| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3anbi123d | Unicode version | ||
| Description: Deduction joining 3 equivalences to form equivalence of conjunctions. (Contributed by NM, 22-Apr-1994.) |
| Ref | Expression |
|---|---|
| bi3d.1 |
|
| bi3d.2 |
|
| bi3d.3 |
|
| Ref | Expression |
|---|---|
| 3anbi123d |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bi3d.1 |
. . . 4
| |
| 2 | bi3d.2 |
. . . 4
| |
| 3 | 1, 2 | anbi12d 473 |
. . 3
|
| 4 | bi3d.3 |
. . 3
| |
| 5 | 3, 4 | anbi12d 473 |
. 2
|
| 6 | df-3an 983 |
. 2
| |
| 7 | df-3an 983 |
. 2
| |
| 8 | 5, 6, 7 | 3bitr4g 223 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 df-3an 983 |
| This theorem is referenced by: 3anbi12d 1326 3anbi13d 1327 3anbi23d 1328 limeq 4425 smoeq 6378 tfrlemi1 6420 tfr1onlemaccex 6436 tfrcllemaccex 6449 ereq1 6629 updjud 7186 ctssdclemr 7216 tapeq1 7366 tapeq2 7367 elinp 7589 sup3exmid 9032 iccshftr 10118 iccshftl 10120 iccdil 10122 icccntr 10124 fzaddel 10183 elfzomelpfzo 10362 seq3f1olemstep 10661 seq3f1olemp 10662 wrdl1s1 11087 sumeq1 11699 summodclem2 11726 summodc 11727 zsumdc 11728 prodmodclem2 11921 prodmodc 11922 divalglemnn 12262 divalglemeunn 12265 divalglemeuneg 12267 dfgcd2 12368 pythagtriplem18 12637 pythagtriplem19 12638 ctiunct 12844 ssomct 12849 isstruct2im 12875 isstruct2r 12876 ptex 13129 imasmnd2 13317 imasgrp2 13479 isrngd 13748 imasrng 13751 isringd 13836 imasring 13859 subrngpropd 14011 issubrg3 14042 islmod 14086 lmodlema 14087 islmodd 14088 lmodprop2d 14143 fiinopn 14509 lmfval 14697 upxp 14777 ivthdich 15158 2irrexpqap 15483 dceqnconst 16036 dcapnconst 16037 |
| Copyright terms: Public domain | W3C validator |