| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3anbi123d | Unicode version | ||
| Description: Deduction joining 3 equivalences to form equivalence of conjunctions. (Contributed by NM, 22-Apr-1994.) |
| Ref | Expression |
|---|---|
| bi3d.1 |
|
| bi3d.2 |
|
| bi3d.3 |
|
| Ref | Expression |
|---|---|
| 3anbi123d |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bi3d.1 |
. . . 4
| |
| 2 | bi3d.2 |
. . . 4
| |
| 3 | 1, 2 | anbi12d 473 |
. . 3
|
| 4 | bi3d.3 |
. . 3
| |
| 5 | 3, 4 | anbi12d 473 |
. 2
|
| 6 | df-3an 1004 |
. 2
| |
| 7 | df-3an 1004 |
. 2
| |
| 8 | 5, 6, 7 | 3bitr4g 223 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 |
| This theorem is referenced by: 3anbi12d 1347 3anbi13d 1348 3anbi23d 1349 limeq 4468 smoeq 6436 tfrlemi1 6478 tfr1onlemaccex 6494 tfrcllemaccex 6507 ereq1 6687 updjud 7249 ctssdclemr 7279 tapeq1 7438 tapeq2 7439 elinp 7661 sup3exmid 9104 iccshftr 10190 iccshftl 10192 iccdil 10194 icccntr 10196 fzaddel 10255 elfzomelpfzo 10437 seq3f1olemstep 10736 seq3f1olemp 10737 wrdl1s1 11163 sumeq1 11866 summodclem2 11893 summodc 11894 zsumdc 11895 prodmodclem2 12088 prodmodc 12089 divalglemnn 12429 divalglemeunn 12432 divalglemeuneg 12434 dfgcd2 12535 pythagtriplem18 12804 pythagtriplem19 12805 ctiunct 13011 ssomct 13016 isstruct2im 13042 isstruct2r 13043 ptex 13297 imasmnd2 13485 imasgrp2 13647 isrngd 13916 imasrng 13919 isringd 14004 imasring 14027 subrngpropd 14180 issubrg3 14211 islmod 14255 lmodlema 14256 islmodd 14257 lmodprop2d 14312 fiinopn 14678 lmfval 14867 upxp 14946 ivthdich 15327 2irrexpqap 15652 wksfval 16035 iswlk 16036 dceqnconst 16428 dcapnconst 16429 |
| Copyright terms: Public domain | W3C validator |