![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 3anbi123d | Unicode version |
Description: Deduction joining 3 equivalences to form equivalence of conjunctions. (Contributed by NM, 22-Apr-1994.) |
Ref | Expression |
---|---|
bi3d.1 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
bi3d.2 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
bi3d.3 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
3anbi123d |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bi3d.1 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | bi3d.2 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 1, 2 | anbi12d 473 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
4 | bi3d.3 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
5 | 3, 4 | anbi12d 473 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
6 | df-3an 982 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
7 | df-3an 982 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
8 | 5, 6, 7 | 3bitr4g 223 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
This theorem depends on definitions: df-bi 117 df-3an 982 |
This theorem is referenced by: 3anbi12d 1324 3anbi13d 1325 3anbi23d 1326 limeq 4409 smoeq 6345 tfrlemi1 6387 tfr1onlemaccex 6403 tfrcllemaccex 6416 ereq1 6596 updjud 7143 ctssdclemr 7173 tapeq1 7314 tapeq2 7315 elinp 7536 sup3exmid 8978 iccshftr 10063 iccshftl 10065 iccdil 10067 icccntr 10069 fzaddel 10128 elfzomelpfzo 10301 seq3f1olemstep 10588 seq3f1olemp 10589 sumeq1 11501 summodclem2 11528 summodc 11529 zsumdc 11530 prodmodclem2 11723 prodmodc 11724 divalglemnn 12062 divalglemeunn 12065 divalglemeuneg 12067 dfgcd2 12154 pythagtriplem18 12422 pythagtriplem19 12423 ctiunct 12600 ssomct 12605 isstruct2im 12631 isstruct2r 12632 ptex 12878 imasgrp2 13183 isrngd 13452 imasrng 13455 isringd 13540 imasring 13563 subrngpropd 13715 issubrg3 13746 islmod 13790 lmodlema 13791 islmodd 13792 lmodprop2d 13847 fiinopn 14183 lmfval 14371 upxp 14451 ivthdich 14832 2irrexpqap 15151 dceqnconst 15620 dcapnconst 15621 |
Copyright terms: Public domain | W3C validator |