| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3anbi123d | Unicode version | ||
| Description: Deduction joining 3 equivalences to form equivalence of conjunctions. (Contributed by NM, 22-Apr-1994.) |
| Ref | Expression |
|---|---|
| bi3d.1 |
|
| bi3d.2 |
|
| bi3d.3 |
|
| Ref | Expression |
|---|---|
| 3anbi123d |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bi3d.1 |
. . . 4
| |
| 2 | bi3d.2 |
. . . 4
| |
| 3 | 1, 2 | anbi12d 473 |
. . 3
|
| 4 | bi3d.3 |
. . 3
| |
| 5 | 3, 4 | anbi12d 473 |
. 2
|
| 6 | df-3an 982 |
. 2
| |
| 7 | df-3an 982 |
. 2
| |
| 8 | 5, 6, 7 | 3bitr4g 223 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 df-3an 982 |
| This theorem is referenced by: 3anbi12d 1324 3anbi13d 1325 3anbi23d 1326 limeq 4413 smoeq 6357 tfrlemi1 6399 tfr1onlemaccex 6415 tfrcllemaccex 6428 ereq1 6608 updjud 7157 ctssdclemr 7187 tapeq1 7335 tapeq2 7336 elinp 7558 sup3exmid 9001 iccshftr 10086 iccshftl 10088 iccdil 10090 icccntr 10092 fzaddel 10151 elfzomelpfzo 10324 seq3f1olemstep 10623 seq3f1olemp 10624 sumeq1 11537 summodclem2 11564 summodc 11565 zsumdc 11566 prodmodclem2 11759 prodmodc 11760 divalglemnn 12100 divalglemeunn 12103 divalglemeuneg 12105 dfgcd2 12206 pythagtriplem18 12475 pythagtriplem19 12476 ctiunct 12682 ssomct 12687 isstruct2im 12713 isstruct2r 12714 ptex 12966 imasmnd2 13154 imasgrp2 13316 isrngd 13585 imasrng 13588 isringd 13673 imasring 13696 subrngpropd 13848 issubrg3 13879 islmod 13923 lmodlema 13924 islmodd 13925 lmodprop2d 13980 fiinopn 14324 lmfval 14512 upxp 14592 ivthdich 14973 2irrexpqap 15298 dceqnconst 15791 dcapnconst 15792 |
| Copyright terms: Public domain | W3C validator |