Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > iunfidisj | Unicode version |
Description: The finite union of disjoint finite sets is finite. Note that depends on , i.e. can be thought of as . (Contributed by NM, 23-Mar-2006.) (Revised by Jim Kingdon, 7-Oct-2022.) |
Ref | Expression |
---|---|
iunfidisj | Disj |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iuneq1 3879 | . . 3 | |
2 | 1 | eleq1d 2235 | . 2 |
3 | iuneq1 3879 | . . 3 | |
4 | 3 | eleq1d 2235 | . 2 |
5 | iuneq1 3879 | . . 3 | |
6 | 5 | eleq1d 2235 | . 2 |
7 | iuneq1 3879 | . . 3 | |
8 | 7 | eleq1d 2235 | . 2 |
9 | 0iun 3923 | . . . 4 | |
10 | 0fin 6850 | . . . 4 | |
11 | 9, 10 | eqeltri 2239 | . . 3 |
12 | 11 | a1i 9 | . 2 Disj |
13 | iunxun 3945 | . . . 4 | |
14 | simpr 109 | . . . . 5 Disj | |
15 | nfcsb1v 3078 | . . . . . . . 8 | |
16 | csbeq1a 3054 | . . . . . . . 8 | |
17 | 15, 16 | iunxsngf 3943 | . . . . . . 7 |
18 | 17 | elv 2730 | . . . . . 6 |
19 | simplrr 526 | . . . . . . . 8 Disj | |
20 | 19 | eldifad 3127 | . . . . . . 7 Disj |
21 | simpll2 1027 | . . . . . . 7 Disj | |
22 | 15 | nfel1 2319 | . . . . . . . 8 |
23 | 16 | eleq1d 2235 | . . . . . . . 8 |
24 | 22, 23 | rspc 2824 | . . . . . . 7 |
25 | 20, 21, 24 | sylc 62 | . . . . . 6 Disj |
26 | 18, 25 | eqeltrid 2253 | . . . . 5 Disj |
27 | simpll3 1028 | . . . . . 6 Disj Disj | |
28 | simplrl 525 | . . . . . 6 Disj | |
29 | 20 | snssd 3718 | . . . . . 6 Disj |
30 | 19 | eldifbd 3128 | . . . . . . 7 Disj |
31 | disjsn 3638 | . . . . . . 7 | |
32 | 30, 31 | sylibr 133 | . . . . . 6 Disj |
33 | disjiun 3977 | . . . . . 6 Disj | |
34 | 27, 28, 29, 32, 33 | syl13anc 1230 | . . . . 5 Disj |
35 | unfidisj 6887 | . . . . 5 | |
36 | 14, 26, 34, 35 | syl3anc 1228 | . . . 4 Disj |
37 | 13, 36 | eqeltrid 2253 | . . 3 Disj |
38 | 37 | ex 114 | . 2 Disj |
39 | simp1 987 | . 2 Disj | |
40 | 2, 4, 6, 8, 12, 38, 39 | findcard2d 6857 | 1 Disj |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wa 103 w3a 968 wceq 1343 wcel 2136 wral 2444 cvv 2726 csb 3045 cdif 3113 cun 3114 cin 3115 wss 3116 c0 3409 csn 3576 ciun 3866 Disj wdisj 3959 cfn 6706 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-coll 4097 ax-sep 4100 ax-nul 4108 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-setind 4514 ax-iinf 4565 |
This theorem depends on definitions: df-bi 116 df-dc 825 df-3or 969 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-ral 2449 df-rex 2450 df-reu 2451 df-rmo 2452 df-rab 2453 df-v 2728 df-sbc 2952 df-csb 3046 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-nul 3410 df-if 3521 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-int 3825 df-iun 3868 df-disj 3960 df-br 3983 df-opab 4044 df-mpt 4045 df-tr 4081 df-id 4271 df-iord 4344 df-on 4346 df-suc 4349 df-iom 4568 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 df-iota 5153 df-fun 5190 df-fn 5191 df-f 5192 df-f1 5193 df-fo 5194 df-f1o 5195 df-fv 5196 df-1o 6384 df-er 6501 df-en 6707 df-fin 6709 |
This theorem is referenced by: fsum2dlemstep 11375 fisumcom2 11379 fsumiun 11418 hashiun 11419 hash2iun 11420 fprod2dlemstep 11563 fprodcom2fi 11567 |
Copyright terms: Public domain | W3C validator |