Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > iuncld | Unicode version |
Description: A finite indexed union of closed sets is closed. (Contributed by Mario Carneiro, 19-Sep-2015.) (Revised by Jim Kingdon, 10-Mar-2023.) |
Ref | Expression |
---|---|
iuncld.1 |
Ref | Expression |
---|---|
iuncld |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iuneq1 3884 | . . 3 | |
2 | 1 | eleq1d 2239 | . 2 |
3 | iuneq1 3884 | . . 3 | |
4 | 3 | eleq1d 2239 | . 2 |
5 | iuneq1 3884 | . . 3 | |
6 | 5 | eleq1d 2239 | . 2 |
7 | iuneq1 3884 | . . 3 | |
8 | 7 | eleq1d 2239 | . 2 |
9 | 0iun 3928 | . . . 4 | |
10 | 0cld 12827 | . . . 4 | |
11 | 9, 10 | eqeltrid 2257 | . . 3 |
12 | 11 | 3ad2ant1 1013 | . 2 |
13 | simpr 109 | . . . 4 | |
14 | nfcsb1v 3082 | . . . . . . . 8 | |
15 | csbeq1a 3058 | . . . . . . . 8 | |
16 | 14, 15 | iunxsngf 3948 | . . . . . . 7 |
17 | 16 | elv 2734 | . . . . . 6 |
18 | simprr 527 | . . . . . . . 8 | |
19 | 18 | eldifad 3132 | . . . . . . 7 |
20 | simpll3 1033 | . . . . . . 7 | |
21 | 14 | nfel1 2323 | . . . . . . . 8 |
22 | 15 | eleq1d 2239 | . . . . . . . 8 |
23 | 21, 22 | rspc 2828 | . . . . . . 7 |
24 | 19, 20, 23 | sylc 62 | . . . . . 6 |
25 | 17, 24 | eqeltrid 2257 | . . . . 5 |
26 | 25 | adantr 274 | . . . 4 |
27 | iunxun 3950 | . . . . 5 | |
28 | uncld 12828 | . . . . 5 | |
29 | 27, 28 | eqeltrid 2257 | . . . 4 |
30 | 13, 26, 29 | syl2anc 409 | . . 3 |
31 | 30 | ex 114 | . 2 |
32 | simp2 993 | . 2 | |
33 | 2, 4, 6, 8, 12, 31, 32 | findcard2sd 6866 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 w3a 973 wceq 1348 wcel 2141 wral 2448 cvv 2730 csb 3049 cdif 3118 cun 3119 wss 3121 c0 3414 csn 3581 cuni 3794 ciun 3871 cfv 5196 cfn 6714 ctop 12710 ccld 12807 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-coll 4102 ax-sep 4105 ax-nul 4113 ax-pow 4158 ax-pr 4192 ax-un 4416 ax-setind 4519 ax-iinf 4570 |
This theorem depends on definitions: df-bi 116 df-dc 830 df-3or 974 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-ral 2453 df-rex 2454 df-reu 2455 df-rab 2457 df-v 2732 df-sbc 2956 df-csb 3050 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-nul 3415 df-if 3526 df-pw 3566 df-sn 3587 df-pr 3588 df-op 3590 df-uni 3795 df-int 3830 df-iun 3873 df-br 3988 df-opab 4049 df-mpt 4050 df-tr 4086 df-id 4276 df-iord 4349 df-on 4351 df-suc 4354 df-iom 4573 df-xp 4615 df-rel 4616 df-cnv 4617 df-co 4618 df-dm 4619 df-rn 4620 df-res 4621 df-ima 4622 df-iota 5158 df-fun 5198 df-fn 5199 df-f 5200 df-f1 5201 df-fo 5202 df-f1o 5203 df-fv 5204 df-er 6509 df-en 6715 df-fin 6717 df-top 12711 df-cld 12810 |
This theorem is referenced by: unicld 12831 |
Copyright terms: Public domain | W3C validator |