ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iscmnd Unicode version

Theorem iscmnd 13428
Description: Properties that determine a commutative monoid. (Contributed by Mario Carneiro, 7-Jan-2015.)
Hypotheses
Ref Expression
iscmnd.b  |-  ( ph  ->  B  =  ( Base `  G ) )
iscmnd.p  |-  ( ph  ->  .+  =  ( +g  `  G ) )
iscmnd.g  |-  ( ph  ->  G  e.  Mnd )
iscmnd.c  |-  ( (
ph  /\  x  e.  B  /\  y  e.  B
)  ->  ( x  .+  y )  =  ( y  .+  x ) )
Assertion
Ref Expression
iscmnd  |-  ( ph  ->  G  e. CMnd )
Distinct variable groups:    x, y, B   
x, G, y    ph, x, y
Allowed substitution hints:    .+ ( x, y)

Proof of Theorem iscmnd
StepHypRef Expression
1 iscmnd.g . . 3  |-  ( ph  ->  G  e.  Mnd )
2 iscmnd.c . . . . 5  |-  ( (
ph  /\  x  e.  B  /\  y  e.  B
)  ->  ( x  .+  y )  =  ( y  .+  x ) )
323expib 1208 . . . 4  |-  ( ph  ->  ( ( x  e.  B  /\  y  e.  B )  ->  (
x  .+  y )  =  ( y  .+  x ) ) )
43ralrimivv 2578 . . 3  |-  ( ph  ->  A. x  e.  B  A. y  e.  B  ( x  .+  y )  =  ( y  .+  x ) )
5 iscmnd.b . . . . 5  |-  ( ph  ->  B  =  ( Base `  G ) )
6 iscmnd.p . . . . . . . 8  |-  ( ph  ->  .+  =  ( +g  `  G ) )
76oveqd 5939 . . . . . . 7  |-  ( ph  ->  ( x  .+  y
)  =  ( x ( +g  `  G
) y ) )
86oveqd 5939 . . . . . . 7  |-  ( ph  ->  ( y  .+  x
)  =  ( y ( +g  `  G
) x ) )
97, 8eqeq12d 2211 . . . . . 6  |-  ( ph  ->  ( ( x  .+  y )  =  ( y  .+  x )  <-> 
( x ( +g  `  G ) y )  =  ( y ( +g  `  G ) x ) ) )
105, 9raleqbidv 2709 . . . . 5  |-  ( ph  ->  ( A. y  e.  B  ( x  .+  y )  =  ( y  .+  x )  <->  A. y  e.  ( Base `  G ) ( x ( +g  `  G
) y )  =  ( y ( +g  `  G ) x ) ) )
115, 10raleqbidv 2709 . . . 4  |-  ( ph  ->  ( A. x  e.  B  A. y  e.  B  ( x  .+  y )  =  ( y  .+  x )  <->  A. x  e.  ( Base `  G ) A. y  e.  ( Base `  G ) ( x ( +g  `  G
) y )  =  ( y ( +g  `  G ) x ) ) )
1211anbi2d 464 . . 3  |-  ( ph  ->  ( ( G  e. 
Mnd  /\  A. x  e.  B  A. y  e.  B  ( x  .+  y )  =  ( y  .+  x ) )  <->  ( G  e. 
Mnd  /\  A. x  e.  ( Base `  G
) A. y  e.  ( Base `  G
) ( x ( +g  `  G ) y )  =  ( y ( +g  `  G
) x ) ) ) )
131, 4, 12mpbi2and 945 . 2  |-  ( ph  ->  ( G  e.  Mnd  /\ 
A. x  e.  (
Base `  G ) A. y  e.  ( Base `  G ) ( x ( +g  `  G
) y )  =  ( y ( +g  `  G ) x ) ) )
14 eqid 2196 . . 3  |-  ( Base `  G )  =  (
Base `  G )
15 eqid 2196 . . 3  |-  ( +g  `  G )  =  ( +g  `  G )
1614, 15iscmn 13423 . 2  |-  ( G  e. CMnd 
<->  ( G  e.  Mnd  /\ 
A. x  e.  (
Base `  G ) A. y  e.  ( Base `  G ) ( x ( +g  `  G
) y )  =  ( y ( +g  `  G ) x ) ) )
1713, 16sylibr 134 1  |-  ( ph  ->  G  e. CMnd )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 980    = wceq 1364    e. wcel 2167   A.wral 2475   ` cfv 5258  (class class class)co 5922   Basecbs 12678   +g cplusg 12755   Mndcmnd 13057  CMndccmn 13414
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-rab 2484  df-v 2765  df-un 3161  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-br 4034  df-iota 5219  df-fv 5266  df-ov 5925  df-cmn 13416
This theorem is referenced by:  isabld  13429  subcmnd  13463  iscrngd  13598
  Copyright terms: Public domain W3C validator