Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > iunfidisj | Unicode version |
Description: The finite union of disjoint finite sets is finite. Note that depends on , i.e. can be thought of as . (Contributed by NM, 23-Mar-2006.) (Revised by Jim Kingdon, 7-Oct-2022.) |
Ref | Expression |
---|---|
iunfidisj | Disj |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iuneq1 3886 | . . 3 | |
2 | 1 | eleq1d 2239 | . 2 |
3 | iuneq1 3886 | . . 3 | |
4 | 3 | eleq1d 2239 | . 2 |
5 | iuneq1 3886 | . . 3 | |
6 | 5 | eleq1d 2239 | . 2 |
7 | iuneq1 3886 | . . 3 | |
8 | 7 | eleq1d 2239 | . 2 |
9 | 0iun 3930 | . . . 4 | |
10 | 0fin 6862 | . . . 4 | |
11 | 9, 10 | eqeltri 2243 | . . 3 |
12 | 11 | a1i 9 | . 2 Disj |
13 | iunxun 3952 | . . . 4 | |
14 | simpr 109 | . . . . 5 Disj | |
15 | nfcsb1v 3082 | . . . . . . . 8 | |
16 | csbeq1a 3058 | . . . . . . . 8 | |
17 | 15, 16 | iunxsngf 3950 | . . . . . . 7 |
18 | 17 | elv 2734 | . . . . . 6 |
19 | simplrr 531 | . . . . . . . 8 Disj | |
20 | 19 | eldifad 3132 | . . . . . . 7 Disj |
21 | simpll2 1032 | . . . . . . 7 Disj | |
22 | 15 | nfel1 2323 | . . . . . . . 8 |
23 | 16 | eleq1d 2239 | . . . . . . . 8 |
24 | 22, 23 | rspc 2828 | . . . . . . 7 |
25 | 20, 21, 24 | sylc 62 | . . . . . 6 Disj |
26 | 18, 25 | eqeltrid 2257 | . . . . 5 Disj |
27 | simpll3 1033 | . . . . . 6 Disj Disj | |
28 | simplrl 530 | . . . . . 6 Disj | |
29 | 20 | snssd 3725 | . . . . . 6 Disj |
30 | 19 | eldifbd 3133 | . . . . . . 7 Disj |
31 | disjsn 3645 | . . . . . . 7 | |
32 | 30, 31 | sylibr 133 | . . . . . 6 Disj |
33 | disjiun 3984 | . . . . . 6 Disj | |
34 | 27, 28, 29, 32, 33 | syl13anc 1235 | . . . . 5 Disj |
35 | unfidisj 6899 | . . . . 5 | |
36 | 14, 26, 34, 35 | syl3anc 1233 | . . . 4 Disj |
37 | 13, 36 | eqeltrid 2257 | . . 3 Disj |
38 | 37 | ex 114 | . 2 Disj |
39 | simp1 992 | . 2 Disj | |
40 | 2, 4, 6, 8, 12, 38, 39 | findcard2d 6869 | 1 Disj |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wa 103 w3a 973 wceq 1348 wcel 2141 wral 2448 cvv 2730 csb 3049 cdif 3118 cun 3119 cin 3120 wss 3121 c0 3414 csn 3583 ciun 3873 Disj wdisj 3966 cfn 6718 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-coll 4104 ax-sep 4107 ax-nul 4115 ax-pow 4160 ax-pr 4194 ax-un 4418 ax-setind 4521 ax-iinf 4572 |
This theorem depends on definitions: df-bi 116 df-dc 830 df-3or 974 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-ral 2453 df-rex 2454 df-reu 2455 df-rmo 2456 df-rab 2457 df-v 2732 df-sbc 2956 df-csb 3050 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-nul 3415 df-if 3527 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-int 3832 df-iun 3875 df-disj 3967 df-br 3990 df-opab 4051 df-mpt 4052 df-tr 4088 df-id 4278 df-iord 4351 df-on 4353 df-suc 4356 df-iom 4575 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-res 4623 df-ima 4624 df-iota 5160 df-fun 5200 df-fn 5201 df-f 5202 df-f1 5203 df-fo 5204 df-f1o 5205 df-fv 5206 df-1o 6395 df-er 6513 df-en 6719 df-fin 6721 |
This theorem is referenced by: fsum2dlemstep 11397 fisumcom2 11401 fsumiun 11440 hashiun 11441 hash2iun 11442 fprod2dlemstep 11585 fprodcom2fi 11589 |
Copyright terms: Public domain | W3C validator |