| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mnd1 | Unicode version | ||
| Description: The (smallest) structure representing a trivial monoid consists of one element. (Contributed by AV, 28-Apr-2019.) (Proof shortened by AV, 11-Feb-2020.) |
| Ref | Expression |
|---|---|
| mnd1.m |
|
| Ref | Expression |
|---|---|
| mnd1 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mnd1.m |
. . . 4
| |
| 2 | 1 | sgrp1 13113 |
. . 3
|
| 3 | df-ov 5928 |
. . . . . 6
| |
| 4 | opexg 4262 |
. . . . . . . 8
| |
| 5 | 4 | anidms 397 |
. . . . . . 7
|
| 6 | fvsng 5761 |
. . . . . . 7
| |
| 7 | 5, 6 | mpancom 422 |
. . . . . 6
|
| 8 | 3, 7 | eqtrid 2241 |
. . . . 5
|
| 9 | oveq2 5933 |
. . . . . . . 8
| |
| 10 | id 19 |
. . . . . . . 8
| |
| 11 | 9, 10 | eqeq12d 2211 |
. . . . . . 7
|
| 12 | oveq1 5932 |
. . . . . . . 8
| |
| 13 | 12, 10 | eqeq12d 2211 |
. . . . . . 7
|
| 14 | 11, 13 | anbi12d 473 |
. . . . . 6
|
| 15 | 14 | ralsng 3663 |
. . . . 5
|
| 16 | 8, 8, 15 | mpbir2and 946 |
. . . 4
|
| 17 | oveq1 5932 |
. . . . . . 7
| |
| 18 | 17 | eqeq1d 2205 |
. . . . . 6
|
| 19 | 18 | ovanraleqv 5949 |
. . . . 5
|
| 20 | 19 | rexsng 3664 |
. . . 4
|
| 21 | 16, 20 | mpbird 167 |
. . 3
|
| 22 | snexg 4218 |
. . . . . 6
| |
| 23 | opexg 4262 |
. . . . . . . 8
| |
| 24 | 5, 23 | mpancom 422 |
. . . . . . 7
|
| 25 | snexg 4218 |
. . . . . . 7
| |
| 26 | 24, 25 | syl 14 |
. . . . . 6
|
| 27 | 1 | grpbaseg 12829 |
. . . . . 6
|
| 28 | 22, 26, 27 | syl2anc 411 |
. . . . 5
|
| 29 | 1 | grpplusgg 12830 |
. . . . . . . . . 10
|
| 30 | 22, 26, 29 | syl2anc 411 |
. . . . . . . . 9
|
| 31 | 30 | oveqd 5942 |
. . . . . . . 8
|
| 32 | 31 | eqeq1d 2205 |
. . . . . . 7
|
| 33 | 30 | oveqd 5942 |
. . . . . . . 8
|
| 34 | 33 | eqeq1d 2205 |
. . . . . . 7
|
| 35 | 32, 34 | anbi12d 473 |
. . . . . 6
|
| 36 | 28, 35 | raleqbidv 2709 |
. . . . 5
|
| 37 | 28, 36 | rexeqbidv 2710 |
. . . 4
|
| 38 | 37 | anbi2d 464 |
. . 3
|
| 39 | 2, 21, 38 | mpbi2and 945 |
. 2
|
| 40 | eqid 2196 |
. . 3
| |
| 41 | eqid 2196 |
. . 3
| |
| 42 | 40, 41 | ismnddef 13120 |
. 2
|
| 43 | 39, 42 | sylibr 134 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-setind 4574 ax-cnex 7987 ax-resscn 7988 ax-1cn 7989 ax-1re 7990 ax-icn 7991 ax-addcl 7992 ax-addrcl 7993 ax-mulcl 7994 ax-addcom 7996 ax-addass 7998 ax-i2m1 8001 ax-0lt1 8002 ax-0id 8004 ax-rnegex 8005 ax-pre-ltirr 8008 ax-pre-ltadd 8012 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-rab 2484 df-v 2765 df-sbc 2990 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3452 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-int 3876 df-br 4035 df-opab 4096 df-mpt 4097 df-id 4329 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-res 4676 df-iota 5220 df-fun 5261 df-fn 5262 df-fv 5267 df-ov 5928 df-pnf 8080 df-mnf 8081 df-ltxr 8083 df-inn 9008 df-2 9066 df-ndx 12706 df-slot 12707 df-base 12709 df-plusg 12793 df-mgm 13058 df-sgrp 13104 df-mnd 13119 |
| This theorem is referenced by: grp1 13308 ring1 13691 |
| Copyright terms: Public domain | W3C validator |