| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3anbi123d | Unicode version | ||
| Description: Deduction joining 3 equivalences to form equivalence of conjunctions. (Contributed by NM, 22-Apr-1994.) |
| Ref | Expression |
|---|---|
| bi3d.1 |
|
| bi3d.2 |
|
| bi3d.3 |
|
| Ref | Expression |
|---|---|
| 3anbi123d |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bi3d.1 |
. . . 4
| |
| 2 | bi3d.2 |
. . . 4
| |
| 3 | 1, 2 | anbi12d 473 |
. . 3
|
| 4 | bi3d.3 |
. . 3
| |
| 5 | 3, 4 | anbi12d 473 |
. 2
|
| 6 | df-3an 983 |
. 2
| |
| 7 | df-3an 983 |
. 2
| |
| 8 | 5, 6, 7 | 3bitr4g 223 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 df-3an 983 |
| This theorem is referenced by: 3anbi12d 1326 3anbi13d 1327 3anbi23d 1328 limeq 4442 smoeq 6399 tfrlemi1 6441 tfr1onlemaccex 6457 tfrcllemaccex 6470 ereq1 6650 updjud 7210 ctssdclemr 7240 tapeq1 7399 tapeq2 7400 elinp 7622 sup3exmid 9065 iccshftr 10151 iccshftl 10153 iccdil 10155 icccntr 10157 fzaddel 10216 elfzomelpfzo 10397 seq3f1olemstep 10696 seq3f1olemp 10697 wrdl1s1 11122 sumeq1 11781 summodclem2 11808 summodc 11809 zsumdc 11810 prodmodclem2 12003 prodmodc 12004 divalglemnn 12344 divalglemeunn 12347 divalglemeuneg 12349 dfgcd2 12450 pythagtriplem18 12719 pythagtriplem19 12720 ctiunct 12926 ssomct 12931 isstruct2im 12957 isstruct2r 12958 ptex 13211 imasmnd2 13399 imasgrp2 13561 isrngd 13830 imasrng 13833 isringd 13918 imasring 13941 subrngpropd 14093 issubrg3 14124 islmod 14168 lmodlema 14169 islmodd 14170 lmodprop2d 14225 fiinopn 14591 lmfval 14779 upxp 14859 ivthdich 15240 2irrexpqap 15565 dceqnconst 16201 dcapnconst 16202 |
| Copyright terms: Public domain | W3C validator |