ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  2zsupmax Unicode version

Theorem 2zsupmax 11247
Description: Two ways to express the maximum of two integers. Because order of integers is decidable, we have more flexibility than for real numbers. (Contributed by Jim Kingdon, 22-Jan-2023.)
Assertion
Ref Expression
2zsupmax  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  sup ( { A ,  B } ,  RR ,  <  )  =  if ( A  <_  B ,  B ,  A ) )

Proof of Theorem 2zsupmax
StepHypRef Expression
1 simpr 110 . . . 4  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  A  <_  B
)  ->  A  <_  B )
2 zre 9270 . . . . . 6  |-  ( A  e.  ZZ  ->  A  e.  RR )
32adantr 276 . . . . 5  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  A  e.  RR )
4 zre 9270 . . . . . . 7  |-  ( B  e.  ZZ  ->  B  e.  RR )
54adantl 277 . . . . . 6  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  B  e.  RR )
65adantr 276 . . . . 5  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  A  <_  B
)  ->  B  e.  RR )
7 maxleb 11238 . . . . 5  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A  <_  B  <->  sup ( { A ,  B } ,  RR ,  <  )  =  B ) )
83, 6, 7syl2an2r 595 . . . 4  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  A  <_  B
)  ->  ( A  <_  B  <->  sup ( { A ,  B } ,  RR ,  <  )  =  B ) )
91, 8mpbid 147 . . 3  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  A  <_  B
)  ->  sup ( { A ,  B } ,  RR ,  <  )  =  B )
101iftrued 3553 . . 3  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  A  <_  B
)  ->  if ( A  <_  B ,  B ,  A )  =  B )
119, 10eqtr4d 2223 . 2  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  A  <_  B
)  ->  sup ( { A ,  B } ,  RR ,  <  )  =  if ( A  <_  B ,  B ,  A ) )
12 maxcom 11225 . . . 4  |-  sup ( { B ,  A } ,  RR ,  <  )  =  sup ( { A ,  B } ,  RR ,  <  )
135adantr 276 . . . . . 6  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  -.  A  <_  B )  ->  B  e.  RR )
143adantr 276 . . . . . 6  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  -.  A  <_  B )  ->  A  e.  RR )
15 zltnle 9312 . . . . . . . 8  |-  ( ( B  e.  ZZ  /\  A  e.  ZZ )  ->  ( B  <  A  <->  -.  A  <_  B )
)
1615ancoms 268 . . . . . . 7  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( B  <  A  <->  -.  A  <_  B )
)
1716biimpar 297 . . . . . 6  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  -.  A  <_  B )  ->  B  <  A )
1813, 14, 17ltled 8089 . . . . 5  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  -.  A  <_  B )  ->  B  <_  A )
19 maxleb 11238 . . . . . 6  |-  ( ( B  e.  RR  /\  A  e.  RR )  ->  ( B  <_  A  <->  sup ( { B ,  A } ,  RR ,  <  )  =  A ) )
205, 14, 19syl2an2r 595 . . . . 5  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  -.  A  <_  B )  ->  ( B  <_  A  <->  sup ( { B ,  A } ,  RR ,  <  )  =  A ) )
2118, 20mpbid 147 . . . 4  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  -.  A  <_  B )  ->  sup ( { B ,  A } ,  RR ,  <  )  =  A )
2212, 21eqtr3id 2234 . . 3  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  -.  A  <_  B )  ->  sup ( { A ,  B } ,  RR ,  <  )  =  A )
23 simpr 110 . . . 4  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  -.  A  <_  B )  ->  -.  A  <_  B )
2423iffalsed 3556 . . 3  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  -.  A  <_  B )  ->  if ( A  <_  B ,  B ,  A )  =  A )
2522, 24eqtr4d 2223 . 2  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  -.  A  <_  B )  ->  sup ( { A ,  B } ,  RR ,  <  )  =  if ( A  <_  B ,  B ,  A )
)
26 zdcle 9342 . . 3  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  -> DECID  A  <_  B )
27 exmiddc 837 . . 3  |-  (DECID  A  <_  B  ->  ( A  <_  B  \/  -.  A  <_  B ) )
2826, 27syl 14 . 2  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( A  <_  B  \/  -.  A  <_  B
) )
2911, 25, 28mpjaodan 799 1  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  sup ( { A ,  B } ,  RR ,  <  )  =  if ( A  <_  B ,  B ,  A ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 709  DECID wdc 835    = wceq 1363    e. wcel 2158   ifcif 3546   {cpr 3605   class class class wbr 4015   supcsup 6994   RRcr 7823    < clt 8005    <_ cle 8006   ZZcz 9266
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1457  ax-7 1458  ax-gen 1459  ax-ie1 1503  ax-ie2 1504  ax-8 1514  ax-10 1515  ax-11 1516  ax-i12 1517  ax-bndl 1519  ax-4 1520  ax-17 1536  ax-i9 1540  ax-ial 1544  ax-i5r 1545  ax-13 2160  ax-14 2161  ax-ext 2169  ax-coll 4130  ax-sep 4133  ax-nul 4141  ax-pow 4186  ax-pr 4221  ax-un 4445  ax-setind 4548  ax-iinf 4599  ax-cnex 7915  ax-resscn 7916  ax-1cn 7917  ax-1re 7918  ax-icn 7919  ax-addcl 7920  ax-addrcl 7921  ax-mulcl 7922  ax-mulrcl 7923  ax-addcom 7924  ax-mulcom 7925  ax-addass 7926  ax-mulass 7927  ax-distr 7928  ax-i2m1 7929  ax-0lt1 7930  ax-1rid 7931  ax-0id 7932  ax-rnegex 7933  ax-precex 7934  ax-cnre 7935  ax-pre-ltirr 7936  ax-pre-ltwlin 7937  ax-pre-lttrn 7938  ax-pre-apti 7939  ax-pre-ltadd 7940  ax-pre-mulgt0 7941  ax-pre-mulext 7942  ax-arch 7943  ax-caucvg 7944
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 980  df-3an 981  df-tru 1366  df-fal 1369  df-nf 1471  df-sb 1773  df-eu 2039  df-mo 2040  df-clab 2174  df-cleq 2180  df-clel 2183  df-nfc 2318  df-ne 2358  df-nel 2453  df-ral 2470  df-rex 2471  df-reu 2472  df-rmo 2473  df-rab 2474  df-v 2751  df-sbc 2975  df-csb 3070  df-dif 3143  df-un 3145  df-in 3147  df-ss 3154  df-nul 3435  df-if 3547  df-pw 3589  df-sn 3610  df-pr 3611  df-op 3613  df-uni 3822  df-int 3857  df-iun 3900  df-br 4016  df-opab 4077  df-mpt 4078  df-tr 4114  df-id 4305  df-po 4308  df-iso 4309  df-iord 4378  df-on 4380  df-ilim 4381  df-suc 4383  df-iom 4602  df-xp 4644  df-rel 4645  df-cnv 4646  df-co 4647  df-dm 4648  df-rn 4649  df-res 4650  df-ima 4651  df-iota 5190  df-fun 5230  df-fn 5231  df-f 5232  df-f1 5233  df-fo 5234  df-f1o 5235  df-fv 5236  df-riota 5844  df-ov 5891  df-oprab 5892  df-mpo 5893  df-1st 6154  df-2nd 6155  df-recs 6319  df-frec 6405  df-sup 6996  df-pnf 8007  df-mnf 8008  df-xr 8009  df-ltxr 8010  df-le 8011  df-sub 8143  df-neg 8144  df-reap 8545  df-ap 8552  df-div 8643  df-inn 8933  df-2 8991  df-3 8992  df-4 8993  df-n0 9190  df-z 9267  df-uz 9542  df-rp 9667  df-seqfrec 10459  df-exp 10533  df-cj 10864  df-re 10865  df-im 10866  df-rsqrt 11020  df-abs 11021
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator