ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  maxcom Unicode version

Theorem maxcom 11167
Description: The maximum of two reals is commutative. Lemma 3.9 of [Geuvers], p. 10. (Contributed by Jim Kingdon, 21-Dec-2021.)
Assertion
Ref Expression
maxcom  |-  sup ( { A ,  B } ,  RR ,  <  )  =  sup ( { B ,  A } ,  RR ,  <  )

Proof of Theorem maxcom
StepHypRef Expression
1 prcom 3659 . 2  |-  { A ,  B }  =  { B ,  A }
21supeq1i 6965 1  |-  sup ( { A ,  B } ,  RR ,  <  )  =  sup ( { B ,  A } ,  RR ,  <  )
Colors of variables: wff set class
Syntax hints:    = wceq 1348   {cpr 3584   supcsup 6959   RRcr 7773    < clt 7954
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-rab 2457  df-v 2732  df-un 3125  df-pr 3590  df-uni 3797  df-sup 6961
This theorem is referenced by:  maxle2  11176  maxclpr  11186  2zsupmax  11189  xrmaxiflemcom  11212
  Copyright terms: Public domain W3C validator