| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3anbi123d | Unicode version | ||
| Description: Deduction joining 3 equivalences to form equivalence of conjunctions. (Contributed by NM, 22-Apr-1994.) |
| Ref | Expression |
|---|---|
| bi3d.1 |
|
| bi3d.2 |
|
| bi3d.3 |
|
| Ref | Expression |
|---|---|
| 3anbi123d |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bi3d.1 |
. . . 4
| |
| 2 | bi3d.2 |
. . . 4
| |
| 3 | 1, 2 | anbi12d 473 |
. . 3
|
| 4 | bi3d.3 |
. . 3
| |
| 5 | 3, 4 | anbi12d 473 |
. 2
|
| 6 | df-3an 983 |
. 2
| |
| 7 | df-3an 983 |
. 2
| |
| 8 | 5, 6, 7 | 3bitr4g 223 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 df-3an 983 |
| This theorem is referenced by: 3anbi12d 1326 3anbi13d 1327 3anbi23d 1328 limeq 4424 smoeq 6376 tfrlemi1 6418 tfr1onlemaccex 6434 tfrcllemaccex 6447 ereq1 6627 updjud 7184 ctssdclemr 7214 tapeq1 7364 tapeq2 7365 elinp 7587 sup3exmid 9030 iccshftr 10116 iccshftl 10118 iccdil 10120 icccntr 10122 fzaddel 10181 elfzomelpfzo 10360 seq3f1olemstep 10659 seq3f1olemp 10660 wrdl1s1 11084 sumeq1 11666 summodclem2 11693 summodc 11694 zsumdc 11695 prodmodclem2 11888 prodmodc 11889 divalglemnn 12229 divalglemeunn 12232 divalglemeuneg 12234 dfgcd2 12335 pythagtriplem18 12604 pythagtriplem19 12605 ctiunct 12811 ssomct 12816 isstruct2im 12842 isstruct2r 12843 ptex 13096 imasmnd2 13284 imasgrp2 13446 isrngd 13715 imasrng 13718 isringd 13803 imasring 13826 subrngpropd 13978 issubrg3 14009 islmod 14053 lmodlema 14054 islmodd 14055 lmodprop2d 14110 fiinopn 14476 lmfval 14664 upxp 14744 ivthdich 15125 2irrexpqap 15450 dceqnconst 16003 dcapnconst 16004 |
| Copyright terms: Public domain | W3C validator |