ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  maxcom Unicode version

Theorem maxcom 11337
Description: The maximum of two reals is commutative. Lemma 3.9 of [Geuvers], p. 10. (Contributed by Jim Kingdon, 21-Dec-2021.)
Assertion
Ref Expression
maxcom  |-  sup ( { A ,  B } ,  RR ,  <  )  =  sup ( { B ,  A } ,  RR ,  <  )

Proof of Theorem maxcom
StepHypRef Expression
1 prcom 3694 . 2  |-  { A ,  B }  =  { B ,  A }
21supeq1i 7037 1  |-  sup ( { A ,  B } ,  RR ,  <  )  =  sup ( { B ,  A } ,  RR ,  <  )
Colors of variables: wff set class
Syntax hints:    = wceq 1364   {cpr 3619   supcsup 7031   RRcr 7861    < clt 8044
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-rab 2481  df-v 2762  df-un 3157  df-pr 3625  df-uni 3836  df-sup 7033
This theorem is referenced by:  maxle2  11346  maxclpr  11356  2zsupmax  11359  xrmaxiflemcom  11382
  Copyright terms: Public domain W3C validator