ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iuncld Unicode version

Theorem iuncld 12323
Description: A finite indexed union of closed sets is closed. (Contributed by Mario Carneiro, 19-Sep-2015.) (Revised by Jim Kingdon, 10-Mar-2023.)
Hypothesis
Ref Expression
iuncld.1  |-  X  = 
U. J
Assertion
Ref Expression
iuncld  |-  ( ( J  e.  Top  /\  A  e.  Fin  /\  A. x  e.  A  B  e.  ( Clsd `  J
) )  ->  U_ x  e.  A  B  e.  ( Clsd `  J )
)
Distinct variable groups:    x, J    x, A
Allowed substitution hints:    B( x)    X( x)

Proof of Theorem iuncld
Dummy variables  y  z  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 iuneq1 3834 . . 3  |-  ( w  =  (/)  ->  U_ x  e.  w  B  =  U_ x  e.  (/)  B )
21eleq1d 2209 . 2  |-  ( w  =  (/)  ->  ( U_ x  e.  w  B  e.  ( Clsd `  J
)  <->  U_ x  e.  (/)  B  e.  ( Clsd `  J
) ) )
3 iuneq1 3834 . . 3  |-  ( w  =  y  ->  U_ x  e.  w  B  =  U_ x  e.  y  B )
43eleq1d 2209 . 2  |-  ( w  =  y  ->  ( U_ x  e.  w  B  e.  ( Clsd `  J )  <->  U_ x  e.  y  B  e.  (
Clsd `  J )
) )
5 iuneq1 3834 . . 3  |-  ( w  =  ( y  u. 
{ z } )  ->  U_ x  e.  w  B  =  U_ x  e.  ( y  u.  {
z } ) B )
65eleq1d 2209 . 2  |-  ( w  =  ( y  u. 
{ z } )  ->  ( U_ x  e.  w  B  e.  ( Clsd `  J )  <->  U_ x  e.  ( y  u.  { z } ) B  e.  (
Clsd `  J )
) )
7 iuneq1 3834 . . 3  |-  ( w  =  A  ->  U_ x  e.  w  B  =  U_ x  e.  A  B
)
87eleq1d 2209 . 2  |-  ( w  =  A  ->  ( U_ x  e.  w  B  e.  ( Clsd `  J )  <->  U_ x  e.  A  B  e.  (
Clsd `  J )
) )
9 0iun 3878 . . . 4  |-  U_ x  e.  (/)  B  =  (/)
10 0cld 12320 . . . 4  |-  ( J  e.  Top  ->  (/)  e.  (
Clsd `  J )
)
119, 10eqeltrid 2227 . . 3  |-  ( J  e.  Top  ->  U_ x  e.  (/)  B  e.  (
Clsd `  J )
)
12113ad2ant1 1003 . 2  |-  ( ( J  e.  Top  /\  A  e.  Fin  /\  A. x  e.  A  B  e.  ( Clsd `  J
) )  ->  U_ x  e.  (/)  B  e.  (
Clsd `  J )
)
13 simpr 109 . . . 4  |-  ( ( ( ( ( J  e.  Top  /\  A  e.  Fin  /\  A. x  e.  A  B  e.  ( Clsd `  J )
)  /\  y  e.  Fin )  /\  (
y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\  U_ x  e.  y  B  e.  (
Clsd `  J )
)  ->  U_ x  e.  y  B  e.  (
Clsd `  J )
)
14 nfcsb1v 3040 . . . . . . . 8  |-  F/_ x [_ z  /  x ]_ B
15 csbeq1a 3016 . . . . . . . 8  |-  ( x  =  z  ->  B  =  [_ z  /  x ]_ B )
1614, 15iunxsngf 3898 . . . . . . 7  |-  ( z  e.  _V  ->  U_ x  e.  { z } B  =  [_ z  /  x ]_ B )
1716elv 2693 . . . . . 6  |-  U_ x  e.  { z } B  =  [_ z  /  x ]_ B
18 simprr 522 . . . . . . . 8  |-  ( ( ( ( J  e. 
Top  /\  A  e.  Fin  /\  A. x  e.  A  B  e.  (
Clsd `  J )
)  /\  y  e.  Fin )  /\  (
y  C_  A  /\  z  e.  ( A  \  y ) ) )  ->  z  e.  ( A  \  y ) )
1918eldifad 3087 . . . . . . 7  |-  ( ( ( ( J  e. 
Top  /\  A  e.  Fin  /\  A. x  e.  A  B  e.  (
Clsd `  J )
)  /\  y  e.  Fin )  /\  (
y  C_  A  /\  z  e.  ( A  \  y ) ) )  ->  z  e.  A
)
20 simpll3 1023 . . . . . . 7  |-  ( ( ( ( J  e. 
Top  /\  A  e.  Fin  /\  A. x  e.  A  B  e.  (
Clsd `  J )
)  /\  y  e.  Fin )  /\  (
y  C_  A  /\  z  e.  ( A  \  y ) ) )  ->  A. x  e.  A  B  e.  ( Clsd `  J ) )
2114nfel1 2293 . . . . . . . 8  |-  F/ x [_ z  /  x ]_ B  e.  ( Clsd `  J )
2215eleq1d 2209 . . . . . . . 8  |-  ( x  =  z  ->  ( B  e.  ( Clsd `  J )  <->  [_ z  /  x ]_ B  e.  (
Clsd `  J )
) )
2321, 22rspc 2787 . . . . . . 7  |-  ( z  e.  A  ->  ( A. x  e.  A  B  e.  ( Clsd `  J )  ->  [_ z  /  x ]_ B  e.  ( Clsd `  J
) ) )
2419, 20, 23sylc 62 . . . . . 6  |-  ( ( ( ( J  e. 
Top  /\  A  e.  Fin  /\  A. x  e.  A  B  e.  (
Clsd `  J )
)  /\  y  e.  Fin )  /\  (
y  C_  A  /\  z  e.  ( A  \  y ) ) )  ->  [_ z  /  x ]_ B  e.  ( Clsd `  J ) )
2517, 24eqeltrid 2227 . . . . 5  |-  ( ( ( ( J  e. 
Top  /\  A  e.  Fin  /\  A. x  e.  A  B  e.  (
Clsd `  J )
)  /\  y  e.  Fin )  /\  (
y  C_  A  /\  z  e.  ( A  \  y ) ) )  ->  U_ x  e.  {
z } B  e.  ( Clsd `  J
) )
2625adantr 274 . . . 4  |-  ( ( ( ( ( J  e.  Top  /\  A  e.  Fin  /\  A. x  e.  A  B  e.  ( Clsd `  J )
)  /\  y  e.  Fin )  /\  (
y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\  U_ x  e.  y  B  e.  (
Clsd `  J )
)  ->  U_ x  e. 
{ z } B  e.  ( Clsd `  J
) )
27 iunxun 3900 . . . . 5  |-  U_ x  e.  ( y  u.  {
z } ) B  =  ( U_ x  e.  y  B  u.  U_ x  e.  { z } B )
28 uncld 12321 . . . . 5  |-  ( (
U_ x  e.  y  B  e.  ( Clsd `  J )  /\  U_ x  e.  { z } B  e.  ( Clsd `  J ) )  ->  ( U_ x  e.  y  B  u.  U_ x  e.  { z } B )  e.  ( Clsd `  J
) )
2927, 28eqeltrid 2227 . . . 4  |-  ( (
U_ x  e.  y  B  e.  ( Clsd `  J )  /\  U_ x  e.  { z } B  e.  ( Clsd `  J ) )  ->  U_ x  e.  ( y  u.  { z } ) B  e.  ( Clsd `  J
) )
3013, 26, 29syl2anc 409 . . 3  |-  ( ( ( ( ( J  e.  Top  /\  A  e.  Fin  /\  A. x  e.  A  B  e.  ( Clsd `  J )
)  /\  y  e.  Fin )  /\  (
y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\  U_ x  e.  y  B  e.  (
Clsd `  J )
)  ->  U_ x  e.  ( y  u.  {
z } ) B  e.  ( Clsd `  J
) )
3130ex 114 . 2  |-  ( ( ( ( J  e. 
Top  /\  A  e.  Fin  /\  A. x  e.  A  B  e.  (
Clsd `  J )
)  /\  y  e.  Fin )  /\  (
y  C_  A  /\  z  e.  ( A  \  y ) ) )  ->  ( U_ x  e.  y  B  e.  ( Clsd `  J )  ->  U_ x  e.  ( y  u.  { z } ) B  e.  ( Clsd `  J
) ) )
32 simp2 983 . 2  |-  ( ( J  e.  Top  /\  A  e.  Fin  /\  A. x  e.  A  B  e.  ( Clsd `  J
) )  ->  A  e.  Fin )
332, 4, 6, 8, 12, 31, 32findcard2sd 6794 1  |-  ( ( J  e.  Top  /\  A  e.  Fin  /\  A. x  e.  A  B  e.  ( Clsd `  J
) )  ->  U_ x  e.  A  B  e.  ( Clsd `  J )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    /\ w3a 963    = wceq 1332    e. wcel 1481   A.wral 2417   _Vcvv 2689   [_csb 3007    \ cdif 3073    u. cun 3074    C_ wss 3076   (/)c0 3368   {csn 3532   U.cuni 3744   U_ciun 3821   ` cfv 5131   Fincfn 6642   Topctop 12203   Clsdccld 12300
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-coll 4051  ax-sep 4054  ax-nul 4062  ax-pow 4106  ax-pr 4139  ax-un 4363  ax-setind 4460  ax-iinf 4510
This theorem depends on definitions:  df-bi 116  df-dc 821  df-3or 964  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-ral 2422  df-rex 2423  df-reu 2424  df-rab 2426  df-v 2691  df-sbc 2914  df-csb 3008  df-dif 3078  df-un 3080  df-in 3082  df-ss 3089  df-nul 3369  df-if 3480  df-pw 3517  df-sn 3538  df-pr 3539  df-op 3541  df-uni 3745  df-int 3780  df-iun 3823  df-br 3938  df-opab 3998  df-mpt 3999  df-tr 4035  df-id 4223  df-iord 4296  df-on 4298  df-suc 4301  df-iom 4513  df-xp 4553  df-rel 4554  df-cnv 4555  df-co 4556  df-dm 4557  df-rn 4558  df-res 4559  df-ima 4560  df-iota 5096  df-fun 5133  df-fn 5134  df-f 5135  df-f1 5136  df-fo 5137  df-f1o 5138  df-fv 5139  df-er 6437  df-en 6643  df-fin 6645  df-top 12204  df-cld 12303
This theorem is referenced by:  unicld  12324
  Copyright terms: Public domain W3C validator