ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iunfidisj Unicode version

Theorem iunfidisj 7021
Description: The finite union of disjoint finite sets is finite. Note that  B depends on  x, i.e. can be thought of as  B ( x ). (Contributed by NM, 23-Mar-2006.) (Revised by Jim Kingdon, 7-Oct-2022.)
Assertion
Ref Expression
iunfidisj  |-  ( ( A  e.  Fin  /\  A. x  e.  A  B  e.  Fin  /\ Disj  x  e.  A  B )  ->  U_ x  e.  A  B  e.  Fin )
Distinct variable group:    x, A
Allowed substitution hint:    B( x)

Proof of Theorem iunfidisj
Dummy variables  w  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 iuneq1 3930 . . 3  |-  ( w  =  (/)  ->  U_ x  e.  w  B  =  U_ x  e.  (/)  B )
21eleq1d 2265 . 2  |-  ( w  =  (/)  ->  ( U_ x  e.  w  B  e.  Fin  <->  U_ x  e.  (/)  B  e.  Fin ) )
3 iuneq1 3930 . . 3  |-  ( w  =  y  ->  U_ x  e.  w  B  =  U_ x  e.  y  B )
43eleq1d 2265 . 2  |-  ( w  =  y  ->  ( U_ x  e.  w  B  e.  Fin  <->  U_ x  e.  y  B  e.  Fin ) )
5 iuneq1 3930 . . 3  |-  ( w  =  ( y  u. 
{ z } )  ->  U_ x  e.  w  B  =  U_ x  e.  ( y  u.  {
z } ) B )
65eleq1d 2265 . 2  |-  ( w  =  ( y  u. 
{ z } )  ->  ( U_ x  e.  w  B  e.  Fin 
<-> 
U_ x  e.  ( y  u.  { z } ) B  e. 
Fin ) )
7 iuneq1 3930 . . 3  |-  ( w  =  A  ->  U_ x  e.  w  B  =  U_ x  e.  A  B
)
87eleq1d 2265 . 2  |-  ( w  =  A  ->  ( U_ x  e.  w  B  e.  Fin  <->  U_ x  e.  A  B  e.  Fin ) )
9 0iun 3975 . . . 4  |-  U_ x  e.  (/)  B  =  (/)
10 0fin 6954 . . . 4  |-  (/)  e.  Fin
119, 10eqeltri 2269 . . 3  |-  U_ x  e.  (/)  B  e.  Fin
1211a1i 9 . 2  |-  ( ( A  e.  Fin  /\  A. x  e.  A  B  e.  Fin  /\ Disj  x  e.  A  B )  ->  U_ x  e.  (/)  B  e.  Fin )
13 iunxun 3997 . . . 4  |-  U_ x  e.  ( y  u.  {
z } ) B  =  ( U_ x  e.  y  B  u.  U_ x  e.  { z } B )
14 simpr 110 . . . . 5  |-  ( ( ( ( A  e. 
Fin  /\  A. x  e.  A  B  e.  Fin  /\ Disj  x  e.  A  B
)  /\  ( y  C_  A  /\  z  e.  ( A  \  y
) ) )  /\  U_ x  e.  y  B  e.  Fin )  ->  U_ x  e.  y  B  e.  Fin )
15 nfcsb1v 3117 . . . . . . . 8  |-  F/_ x [_ z  /  x ]_ B
16 csbeq1a 3093 . . . . . . . 8  |-  ( x  =  z  ->  B  =  [_ z  /  x ]_ B )
1715, 16iunxsngf 3995 . . . . . . 7  |-  ( z  e.  _V  ->  U_ x  e.  { z } B  =  [_ z  /  x ]_ B )
1817elv 2767 . . . . . 6  |-  U_ x  e.  { z } B  =  [_ z  /  x ]_ B
19 simplrr 536 . . . . . . . 8  |-  ( ( ( ( A  e. 
Fin  /\  A. x  e.  A  B  e.  Fin  /\ Disj  x  e.  A  B
)  /\  ( y  C_  A  /\  z  e.  ( A  \  y
) ) )  /\  U_ x  e.  y  B  e.  Fin )  -> 
z  e.  ( A 
\  y ) )
2019eldifad 3168 . . . . . . 7  |-  ( ( ( ( A  e. 
Fin  /\  A. x  e.  A  B  e.  Fin  /\ Disj  x  e.  A  B
)  /\  ( y  C_  A  /\  z  e.  ( A  \  y
) ) )  /\  U_ x  e.  y  B  e.  Fin )  -> 
z  e.  A )
21 simpll2 1039 . . . . . . 7  |-  ( ( ( ( A  e. 
Fin  /\  A. x  e.  A  B  e.  Fin  /\ Disj  x  e.  A  B
)  /\  ( y  C_  A  /\  z  e.  ( A  \  y
) ) )  /\  U_ x  e.  y  B  e.  Fin )  ->  A. x  e.  A  B  e.  Fin )
2215nfel1 2350 . . . . . . . 8  |-  F/ x [_ z  /  x ]_ B  e.  Fin
2316eleq1d 2265 . . . . . . . 8  |-  ( x  =  z  ->  ( B  e.  Fin  <->  [_ z  /  x ]_ B  e.  Fin ) )
2422, 23rspc 2862 . . . . . . 7  |-  ( z  e.  A  ->  ( A. x  e.  A  B  e.  Fin  ->  [_ z  /  x ]_ B  e. 
Fin ) )
2520, 21, 24sylc 62 . . . . . 6  |-  ( ( ( ( A  e. 
Fin  /\  A. x  e.  A  B  e.  Fin  /\ Disj  x  e.  A  B
)  /\  ( y  C_  A  /\  z  e.  ( A  \  y
) ) )  /\  U_ x  e.  y  B  e.  Fin )  ->  [_ z  /  x ]_ B  e.  Fin )
2618, 25eqeltrid 2283 . . . . 5  |-  ( ( ( ( A  e. 
Fin  /\  A. x  e.  A  B  e.  Fin  /\ Disj  x  e.  A  B
)  /\  ( y  C_  A  /\  z  e.  ( A  \  y
) ) )  /\  U_ x  e.  y  B  e.  Fin )  ->  U_ x  e.  { z } B  e.  Fin )
27 simpll3 1040 . . . . . 6  |-  ( ( ( ( A  e. 
Fin  /\  A. x  e.  A  B  e.  Fin  /\ Disj  x  e.  A  B
)  /\  ( y  C_  A  /\  z  e.  ( A  \  y
) ) )  /\  U_ x  e.  y  B  e.  Fin )  -> Disj  x  e.  A  B )
28 simplrl 535 . . . . . 6  |-  ( ( ( ( A  e. 
Fin  /\  A. x  e.  A  B  e.  Fin  /\ Disj  x  e.  A  B
)  /\  ( y  C_  A  /\  z  e.  ( A  \  y
) ) )  /\  U_ x  e.  y  B  e.  Fin )  -> 
y  C_  A )
2920snssd 3768 . . . . . 6  |-  ( ( ( ( A  e. 
Fin  /\  A. x  e.  A  B  e.  Fin  /\ Disj  x  e.  A  B
)  /\  ( y  C_  A  /\  z  e.  ( A  \  y
) ) )  /\  U_ x  e.  y  B  e.  Fin )  ->  { z }  C_  A )
3019eldifbd 3169 . . . . . . 7  |-  ( ( ( ( A  e. 
Fin  /\  A. x  e.  A  B  e.  Fin  /\ Disj  x  e.  A  B
)  /\  ( y  C_  A  /\  z  e.  ( A  \  y
) ) )  /\  U_ x  e.  y  B  e.  Fin )  ->  -.  z  e.  y
)
31 disjsn 3685 . . . . . . 7  |-  ( ( y  i^i  { z } )  =  (/)  <->  -.  z  e.  y )
3230, 31sylibr 134 . . . . . 6  |-  ( ( ( ( A  e. 
Fin  /\  A. x  e.  A  B  e.  Fin  /\ Disj  x  e.  A  B
)  /\  ( y  C_  A  /\  z  e.  ( A  \  y
) ) )  /\  U_ x  e.  y  B  e.  Fin )  -> 
( y  i^i  {
z } )  =  (/) )
33 disjiun 4029 . . . . . 6  |-  ( (Disj  x  e.  A  B  /\  ( y  C_  A  /\  { z }  C_  A  /\  ( y  i^i 
{ z } )  =  (/) ) )  -> 
( U_ x  e.  y  B  i^i  U_ x  e.  { z } B
)  =  (/) )
3427, 28, 29, 32, 33syl13anc 1251 . . . . 5  |-  ( ( ( ( A  e. 
Fin  /\  A. x  e.  A  B  e.  Fin  /\ Disj  x  e.  A  B
)  /\  ( y  C_  A  /\  z  e.  ( A  \  y
) ) )  /\  U_ x  e.  y  B  e.  Fin )  -> 
( U_ x  e.  y  B  i^i  U_ x  e.  { z } B
)  =  (/) )
35 unfidisj 6992 . . . . 5  |-  ( (
U_ x  e.  y  B  e.  Fin  /\  U_ x  e.  { z } B  e.  Fin  /\  ( U_ x  e.  y  B  i^i  U_ x  e.  { z } B )  =  (/) )  ->  ( U_ x  e.  y  B  u.  U_ x  e.  { z } B )  e. 
Fin )
3614, 26, 34, 35syl3anc 1249 . . . 4  |-  ( ( ( ( A  e. 
Fin  /\  A. x  e.  A  B  e.  Fin  /\ Disj  x  e.  A  B
)  /\  ( y  C_  A  /\  z  e.  ( A  \  y
) ) )  /\  U_ x  e.  y  B  e.  Fin )  -> 
( U_ x  e.  y  B  u.  U_ x  e.  { z } B
)  e.  Fin )
3713, 36eqeltrid 2283 . . 3  |-  ( ( ( ( A  e. 
Fin  /\  A. x  e.  A  B  e.  Fin  /\ Disj  x  e.  A  B
)  /\  ( y  C_  A  /\  z  e.  ( A  \  y
) ) )  /\  U_ x  e.  y  B  e.  Fin )  ->  U_ x  e.  (
y  u.  { z } ) B  e. 
Fin )
3837ex 115 . 2  |-  ( ( ( A  e.  Fin  /\ 
A. x  e.  A  B  e.  Fin  /\ Disj  x  e.  A  B )  /\  ( y  C_  A  /\  z  e.  ( A  \  y ) ) )  ->  ( U_ x  e.  y  B  e.  Fin  ->  U_ x  e.  ( y  u.  {
z } ) B  e.  Fin ) )
39 simp1 999 . 2  |-  ( ( A  e.  Fin  /\  A. x  e.  A  B  e.  Fin  /\ Disj  x  e.  A  B )  ->  A  e.  Fin )
402, 4, 6, 8, 12, 38, 39findcard2d 6961 1  |-  ( ( A  e.  Fin  /\  A. x  e.  A  B  e.  Fin  /\ Disj  x  e.  A  B )  ->  U_ x  e.  A  B  e.  Fin )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    /\ w3a 980    = wceq 1364    e. wcel 2167   A.wral 2475   _Vcvv 2763   [_csb 3084    \ cdif 3154    u. cun 3155    i^i cin 3156    C_ wss 3157   (/)c0 3451   {csn 3623   U_ciun 3917  Disj wdisj 4011   Fincfn 6808
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-nul 4160  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-iinf 4625
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-if 3563  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-disj 4012  df-br 4035  df-opab 4096  df-mpt 4097  df-tr 4133  df-id 4329  df-iord 4402  df-on 4404  df-suc 4407  df-iom 4628  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-1o 6483  df-er 6601  df-en 6809  df-fin 6811
This theorem is referenced by:  fsum2dlemstep  11616  fisumcom2  11620  fsumiun  11659  hashiun  11660  hash2iun  11661  fprod2dlemstep  11804  fprodcom2fi  11808
  Copyright terms: Public domain W3C validator