| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > iunxsngf | GIF version | ||
| Description: A singleton index picks out an instance of an indexed union's argument. (Contributed by Mario Carneiro, 25-Jun-2016.) (Revised by Thierry Arnoux, 2-May-2020.) | 
| Ref | Expression | 
|---|---|
| iunxsngf.1 | ⊢ Ⅎ𝑥𝐶 | 
| iunxsngf.2 | ⊢ (𝑥 = 𝐴 → 𝐵 = 𝐶) | 
| Ref | Expression | 
|---|---|
| iunxsngf | ⊢ (𝐴 ∈ 𝑉 → ∪ 𝑥 ∈ {𝐴}𝐵 = 𝐶) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | eliun 3920 | . . 3 ⊢ (𝑦 ∈ ∪ 𝑥 ∈ {𝐴}𝐵 ↔ ∃𝑥 ∈ {𝐴}𝑦 ∈ 𝐵) | |
| 2 | rexsns 3661 | . . . 4 ⊢ (∃𝑥 ∈ {𝐴}𝑦 ∈ 𝐵 ↔ [𝐴 / 𝑥]𝑦 ∈ 𝐵) | |
| 3 | iunxsngf.1 | . . . . . 6 ⊢ Ⅎ𝑥𝐶 | |
| 4 | 3 | nfcri 2333 | . . . . 5 ⊢ Ⅎ𝑥 𝑦 ∈ 𝐶 | 
| 5 | iunxsngf.2 | . . . . . 6 ⊢ (𝑥 = 𝐴 → 𝐵 = 𝐶) | |
| 6 | 5 | eleq2d 2266 | . . . . 5 ⊢ (𝑥 = 𝐴 → (𝑦 ∈ 𝐵 ↔ 𝑦 ∈ 𝐶)) | 
| 7 | 4, 6 | sbciegf 3021 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥]𝑦 ∈ 𝐵 ↔ 𝑦 ∈ 𝐶)) | 
| 8 | 2, 7 | bitrid 192 | . . 3 ⊢ (𝐴 ∈ 𝑉 → (∃𝑥 ∈ {𝐴}𝑦 ∈ 𝐵 ↔ 𝑦 ∈ 𝐶)) | 
| 9 | 1, 8 | bitrid 192 | . 2 ⊢ (𝐴 ∈ 𝑉 → (𝑦 ∈ ∪ 𝑥 ∈ {𝐴}𝐵 ↔ 𝑦 ∈ 𝐶)) | 
| 10 | 9 | eqrdv 2194 | 1 ⊢ (𝐴 ∈ 𝑉 → ∪ 𝑥 ∈ {𝐴}𝐵 = 𝐶) | 
| Colors of variables: wff set class | 
| Syntax hints: → wi 4 = wceq 1364 ∈ wcel 2167 Ⅎwnfc 2326 ∃wrex 2476 [wsbc 2989 {csn 3622 ∪ ciun 3916 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-sbc 2990 df-sn 3628 df-iun 3918 | 
| This theorem is referenced by: iunfidisj 7012 iuncld 14351 | 
| Copyright terms: Public domain | W3C validator |