ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  prmdivdiv Unicode version

Theorem prmdivdiv 12100
Description: The (modular) inverse of the inverse of a number is itself. (Contributed by Mario Carneiro, 24-Jan-2015.)
Hypothesis
Ref Expression
prmdiv.1  |-  R  =  ( ( A ^
( P  -  2 ) )  mod  P
)
Assertion
Ref Expression
prmdivdiv  |-  ( ( P  e.  Prime  /\  A  e.  ( 1 ... ( P  -  1 ) ) )  ->  A  =  ( ( R ^ ( P  - 
2 ) )  mod 
P ) )

Proof of Theorem prmdivdiv
StepHypRef Expression
1 fz1ssfz0 10012 . . 3  |-  ( 1 ... ( P  - 
1 ) )  C_  ( 0 ... ( P  -  1 ) )
2 simpr 109 . . 3  |-  ( ( P  e.  Prime  /\  A  e.  ( 1 ... ( P  -  1 ) ) )  ->  A  e.  ( 1 ... ( P  -  1 ) ) )
31, 2sseldi 3126 . 2  |-  ( ( P  e.  Prime  /\  A  e.  ( 1 ... ( P  -  1 ) ) )  ->  A  e.  ( 0 ... ( P  -  1 ) ) )
4 simpl 108 . . . . 5  |-  ( ( P  e.  Prime  /\  A  e.  ( 1 ... ( P  -  1 ) ) )  ->  P  e.  Prime )
5 elfznn 9949 . . . . . . 7  |-  ( A  e.  ( 1 ... ( P  -  1 ) )  ->  A  e.  NN )
65adantl 275 . . . . . 6  |-  ( ( P  e.  Prime  /\  A  e.  ( 1 ... ( P  -  1 ) ) )  ->  A  e.  NN )
76nnzd 9279 . . . . 5  |-  ( ( P  e.  Prime  /\  A  e.  ( 1 ... ( P  -  1 ) ) )  ->  A  e.  ZZ )
8 prmnn 11978 . . . . . 6  |-  ( P  e.  Prime  ->  P  e.  NN )
9 fzm1ndvds 11740 . . . . . 6  |-  ( ( P  e.  NN  /\  A  e.  ( 1 ... ( P  - 
1 ) ) )  ->  -.  P  ||  A
)
108, 9sylan 281 . . . . 5  |-  ( ( P  e.  Prime  /\  A  e.  ( 1 ... ( P  -  1 ) ) )  ->  -.  P  ||  A )
11 prmdiv.1 . . . . . 6  |-  R  =  ( ( A ^
( P  -  2 ) )  mod  P
)
1211prmdiv 12098 . . . . 5  |-  ( ( P  e.  Prime  /\  A  e.  ZZ  /\  -.  P  ||  A )  ->  ( R  e.  ( 1 ... ( P  - 
1 ) )  /\  P  ||  ( ( A  x.  R )  - 
1 ) ) )
134, 7, 10, 12syl3anc 1220 . . . 4  |-  ( ( P  e.  Prime  /\  A  e.  ( 1 ... ( P  -  1 ) ) )  ->  ( R  e.  ( 1 ... ( P  - 
1 ) )  /\  P  ||  ( ( A  x.  R )  - 
1 ) ) )
1413simprd 113 . . 3  |-  ( ( P  e.  Prime  /\  A  e.  ( 1 ... ( P  -  1 ) ) )  ->  P  ||  ( ( A  x.  R )  -  1 ) )
156nncnd 8841 . . . . 5  |-  ( ( P  e.  Prime  /\  A  e.  ( 1 ... ( P  -  1 ) ) )  ->  A  e.  CC )
1613simpld 111 . . . . . . 7  |-  ( ( P  e.  Prime  /\  A  e.  ( 1 ... ( P  -  1 ) ) )  ->  R  e.  ( 1 ... ( P  -  1 ) ) )
17 elfznn 9949 . . . . . . 7  |-  ( R  e.  ( 1 ... ( P  -  1 ) )  ->  R  e.  NN )
1816, 17syl 14 . . . . . 6  |-  ( ( P  e.  Prime  /\  A  e.  ( 1 ... ( P  -  1 ) ) )  ->  R  e.  NN )
1918nncnd 8841 . . . . 5  |-  ( ( P  e.  Prime  /\  A  e.  ( 1 ... ( P  -  1 ) ) )  ->  R  e.  CC )
2015, 19mulcomd 7893 . . . 4  |-  ( ( P  e.  Prime  /\  A  e.  ( 1 ... ( P  -  1 ) ) )  ->  ( A  x.  R )  =  ( R  x.  A ) )
2120oveq1d 5836 . . 3  |-  ( ( P  e.  Prime  /\  A  e.  ( 1 ... ( P  -  1 ) ) )  ->  (
( A  x.  R
)  -  1 )  =  ( ( R  x.  A )  - 
1 ) )
2214, 21breqtrd 3990 . 2  |-  ( ( P  e.  Prime  /\  A  e.  ( 1 ... ( P  -  1 ) ) )  ->  P  ||  ( ( R  x.  A )  -  1 ) )
23 elfzelz 9921 . . . 4  |-  ( R  e.  ( 1 ... ( P  -  1 ) )  ->  R  e.  ZZ )
2416, 23syl 14 . . 3  |-  ( ( P  e.  Prime  /\  A  e.  ( 1 ... ( P  -  1 ) ) )  ->  R  e.  ZZ )
25 fzm1ndvds 11740 . . . 4  |-  ( ( P  e.  NN  /\  R  e.  ( 1 ... ( P  - 
1 ) ) )  ->  -.  P  ||  R
)
268, 16, 25syl2an2r 585 . . 3  |-  ( ( P  e.  Prime  /\  A  e.  ( 1 ... ( P  -  1 ) ) )  ->  -.  P  ||  R )
27 eqid 2157 . . . 4  |-  ( ( R ^ ( P  -  2 ) )  mod  P )  =  ( ( R ^
( P  -  2 ) )  mod  P
)
2827prmdiveq 12099 . . 3  |-  ( ( P  e.  Prime  /\  R  e.  ZZ  /\  -.  P  ||  R )  ->  (
( A  e.  ( 0 ... ( P  -  1 ) )  /\  P  ||  (
( R  x.  A
)  -  1 ) )  <->  A  =  (
( R ^ ( P  -  2 ) )  mod  P ) ) )
294, 24, 26, 28syl3anc 1220 . 2  |-  ( ( P  e.  Prime  /\  A  e.  ( 1 ... ( P  -  1 ) ) )  ->  (
( A  e.  ( 0 ... ( P  -  1 ) )  /\  P  ||  (
( R  x.  A
)  -  1 ) )  <->  A  =  (
( R ^ ( P  -  2 ) )  mod  P ) ) )
303, 22, 29mpbi2and 928 1  |-  ( ( P  e.  Prime  /\  A  e.  ( 1 ... ( P  -  1 ) ) )  ->  A  =  ( ( R ^ ( P  - 
2 ) )  mod 
P ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1335    e. wcel 2128   class class class wbr 3965  (class class class)co 5821   0cc0 7726   1c1 7727    x. cmul 7731    - cmin 8040   NNcn 8827   2c2 8878   ZZcz 9161   ...cfz 9905    mod cmo 10214   ^cexp 10411    || cdvds 11676   Primecprime 11975
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-13 2130  ax-14 2131  ax-ext 2139  ax-coll 4079  ax-sep 4082  ax-nul 4090  ax-pow 4135  ax-pr 4169  ax-un 4393  ax-setind 4495  ax-iinf 4546  ax-cnex 7817  ax-resscn 7818  ax-1cn 7819  ax-1re 7820  ax-icn 7821  ax-addcl 7822  ax-addrcl 7823  ax-mulcl 7824  ax-mulrcl 7825  ax-addcom 7826  ax-mulcom 7827  ax-addass 7828  ax-mulass 7829  ax-distr 7830  ax-i2m1 7831  ax-0lt1 7832  ax-1rid 7833  ax-0id 7834  ax-rnegex 7835  ax-precex 7836  ax-cnre 7837  ax-pre-ltirr 7838  ax-pre-ltwlin 7839  ax-pre-lttrn 7840  ax-pre-apti 7841  ax-pre-ltadd 7842  ax-pre-mulgt0 7843  ax-pre-mulext 7844  ax-arch 7845  ax-caucvg 7846
This theorem depends on definitions:  df-bi 116  df-stab 817  df-dc 821  df-3or 964  df-3an 965  df-tru 1338  df-fal 1341  df-nf 1441  df-sb 1743  df-eu 2009  df-mo 2010  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-ne 2328  df-nel 2423  df-ral 2440  df-rex 2441  df-reu 2442  df-rmo 2443  df-rab 2444  df-v 2714  df-sbc 2938  df-csb 3032  df-dif 3104  df-un 3106  df-in 3108  df-ss 3115  df-nul 3395  df-if 3506  df-pw 3545  df-sn 3566  df-pr 3567  df-op 3569  df-uni 3773  df-int 3808  df-iun 3851  df-br 3966  df-opab 4026  df-mpt 4027  df-tr 4063  df-id 4253  df-po 4256  df-iso 4257  df-iord 4326  df-on 4328  df-ilim 4329  df-suc 4331  df-iom 4549  df-xp 4591  df-rel 4592  df-cnv 4593  df-co 4594  df-dm 4595  df-rn 4596  df-res 4597  df-ima 4598  df-iota 5134  df-fun 5171  df-fn 5172  df-f 5173  df-f1 5174  df-fo 5175  df-f1o 5176  df-fv 5177  df-isom 5178  df-riota 5777  df-ov 5824  df-oprab 5825  df-mpo 5826  df-1st 6085  df-2nd 6086  df-recs 6249  df-irdg 6314  df-frec 6335  df-1o 6360  df-2o 6361  df-oadd 6364  df-er 6477  df-en 6683  df-dom 6684  df-fin 6685  df-sup 6924  df-pnf 7908  df-mnf 7909  df-xr 7910  df-ltxr 7911  df-le 7912  df-sub 8042  df-neg 8043  df-reap 8444  df-ap 8451  df-div 8540  df-inn 8828  df-2 8886  df-3 8887  df-4 8888  df-n0 9085  df-z 9162  df-uz 9434  df-q 9522  df-rp 9554  df-fz 9906  df-fzo 10035  df-fl 10162  df-mod 10215  df-seqfrec 10338  df-exp 10412  df-ihash 10643  df-cj 10735  df-re 10736  df-im 10737  df-rsqrt 10891  df-abs 10892  df-clim 11169  df-proddc 11441  df-dvds 11677  df-gcd 11822  df-prm 11976  df-phi 12074
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator