ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  supeq1i Unicode version

Theorem supeq1i 6878
Description: Equality inference for supremum. (Contributed by Paul Chapman, 22-Jun-2011.)
Hypothesis
Ref Expression
supeq1i.1  |-  B  =  C
Assertion
Ref Expression
supeq1i  |-  sup ( B ,  A ,  R )  =  sup ( C ,  A ,  R )

Proof of Theorem supeq1i
StepHypRef Expression
1 supeq1i.1 . 2  |-  B  =  C
2 supeq1 6876 . 2  |-  ( B  =  C  ->  sup ( B ,  A ,  R )  =  sup ( C ,  A ,  R ) )
31, 2ax-mp 5 1  |-  sup ( B ,  A ,  R )  =  sup ( C ,  A ,  R )
Colors of variables: wff set class
Syntax hints:    = wceq 1331   supcsup 6872
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121
This theorem depends on definitions:  df-bi 116  df-tru 1334  df-nf 1437  df-sb 1736  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ral 2421  df-rex 2422  df-rab 2425  df-uni 3740  df-sup 6874
This theorem is referenced by:  infrenegsupex  9411  maxcom  10999  xrmax2sup  11047  xrmaxltsup  11051  xrmaxadd  11054  infxrnegsupex  11056  gcdcom  11685  gcdass  11726
  Copyright terms: Public domain W3C validator