Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > iunxsngf | GIF version |
Description: A singleton index picks out an instance of an indexed union's argument. (Contributed by Mario Carneiro, 25-Jun-2016.) (Revised by Thierry Arnoux, 2-May-2020.) |
Ref | Expression |
---|---|
iunxsngf.1 | ⊢ Ⅎ𝑥𝐶 |
iunxsngf.2 | ⊢ (𝑥 = 𝐴 → 𝐵 = 𝐶) |
Ref | Expression |
---|---|
iunxsngf | ⊢ (𝐴 ∈ 𝑉 → ∪ 𝑥 ∈ {𝐴}𝐵 = 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eliun 3886 | . . 3 ⊢ (𝑦 ∈ ∪ 𝑥 ∈ {𝐴}𝐵 ↔ ∃𝑥 ∈ {𝐴}𝑦 ∈ 𝐵) | |
2 | rexsns 3628 | . . . 4 ⊢ (∃𝑥 ∈ {𝐴}𝑦 ∈ 𝐵 ↔ [𝐴 / 𝑥]𝑦 ∈ 𝐵) | |
3 | iunxsngf.1 | . . . . . 6 ⊢ Ⅎ𝑥𝐶 | |
4 | 3 | nfcri 2311 | . . . . 5 ⊢ Ⅎ𝑥 𝑦 ∈ 𝐶 |
5 | iunxsngf.2 | . . . . . 6 ⊢ (𝑥 = 𝐴 → 𝐵 = 𝐶) | |
6 | 5 | eleq2d 2245 | . . . . 5 ⊢ (𝑥 = 𝐴 → (𝑦 ∈ 𝐵 ↔ 𝑦 ∈ 𝐶)) |
7 | 4, 6 | sbciegf 2992 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥]𝑦 ∈ 𝐵 ↔ 𝑦 ∈ 𝐶)) |
8 | 2, 7 | bitrid 192 | . . 3 ⊢ (𝐴 ∈ 𝑉 → (∃𝑥 ∈ {𝐴}𝑦 ∈ 𝐵 ↔ 𝑦 ∈ 𝐶)) |
9 | 1, 8 | bitrid 192 | . 2 ⊢ (𝐴 ∈ 𝑉 → (𝑦 ∈ ∪ 𝑥 ∈ {𝐴}𝐵 ↔ 𝑦 ∈ 𝐶)) |
10 | 9 | eqrdv 2173 | 1 ⊢ (𝐴 ∈ 𝑉 → ∪ 𝑥 ∈ {𝐴}𝐵 = 𝐶) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1353 ∈ wcel 2146 Ⅎwnfc 2304 ∃wrex 2454 [wsbc 2960 {csn 3589 ∪ ciun 3882 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-ext 2157 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1459 df-sb 1761 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-ral 2458 df-rex 2459 df-v 2737 df-sbc 2961 df-sn 3595 df-iun 3884 |
This theorem is referenced by: iunfidisj 6935 iuncld 13195 |
Copyright terms: Public domain | W3C validator |