ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  supeq1i Unicode version

Theorem supeq1i 7047
Description: Equality inference for supremum. (Contributed by Paul Chapman, 22-Jun-2011.)
Hypothesis
Ref Expression
supeq1i.1  |-  B  =  C
Assertion
Ref Expression
supeq1i  |-  sup ( B ,  A ,  R )  =  sup ( C ,  A ,  R )

Proof of Theorem supeq1i
StepHypRef Expression
1 supeq1i.1 . 2  |-  B  =  C
2 supeq1 7045 . 2  |-  ( B  =  C  ->  sup ( B ,  A ,  R )  =  sup ( C ,  A ,  R ) )
31, 2ax-mp 5 1  |-  sup ( B ,  A ,  R )  =  sup ( C ,  A ,  R )
Colors of variables: wff set class
Syntax hints:    = wceq 1364   supcsup 7041
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-rab 2481  df-uni 3836  df-sup 7043
This theorem is referenced by:  infrenegsupex  9659  maxcom  11347  xrmax2sup  11397  xrmaxltsup  11401  xrmaxadd  11404  infxrnegsupex  11406  gcdcom  12110  gcdass  12152
  Copyright terms: Public domain W3C validator