| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > iuncld | Unicode version | ||
| Description: A finite indexed union of closed sets is closed. (Contributed by Mario Carneiro, 19-Sep-2015.) (Revised by Jim Kingdon, 10-Mar-2023.) |
| Ref | Expression |
|---|---|
| iuncld.1 |
|
| Ref | Expression |
|---|---|
| iuncld |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iuneq1 3940 |
. . 3
| |
| 2 | 1 | eleq1d 2274 |
. 2
|
| 3 | iuneq1 3940 |
. . 3
| |
| 4 | 3 | eleq1d 2274 |
. 2
|
| 5 | iuneq1 3940 |
. . 3
| |
| 6 | 5 | eleq1d 2274 |
. 2
|
| 7 | iuneq1 3940 |
. . 3
| |
| 8 | 7 | eleq1d 2274 |
. 2
|
| 9 | 0iun 3985 |
. . . 4
| |
| 10 | 0cld 14584 |
. . . 4
| |
| 11 | 9, 10 | eqeltrid 2292 |
. . 3
|
| 12 | 11 | 3ad2ant1 1021 |
. 2
|
| 13 | simpr 110 |
. . . 4
| |
| 14 | nfcsb1v 3126 |
. . . . . . . 8
| |
| 15 | csbeq1a 3102 |
. . . . . . . 8
| |
| 16 | 14, 15 | iunxsngf 4005 |
. . . . . . 7
|
| 17 | 16 | elv 2776 |
. . . . . 6
|
| 18 | simprr 531 |
. . . . . . . 8
| |
| 19 | 18 | eldifad 3177 |
. . . . . . 7
|
| 20 | simpll3 1041 |
. . . . . . 7
| |
| 21 | 14 | nfel1 2359 |
. . . . . . . 8
|
| 22 | 15 | eleq1d 2274 |
. . . . . . . 8
|
| 23 | 21, 22 | rspc 2871 |
. . . . . . 7
|
| 24 | 19, 20, 23 | sylc 62 |
. . . . . 6
|
| 25 | 17, 24 | eqeltrid 2292 |
. . . . 5
|
| 26 | 25 | adantr 276 |
. . . 4
|
| 27 | iunxun 4007 |
. . . . 5
| |
| 28 | uncld 14585 |
. . . . 5
| |
| 29 | 27, 28 | eqeltrid 2292 |
. . . 4
|
| 30 | 13, 26, 29 | syl2anc 411 |
. . 3
|
| 31 | 30 | ex 115 |
. 2
|
| 32 | simp2 1001 |
. 2
| |
| 33 | 2, 4, 6, 8, 12, 31, 32 | findcard2sd 6989 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-coll 4159 ax-sep 4162 ax-nul 4170 ax-pow 4218 ax-pr 4253 ax-un 4480 ax-setind 4585 ax-iinf 4636 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ne 2377 df-ral 2489 df-rex 2490 df-reu 2491 df-rab 2493 df-v 2774 df-sbc 2999 df-csb 3094 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-nul 3461 df-if 3572 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-int 3886 df-iun 3929 df-br 4045 df-opab 4106 df-mpt 4107 df-tr 4143 df-id 4340 df-iord 4413 df-on 4415 df-suc 4418 df-iom 4639 df-xp 4681 df-rel 4682 df-cnv 4683 df-co 4684 df-dm 4685 df-rn 4686 df-res 4687 df-ima 4688 df-iota 5232 df-fun 5273 df-fn 5274 df-f 5275 df-f1 5276 df-fo 5277 df-f1o 5278 df-fv 5279 df-er 6620 df-en 6828 df-fin 6830 df-top 14470 df-cld 14567 |
| This theorem is referenced by: unicld 14588 |
| Copyright terms: Public domain | W3C validator |