ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  maxcom Unicode version

Theorem maxcom 11485
Description: The maximum of two reals is commutative. Lemma 3.9 of [Geuvers], p. 10. (Contributed by Jim Kingdon, 21-Dec-2021.)
Assertion
Ref Expression
maxcom  |-  sup ( { A ,  B } ,  RR ,  <  )  =  sup ( { B ,  A } ,  RR ,  <  )

Proof of Theorem maxcom
StepHypRef Expression
1 prcom 3708 . 2  |-  { A ,  B }  =  { B ,  A }
21supeq1i 7089 1  |-  sup ( { A ,  B } ,  RR ,  <  )  =  sup ( { B ,  A } ,  RR ,  <  )
Colors of variables: wff set class
Syntax hints:    = wceq 1372   {cpr 3633   supcsup 7083   RRcr 7923    < clt 8106
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-ext 2186
This theorem depends on definitions:  df-bi 117  df-tru 1375  df-nf 1483  df-sb 1785  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ral 2488  df-rex 2489  df-rab 2492  df-v 2773  df-un 3169  df-pr 3639  df-uni 3850  df-sup 7085
This theorem is referenced by:  maxle2  11494  maxclpr  11504  2zsupmax  11508  xrmaxiflemcom  11531
  Copyright terms: Public domain W3C validator