![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > maxcom | GIF version |
Description: The maximum of two reals is commutative. Lemma 3.9 of [Geuvers], p. 10. (Contributed by Jim Kingdon, 21-Dec-2021.) |
Ref | Expression |
---|---|
maxcom | ⊢ sup({𝐴, 𝐵}, ℝ, < ) = sup({𝐵, 𝐴}, ℝ, < ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | prcom 3683 | . 2 ⊢ {𝐴, 𝐵} = {𝐵, 𝐴} | |
2 | 1 | supeq1i 7017 | 1 ⊢ sup({𝐴, 𝐵}, ℝ, < ) = sup({𝐵, 𝐴}, ℝ, < ) |
Colors of variables: wff set class |
Syntax hints: = wceq 1364 {cpr 3608 supcsup 7011 ℝcr 7840 < clt 8022 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2171 |
This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2176 df-cleq 2182 df-clel 2185 df-nfc 2321 df-ral 2473 df-rex 2474 df-rab 2477 df-v 2754 df-un 3148 df-pr 3614 df-uni 3825 df-sup 7013 |
This theorem is referenced by: maxle2 11253 maxclpr 11263 2zsupmax 11266 xrmaxiflemcom 11289 |
Copyright terms: Public domain | W3C validator |