ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iunxsngf GIF version

Theorem iunxsngf 3959
Description: A singleton index picks out an instance of an indexed union's argument. (Contributed by Mario Carneiro, 25-Jun-2016.) (Revised by Thierry Arnoux, 2-May-2020.)
Hypotheses
Ref Expression
iunxsngf.1 𝑥𝐶
iunxsngf.2 (𝑥 = 𝐴𝐵 = 𝐶)
Assertion
Ref Expression
iunxsngf (𝐴𝑉 𝑥 ∈ {𝐴}𝐵 = 𝐶)
Distinct variable group:   𝑥,𝐴
Allowed substitution hints:   𝐵(𝑥)   𝐶(𝑥)   𝑉(𝑥)

Proof of Theorem iunxsngf
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 eliun 3886 . . 3 (𝑦 𝑥 ∈ {𝐴}𝐵 ↔ ∃𝑥 ∈ {𝐴}𝑦𝐵)
2 rexsns 3628 . . . 4 (∃𝑥 ∈ {𝐴}𝑦𝐵[𝐴 / 𝑥]𝑦𝐵)
3 iunxsngf.1 . . . . . 6 𝑥𝐶
43nfcri 2311 . . . . 5 𝑥 𝑦𝐶
5 iunxsngf.2 . . . . . 6 (𝑥 = 𝐴𝐵 = 𝐶)
65eleq2d 2245 . . . . 5 (𝑥 = 𝐴 → (𝑦𝐵𝑦𝐶))
74, 6sbciegf 2992 . . . 4 (𝐴𝑉 → ([𝐴 / 𝑥]𝑦𝐵𝑦𝐶))
82, 7bitrid 192 . . 3 (𝐴𝑉 → (∃𝑥 ∈ {𝐴}𝑦𝐵𝑦𝐶))
91, 8bitrid 192 . 2 (𝐴𝑉 → (𝑦 𝑥 ∈ {𝐴}𝐵𝑦𝐶))
109eqrdv 2173 1 (𝐴𝑉 𝑥 ∈ {𝐴}𝐵 = 𝐶)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1353  wcel 2146  wnfc 2304  wrex 2454  [wsbc 2960  {csn 3589   ciun 3882
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1445  ax-7 1446  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-8 1502  ax-10 1503  ax-11 1504  ax-i12 1505  ax-bndl 1507  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532  ax-i5r 1533  ax-ext 2157
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1459  df-sb 1761  df-clab 2162  df-cleq 2168  df-clel 2171  df-nfc 2306  df-ral 2458  df-rex 2459  df-v 2737  df-sbc 2961  df-sn 3595  df-iun 3884
This theorem is referenced by:  iunfidisj  6935  iuncld  13195
  Copyright terms: Public domain W3C validator