4381  ax-iinf 4431
This theorem depends on definitions:  df-bi 116  df-dc 784  df-3or 928  df-3an 929  df-tru 1299  df-fal 1302  df-nf 1402  df-sb 1700  df-eu 1958  df-mo 1959  df-clab 2082  df-cleq 2088  df-clel 2091  df-nfc 2224  df-ne 2263  df-ral 2375  df-rex 2376  df-reu 2377  df-rab 2379  df-v 2635  df-sbc 2855  df-csb 2948  df-dif 3015  df-un 3017  df-in 3019  df-ss 3026  df-nul 3303  df-if 3414  df-pw 3451  df-sn 3472  df-pr 3473  df-op 3475  df-uni 3676  df-int 3711  df-iun 3754  df-br 3868  df-opab 3922  df-mpt 3923  df-tr 3959  df-id 4144  df-iord 4217  df-on 4219  df-suc 4222  df-iom 4434  df-xp 4473  df-rel 4474  df-cnv 4475  df-co 4476  df-dm 4477  df-rn 4478  df-res 4479  df-ima 4480  df-iota 5014  df-fun 5051  df-fn 5052  df-f 5053  df-f1 5054  df-fo 5055  df-f1o 5056  df-fv 5057  df-er 6332  df-en 6538  df-fin 6540  df-top 11849  df-cld 11947
This theorem is referenced by:  unicld  11968
  Copyright terms: Public domain W3C validator