ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  2zsupmax Unicode version

Theorem 2zsupmax 11000
Description: Two ways to express the maximum of two integers. Because order of integers is decidable, we have more flexibility than for real numbers. (Contributed by Jim Kingdon, 22-Jan-2023.)
Assertion
Ref Expression
2zsupmax  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  sup ( { A ,  B } ,  RR ,  <  )  =  if ( A  <_  B ,  B ,  A ) )

Proof of Theorem 2zsupmax
StepHypRef Expression
1 simpr 109 . . . 4  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  A  <_  B
)  ->  A  <_  B )
2 zre 9061 . . . . . 6  |-  ( A  e.  ZZ  ->  A  e.  RR )
32adantr 274 . . . . 5  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  A  e.  RR )
4 zre 9061 . . . . . . 7  |-  ( B  e.  ZZ  ->  B  e.  RR )
54adantl 275 . . . . . 6  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  B  e.  RR )
65adantr 274 . . . . 5  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  A  <_  B
)  ->  B  e.  RR )
7 maxleb 10991 . . . . 5  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A  <_  B  <->  sup ( { A ,  B } ,  RR ,  <  )  =  B ) )
83, 6, 7syl2an2r 584 . . . 4  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  A  <_  B
)  ->  ( A  <_  B  <->  sup ( { A ,  B } ,  RR ,  <  )  =  B ) )
91, 8mpbid 146 . . 3  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  A  <_  B
)  ->  sup ( { A ,  B } ,  RR ,  <  )  =  B )
101iftrued 3481 . . 3  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  A  <_  B
)  ->  if ( A  <_  B ,  B ,  A )  =  B )
119, 10eqtr4d 2175 . 2  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  A  <_  B
)  ->  sup ( { A ,  B } ,  RR ,  <  )  =  if ( A  <_  B ,  B ,  A ) )
12 maxcom 10978 . . . 4  |-  sup ( { B ,  A } ,  RR ,  <  )  =  sup ( { A ,  B } ,  RR ,  <  )
135adantr 274 . . . . . 6  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  -.  A  <_  B )  ->  B  e.  RR )
143adantr 274 . . . . . 6  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  -.  A  <_  B )  ->  A  e.  RR )
15 zltnle 9103 . . . . . . . 8  |-  ( ( B  e.  ZZ  /\  A  e.  ZZ )  ->  ( B  <  A  <->  -.  A  <_  B )
)
1615ancoms 266 . . . . . . 7  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( B  <  A  <->  -.  A  <_  B )
)
1716biimpar 295 . . . . . 6  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  -.  A  <_  B )  ->  B  <  A )
1813, 14, 17ltled 7884 . . . . 5  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  -.  A  <_  B )  ->  B  <_  A )
19 maxleb 10991 . . . . . 6  |-  ( ( B  e.  RR  /\  A  e.  RR )  ->  ( B  <_  A  <->  sup ( { B ,  A } ,  RR ,  <  )  =  A ) )
205, 14, 19syl2an2r 584 . . . . 5  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  -.  A  <_  B )  ->  ( B  <_  A  <->  sup ( { B ,  A } ,  RR ,  <  )  =  A ) )
2118, 20mpbid 146 . . . 4  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  -.  A  <_  B )  ->  sup ( { B ,  A } ,  RR ,  <  )  =  A )
2212, 21syl5eqr 2186 . . 3  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  -.  A  <_  B )  ->  sup ( { A ,  B } ,  RR ,  <  )  =  A )
23 simpr 109 . . . 4  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  -.  A  <_  B )  ->  -.  A  <_  B )
2423iffalsed 3484 . . 3  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  -.  A  <_  B )  ->  if ( A  <_  B ,  B ,  A )  =  A )
2522, 24eqtr4d 2175 . 2  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  -.  A  <_  B )  ->  sup ( { A ,  B } ,  RR ,  <  )  =  if ( A  <_  B ,  B ,  A )
)
26 zdcle 9130 . . 3  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  -> DECID  A  <_  B )
27 exmiddc 821 . . 3  |-  (DECID  A  <_  B  ->  ( A  <_  B  \/  -.  A  <_  B ) )
2826, 27syl 14 . 2  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( A  <_  B  \/  -.  A  <_  B
) )
2911, 25, 28mpjaodan 787 1  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  sup ( { A ,  B } ,  RR ,  <  )  =  if ( A  <_  B ,  B ,  A ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    <-> wb 104    \/ wo 697  DECID wdc 819    = wceq 1331    e. wcel 1480   ifcif 3474   {cpr 3528   class class class wbr 3929   supcsup 6869   RRcr 7622    < clt 7803    <_ cle 7804   ZZcz 9057
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-coll 4043  ax-sep 4046  ax-nul 4054  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-iinf 4502  ax-cnex 7714  ax-resscn 7715  ax-1cn 7716  ax-1re 7717  ax-icn 7718  ax-addcl 7719  ax-addrcl 7720  ax-mulcl 7721  ax-mulrcl 7722  ax-addcom 7723  ax-mulcom 7724  ax-addass 7725  ax-mulass 7726  ax-distr 7727  ax-i2m1 7728  ax-0lt1 7729  ax-1rid 7730  ax-0id 7731  ax-rnegex 7732  ax-precex 7733  ax-cnre 7734  ax-pre-ltirr 7735  ax-pre-ltwlin 7736  ax-pre-lttrn 7737  ax-pre-apti 7738  ax-pre-ltadd 7739  ax-pre-mulgt0 7740  ax-pre-mulext 7741  ax-arch 7742  ax-caucvg 7743
This theorem depends on definitions:  df-bi 116  df-dc 820  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-nel 2404  df-ral 2421  df-rex 2422  df-reu 2423  df-rmo 2424  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-nul 3364  df-if 3475  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-iun 3815  df-br 3930  df-opab 3990  df-mpt 3991  df-tr 4027  df-id 4215  df-po 4218  df-iso 4219  df-iord 4288  df-on 4290  df-ilim 4291  df-suc 4293  df-iom 4505  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-f1 5128  df-fo 5129  df-f1o 5130  df-fv 5131  df-riota 5730  df-ov 5777  df-oprab 5778  df-mpo 5779  df-1st 6038  df-2nd 6039  df-recs 6202  df-frec 6288  df-sup 6871  df-pnf 7805  df-mnf 7806  df-xr 7807  df-ltxr 7808  df-le 7809  df-sub 7938  df-neg 7939  df-reap 8340  df-ap 8347  df-div 8436  df-inn 8724  df-2 8782  df-3 8783  df-4 8784  df-n0 8981  df-z 9058  df-uz 9330  df-rp 9445  df-seqfrec 10222  df-exp 10296  df-cj 10617  df-re 10618  df-im 10619  df-rsqrt 10773  df-abs 10774
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator