| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > supeq1i | Unicode version | ||
| Description: Equality inference for supremum. (Contributed by Paul Chapman, 22-Jun-2011.) |
| Ref | Expression |
|---|---|
| supeq1i.1 |
|
| Ref | Expression |
|---|---|
| supeq1i |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | supeq1i.1 |
. 2
| |
| 2 | supeq1 7149 |
. 2
| |
| 3 | 1, 2 | ax-mp 5 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-rab 2517 df-uni 3888 df-sup 7147 |
| This theorem is referenced by: infrenegsupex 9785 maxcom 11709 xrmax2sup 11760 xrmaxltsup 11764 xrmaxadd 11767 infxrnegsupex 11769 gcdcom 12489 gcdass 12531 |
| Copyright terms: Public domain | W3C validator |