| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > iunfidisj | Unicode version | ||
| Description: The finite union of
disjoint finite sets is finite. Note that |
| Ref | Expression |
|---|---|
| iunfidisj |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iuneq1 3930 |
. . 3
| |
| 2 | 1 | eleq1d 2265 |
. 2
|
| 3 | iuneq1 3930 |
. . 3
| |
| 4 | 3 | eleq1d 2265 |
. 2
|
| 5 | iuneq1 3930 |
. . 3
| |
| 6 | 5 | eleq1d 2265 |
. 2
|
| 7 | iuneq1 3930 |
. . 3
| |
| 8 | 7 | eleq1d 2265 |
. 2
|
| 9 | 0iun 3975 |
. . . 4
| |
| 10 | 0fin 6954 |
. . . 4
| |
| 11 | 9, 10 | eqeltri 2269 |
. . 3
|
| 12 | 11 | a1i 9 |
. 2
|
| 13 | iunxun 3997 |
. . . 4
| |
| 14 | simpr 110 |
. . . . 5
| |
| 15 | nfcsb1v 3117 |
. . . . . . . 8
| |
| 16 | csbeq1a 3093 |
. . . . . . . 8
| |
| 17 | 15, 16 | iunxsngf 3995 |
. . . . . . 7
|
| 18 | 17 | elv 2767 |
. . . . . 6
|
| 19 | simplrr 536 |
. . . . . . . 8
| |
| 20 | 19 | eldifad 3168 |
. . . . . . 7
|
| 21 | simpll2 1039 |
. . . . . . 7
| |
| 22 | 15 | nfel1 2350 |
. . . . . . . 8
|
| 23 | 16 | eleq1d 2265 |
. . . . . . . 8
|
| 24 | 22, 23 | rspc 2862 |
. . . . . . 7
|
| 25 | 20, 21, 24 | sylc 62 |
. . . . . 6
|
| 26 | 18, 25 | eqeltrid 2283 |
. . . . 5
|
| 27 | simpll3 1040 |
. . . . . 6
| |
| 28 | simplrl 535 |
. . . . . 6
| |
| 29 | 20 | snssd 3768 |
. . . . . 6
|
| 30 | 19 | eldifbd 3169 |
. . . . . . 7
|
| 31 | disjsn 3685 |
. . . . . . 7
| |
| 32 | 30, 31 | sylibr 134 |
. . . . . 6
|
| 33 | disjiun 4029 |
. . . . . 6
| |
| 34 | 27, 28, 29, 32, 33 | syl13anc 1251 |
. . . . 5
|
| 35 | unfidisj 6992 |
. . . . 5
| |
| 36 | 14, 26, 34, 35 | syl3anc 1249 |
. . . 4
|
| 37 | 13, 36 | eqeltrid 2283 |
. . 3
|
| 38 | 37 | ex 115 |
. 2
|
| 39 | simp1 999 |
. 2
| |
| 40 | 2, 4, 6, 8, 12, 38, 39 | findcard2d 6961 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4149 ax-sep 4152 ax-nul 4160 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-setind 4574 ax-iinf 4625 |
| This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-ral 2480 df-rex 2481 df-reu 2482 df-rmo 2483 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3452 df-if 3563 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-int 3876 df-iun 3919 df-disj 4012 df-br 4035 df-opab 4096 df-mpt 4097 df-tr 4133 df-id 4329 df-iord 4402 df-on 4404 df-suc 4407 df-iom 4628 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-res 4676 df-ima 4677 df-iota 5220 df-fun 5261 df-fn 5262 df-f 5263 df-f1 5264 df-fo 5265 df-f1o 5266 df-fv 5267 df-1o 6483 df-er 6601 df-en 6809 df-fin 6811 |
| This theorem is referenced by: fsum2dlemstep 11616 fisumcom2 11620 fsumiun 11659 hashiun 11660 hash2iun 11661 fprod2dlemstep 11804 fprodcom2fi 11808 |
| Copyright terms: Public domain | W3C validator |