Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 3anbi123d | Unicode version |
Description: Deduction joining 3 equivalences to form equivalence of conjunctions. (Contributed by NM, 22-Apr-1994.) |
Ref | Expression |
---|---|
bi3d.1 | |
bi3d.2 | |
bi3d.3 |
Ref | Expression |
---|---|
3anbi123d |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bi3d.1 | . . . 4 | |
2 | bi3d.2 | . . . 4 | |
3 | 1, 2 | anbi12d 470 | . . 3 |
4 | bi3d.3 | . . 3 | |
5 | 3, 4 | anbi12d 470 | . 2 |
6 | df-3an 975 | . 2 | |
7 | df-3an 975 | . 2 | |
8 | 5, 6, 7 | 3bitr4g 222 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 w3a 973 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 |
This theorem depends on definitions: df-bi 116 df-3an 975 |
This theorem is referenced by: 3anbi12d 1308 3anbi13d 1309 3anbi23d 1310 limeq 4362 smoeq 6269 tfrlemi1 6311 tfr1onlemaccex 6327 tfrcllemaccex 6340 ereq1 6520 updjud 7059 ctssdclemr 7089 elinp 7436 sup3exmid 8873 iccshftr 9951 iccshftl 9953 iccdil 9955 icccntr 9957 fzaddel 10015 elfzomelpfzo 10187 seq3f1olemstep 10457 seq3f1olemp 10458 sumeq1 11318 summodclem2 11345 summodc 11346 zsumdc 11347 prodmodclem2 11540 prodmodc 11541 divalglemnn 11877 divalglemeunn 11880 divalglemeuneg 11882 dfgcd2 11969 pythagtriplem18 12235 pythagtriplem19 12236 ctiunct 12395 ssomct 12400 isstruct2im 12426 isstruct2r 12427 fiinopn 12796 lmfval 12986 upxp 13066 2irrexpqap 13690 dceqnconst 14091 dcapnconst 14092 |
Copyright terms: Public domain | W3C validator |