Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 3anbi123d | Unicode version |
Description: Deduction joining 3 equivalences to form equivalence of conjunctions. (Contributed by NM, 22-Apr-1994.) |
Ref | Expression |
---|---|
bi3d.1 | |
bi3d.2 | |
bi3d.3 |
Ref | Expression |
---|---|
3anbi123d |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bi3d.1 | . . . 4 | |
2 | bi3d.2 | . . . 4 | |
3 | 1, 2 | anbi12d 465 | . . 3 |
4 | bi3d.3 | . . 3 | |
5 | 3, 4 | anbi12d 465 | . 2 |
6 | df-3an 965 | . 2 | |
7 | df-3an 965 | . 2 | |
8 | 5, 6, 7 | 3bitr4g 222 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 w3a 963 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 |
This theorem depends on definitions: df-bi 116 df-3an 965 |
This theorem is referenced by: 3anbi12d 1295 3anbi13d 1296 3anbi23d 1297 limeq 4336 smoeq 6231 tfrlemi1 6273 tfr1onlemaccex 6289 tfrcllemaccex 6302 ereq1 6480 updjud 7016 ctssdclemr 7046 elinp 7377 sup3exmid 8811 iccshftr 9880 iccshftl 9882 iccdil 9884 icccntr 9886 fzaddel 9943 elfzomelpfzo 10112 seq3f1olemstep 10382 seq3f1olemp 10383 sumeq1 11234 summodclem2 11261 summodc 11262 zsumdc 11263 prodmodclem2 11456 prodmodc 11457 divalglemnn 11790 divalglemeunn 11793 divalglemeuneg 11795 dfgcd2 11878 ctiunct 12141 isstruct2im 12160 isstruct2r 12161 fiinopn 12362 lmfval 12552 upxp 12632 2irrexpqap 13255 dceqnconst 13592 dcapnconst 13593 |
Copyright terms: Public domain | W3C validator |