![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 3anbi123d | Unicode version |
Description: Deduction joining 3 equivalences to form equivalence of conjunctions. (Contributed by NM, 22-Apr-1994.) |
Ref | Expression |
---|---|
bi3d.1 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
bi3d.2 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
bi3d.3 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
3anbi123d |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bi3d.1 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | bi3d.2 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 1, 2 | anbi12d 473 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
4 | bi3d.3 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
5 | 3, 4 | anbi12d 473 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
6 | df-3an 982 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
7 | df-3an 982 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
8 | 5, 6, 7 | 3bitr4g 223 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
This theorem depends on definitions: df-bi 117 df-3an 982 |
This theorem is referenced by: 3anbi12d 1324 3anbi13d 1325 3anbi23d 1326 limeq 4408 smoeq 6343 tfrlemi1 6385 tfr1onlemaccex 6401 tfrcllemaccex 6414 ereq1 6594 updjud 7141 ctssdclemr 7171 tapeq1 7312 tapeq2 7313 elinp 7534 sup3exmid 8976 iccshftr 10060 iccshftl 10062 iccdil 10064 icccntr 10066 fzaddel 10125 elfzomelpfzo 10298 seq3f1olemstep 10585 seq3f1olemp 10586 sumeq1 11498 summodclem2 11525 summodc 11526 zsumdc 11527 prodmodclem2 11720 prodmodc 11721 divalglemnn 12059 divalglemeunn 12062 divalglemeuneg 12064 dfgcd2 12151 pythagtriplem18 12419 pythagtriplem19 12420 ctiunct 12597 ssomct 12602 isstruct2im 12628 isstruct2r 12629 ptex 12875 imasgrp2 13180 isrngd 13449 imasrng 13452 isringd 13537 imasring 13560 subrngpropd 13712 issubrg3 13743 islmod 13787 lmodlema 13788 islmodd 13789 lmodprop2d 13844 fiinopn 14172 lmfval 14360 upxp 14440 ivthdich 14807 2irrexpqap 15110 dceqnconst 15550 dcapnconst 15551 |
Copyright terms: Public domain | W3C validator |