| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > maxcom | GIF version | ||
| Description: The maximum of two reals is commutative. Lemma 3.9 of [Geuvers], p. 10. (Contributed by Jim Kingdon, 21-Dec-2021.) |
| Ref | Expression |
|---|---|
| maxcom | ⊢ sup({𝐴, 𝐵}, ℝ, < ) = sup({𝐵, 𝐴}, ℝ, < ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | prcom 3722 | . 2 ⊢ {𝐴, 𝐵} = {𝐵, 𝐴} | |
| 2 | 1 | supeq1i 7123 | 1 ⊢ sup({𝐴, 𝐵}, ℝ, < ) = sup({𝐵, 𝐴}, ℝ, < ) |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1375 {cpr 3647 supcsup 7117 ℝcr 7966 < clt 8149 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 713 ax-5 1473 ax-7 1474 ax-gen 1475 ax-ie1 1519 ax-ie2 1520 ax-8 1530 ax-10 1531 ax-11 1532 ax-i12 1533 ax-bndl 1535 ax-4 1536 ax-17 1552 ax-i9 1556 ax-ial 1560 ax-i5r 1561 ax-ext 2191 |
| This theorem depends on definitions: df-bi 117 df-tru 1378 df-nf 1487 df-sb 1789 df-clab 2196 df-cleq 2202 df-clel 2205 df-nfc 2341 df-ral 2493 df-rex 2494 df-rab 2497 df-v 2781 df-un 3181 df-pr 3653 df-uni 3868 df-sup 7119 |
| This theorem is referenced by: maxle2 11689 maxclpr 11699 2zsupmax 11703 xrmaxiflemcom 11726 |
| Copyright terms: Public domain | W3C validator |