![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > maxcom | GIF version |
Description: The maximum of two reals is commutative. Lemma 3.9 of [Geuvers], p. 10. (Contributed by Jim Kingdon, 21-Dec-2021.) |
Ref | Expression |
---|---|
maxcom | ⊢ sup({𝐴, 𝐵}, ℝ, < ) = sup({𝐵, 𝐴}, ℝ, < ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | prcom 3670 | . 2 ⊢ {𝐴, 𝐵} = {𝐵, 𝐴} | |
2 | 1 | supeq1i 6989 | 1 ⊢ sup({𝐴, 𝐵}, ℝ, < ) = sup({𝐵, 𝐴}, ℝ, < ) |
Colors of variables: wff set class |
Syntax hints: = wceq 1353 {cpr 3595 supcsup 6983 ℝcr 7812 < clt 7994 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-ext 2159 |
This theorem depends on definitions: df-bi 117 df-tru 1356 df-nf 1461 df-sb 1763 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ral 2460 df-rex 2461 df-rab 2464 df-v 2741 df-un 3135 df-pr 3601 df-uni 3812 df-sup 6985 |
This theorem is referenced by: maxle2 11223 maxclpr 11233 2zsupmax 11236 xrmaxiflemcom 11259 |
Copyright terms: Public domain | W3C validator |