ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  maxcom Unicode version

Theorem maxcom 11709
Description: The maximum of two reals is commutative. Lemma 3.9 of [Geuvers], p. 10. (Contributed by Jim Kingdon, 21-Dec-2021.)
Assertion
Ref Expression
maxcom  |-  sup ( { A ,  B } ,  RR ,  <  )  =  sup ( { B ,  A } ,  RR ,  <  )

Proof of Theorem maxcom
StepHypRef Expression
1 prcom 3742 . 2  |-  { A ,  B }  =  { B ,  A }
21supeq1i 7151 1  |-  sup ( { A ,  B } ,  RR ,  <  )  =  sup ( { B ,  A } ,  RR ,  <  )
Colors of variables: wff set class
Syntax hints:    = wceq 1395   {cpr 3667   supcsup 7145   RRcr 7994    < clt 8177
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-rab 2517  df-v 2801  df-un 3201  df-pr 3673  df-uni 3888  df-sup 7147
This theorem is referenced by:  maxle2  11718  maxclpr  11728  2zsupmax  11732  xrmaxiflemcom  11755
  Copyright terms: Public domain W3C validator