ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mnd1 Unicode version

Theorem mnd1 13157
Description: The (smallest) structure representing a trivial monoid consists of one element. (Contributed by AV, 28-Apr-2019.) (Proof shortened by AV, 11-Feb-2020.)
Hypothesis
Ref Expression
mnd1.m  |-  M  =  { <. ( Base `  ndx ) ,  { I } >. ,  <. ( +g  `  ndx ) ,  { <. <. I ,  I >. ,  I >. } >. }
Assertion
Ref Expression
mnd1  |-  ( I  e.  V  ->  M  e.  Mnd )

Proof of Theorem mnd1
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mnd1.m . . . 4  |-  M  =  { <. ( Base `  ndx ) ,  { I } >. ,  <. ( +g  `  ndx ) ,  { <. <. I ,  I >. ,  I >. } >. }
21sgrp1 13113 . . 3  |-  ( I  e.  V  ->  M  e. Smgrp )
3 df-ov 5928 . . . . . 6  |-  ( I { <. <. I ,  I >. ,  I >. } I
)  =  ( {
<. <. I ,  I >. ,  I >. } `  <. I ,  I >. )
4 opexg 4262 . . . . . . . 8  |-  ( ( I  e.  V  /\  I  e.  V )  -> 
<. I ,  I >.  e. 
_V )
54anidms 397 . . . . . . 7  |-  ( I  e.  V  ->  <. I ,  I >.  e.  _V )
6 fvsng 5761 . . . . . . 7  |-  ( (
<. I ,  I >.  e. 
_V  /\  I  e.  V )  ->  ( { <. <. I ,  I >. ,  I >. } `  <. I ,  I >. )  =  I )
75, 6mpancom 422 . . . . . 6  |-  ( I  e.  V  ->  ( { <. <. I ,  I >. ,  I >. } `  <. I ,  I >. )  =  I )
83, 7eqtrid 2241 . . . . 5  |-  ( I  e.  V  ->  (
I { <. <. I ,  I >. ,  I >. } I )  =  I )
9 oveq2 5933 . . . . . . . 8  |-  ( y  =  I  ->  (
I { <. <. I ,  I >. ,  I >. } y )  =  ( I { <. <. I ,  I >. ,  I >. } I ) )
10 id 19 . . . . . . . 8  |-  ( y  =  I  ->  y  =  I )
119, 10eqeq12d 2211 . . . . . . 7  |-  ( y  =  I  ->  (
( I { <. <.
I ,  I >. ,  I >. } y )  =  y  <->  ( I { <. <. I ,  I >. ,  I >. } I
)  =  I ) )
12 oveq1 5932 . . . . . . . 8  |-  ( y  =  I  ->  (
y { <. <. I ,  I >. ,  I >. } I )  =  ( I { <. <. I ,  I >. ,  I >. } I ) )
1312, 10eqeq12d 2211 . . . . . . 7  |-  ( y  =  I  ->  (
( y { <. <.
I ,  I >. ,  I >. } I )  =  y  <->  ( I { <. <. I ,  I >. ,  I >. } I
)  =  I ) )
1411, 13anbi12d 473 . . . . . 6  |-  ( y  =  I  ->  (
( ( I { <. <. I ,  I >. ,  I >. } y )  =  y  /\  ( y { <. <.
I ,  I >. ,  I >. } I )  =  y )  <->  ( (
I { <. <. I ,  I >. ,  I >. } I )  =  I  /\  ( I { <. <. I ,  I >. ,  I >. } I
)  =  I ) ) )
1514ralsng 3663 . . . . 5  |-  ( I  e.  V  ->  ( A. y  e.  { I }  ( ( I { <. <. I ,  I >. ,  I >. } y )  =  y  /\  ( y { <. <.
I ,  I >. ,  I >. } I )  =  y )  <->  ( (
I { <. <. I ,  I >. ,  I >. } I )  =  I  /\  ( I { <. <. I ,  I >. ,  I >. } I
)  =  I ) ) )
168, 8, 15mpbir2and 946 . . . 4  |-  ( I  e.  V  ->  A. y  e.  { I }  (
( I { <. <.
I ,  I >. ,  I >. } y )  =  y  /\  (
y { <. <. I ,  I >. ,  I >. } I )  =  y ) )
17 oveq1 5932 . . . . . . 7  |-  ( x  =  I  ->  (
x { <. <. I ,  I >. ,  I >. } y )  =  ( I { <. <. I ,  I >. ,  I >. } y ) )
1817eqeq1d 2205 . . . . . 6  |-  ( x  =  I  ->  (
( x { <. <.
I ,  I >. ,  I >. } y )  =  y  <->  ( I { <. <. I ,  I >. ,  I >. } y )  =  y ) )
1918ovanraleqv 5949 . . . . 5  |-  ( x  =  I  ->  ( A. y  e.  { I }  ( ( x { <. <. I ,  I >. ,  I >. } y )  =  y  /\  ( y { <. <.
I ,  I >. ,  I >. } x )  =  y )  <->  A. y  e.  { I }  (
( I { <. <.
I ,  I >. ,  I >. } y )  =  y  /\  (
y { <. <. I ,  I >. ,  I >. } I )  =  y ) ) )
2019rexsng 3664 . . . 4  |-  ( I  e.  V  ->  ( E. x  e.  { I } A. y  e.  {
I }  ( ( x { <. <. I ,  I >. ,  I >. } y )  =  y  /\  ( y {
<. <. I ,  I >. ,  I >. } x
)  =  y )  <->  A. y  e.  { I }  ( ( I { <. <. I ,  I >. ,  I >. } y )  =  y  /\  ( y { <. <.
I ,  I >. ,  I >. } I )  =  y ) ) )
2116, 20mpbird 167 . . 3  |-  ( I  e.  V  ->  E. x  e.  { I } A. y  e.  { I }  ( ( x { <. <. I ,  I >. ,  I >. } y )  =  y  /\  ( y { <. <.
I ,  I >. ,  I >. } x )  =  y ) )
22 snexg 4218 . . . . . 6  |-  ( I  e.  V  ->  { I }  e.  _V )
23 opexg 4262 . . . . . . . 8  |-  ( (
<. I ,  I >.  e. 
_V  /\  I  e.  V )  ->  <. <. I ,  I >. ,  I >.  e. 
_V )
245, 23mpancom 422 . . . . . . 7  |-  ( I  e.  V  ->  <. <. I ,  I >. ,  I >.  e. 
_V )
25 snexg 4218 . . . . . . 7  |-  ( <. <. I ,  I >. ,  I >.  e.  _V  ->  { <. <. I ,  I >. ,  I >. }  e.  _V )
2624, 25syl 14 . . . . . 6  |-  ( I  e.  V  ->  { <. <.
I ,  I >. ,  I >. }  e.  _V )
271grpbaseg 12829 . . . . . 6  |-  ( ( { I }  e.  _V  /\  { <. <. I ,  I >. ,  I >. }  e.  _V )  ->  { I }  =  ( Base `  M )
)
2822, 26, 27syl2anc 411 . . . . 5  |-  ( I  e.  V  ->  { I }  =  ( Base `  M ) )
291grpplusgg 12830 . . . . . . . . . 10  |-  ( ( { I }  e.  _V  /\  { <. <. I ,  I >. ,  I >. }  e.  _V )  ->  { <. <. I ,  I >. ,  I >. }  =  ( +g  `  M ) )
3022, 26, 29syl2anc 411 . . . . . . . . 9  |-  ( I  e.  V  ->  { <. <.
I ,  I >. ,  I >. }  =  ( +g  `  M ) )
3130oveqd 5942 . . . . . . . 8  |-  ( I  e.  V  ->  (
x { <. <. I ,  I >. ,  I >. } y )  =  ( x ( +g  `  M
) y ) )
3231eqeq1d 2205 . . . . . . 7  |-  ( I  e.  V  ->  (
( x { <. <.
I ,  I >. ,  I >. } y )  =  y  <->  ( x
( +g  `  M ) y )  =  y ) )
3330oveqd 5942 . . . . . . . 8  |-  ( I  e.  V  ->  (
y { <. <. I ,  I >. ,  I >. } x )  =  ( y ( +g  `  M
) x ) )
3433eqeq1d 2205 . . . . . . 7  |-  ( I  e.  V  ->  (
( y { <. <.
I ,  I >. ,  I >. } x )  =  y  <->  ( y
( +g  `  M ) x )  =  y ) )
3532, 34anbi12d 473 . . . . . 6  |-  ( I  e.  V  ->  (
( ( x { <. <. I ,  I >. ,  I >. } y )  =  y  /\  ( y { <. <.
I ,  I >. ,  I >. } x )  =  y )  <->  ( (
x ( +g  `  M
) y )  =  y  /\  ( y ( +g  `  M
) x )  =  y ) ) )
3628, 35raleqbidv 2709 . . . . 5  |-  ( I  e.  V  ->  ( A. y  e.  { I }  ( ( x { <. <. I ,  I >. ,  I >. } y )  =  y  /\  ( y { <. <.
I ,  I >. ,  I >. } x )  =  y )  <->  A. y  e.  ( Base `  M
) ( ( x ( +g  `  M
) y )  =  y  /\  ( y ( +g  `  M
) x )  =  y ) ) )
3728, 36rexeqbidv 2710 . . . 4  |-  ( I  e.  V  ->  ( E. x  e.  { I } A. y  e.  {
I }  ( ( x { <. <. I ,  I >. ,  I >. } y )  =  y  /\  ( y {
<. <. I ,  I >. ,  I >. } x
)  =  y )  <->  E. x  e.  ( Base `  M ) A. y  e.  ( Base `  M ) ( ( x ( +g  `  M
) y )  =  y  /\  ( y ( +g  `  M
) x )  =  y ) ) )
3837anbi2d 464 . . 3  |-  ( I  e.  V  ->  (
( M  e. Smgrp  /\  E. x  e.  { I } A. y  e.  {
I }  ( ( x { <. <. I ,  I >. ,  I >. } y )  =  y  /\  ( y {
<. <. I ,  I >. ,  I >. } x
)  =  y ) )  <->  ( M  e. Smgrp  /\  E. x  e.  (
Base `  M ) A. y  e.  ( Base `  M ) ( ( x ( +g  `  M ) y )  =  y  /\  (
y ( +g  `  M
) x )  =  y ) ) ) )
392, 21, 38mpbi2and 945 . 2  |-  ( I  e.  V  ->  ( M  e. Smgrp  /\  E. x  e.  ( Base `  M
) A. y  e.  ( Base `  M
) ( ( x ( +g  `  M
) y )  =  y  /\  ( y ( +g  `  M
) x )  =  y ) ) )
40 eqid 2196 . . 3  |-  ( Base `  M )  =  (
Base `  M )
41 eqid 2196 . . 3  |-  ( +g  `  M )  =  ( +g  `  M )
4240, 41ismnddef 13120 . 2  |-  ( M  e.  Mnd  <->  ( M  e. Smgrp  /\  E. x  e.  ( Base `  M
) A. y  e.  ( Base `  M
) ( ( x ( +g  `  M
) y )  =  y  /\  ( y ( +g  `  M
) x )  =  y ) ) )
4339, 42sylibr 134 1  |-  ( I  e.  V  ->  M  e.  Mnd )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1364    e. wcel 2167   A.wral 2475   E.wrex 2476   _Vcvv 2763   {csn 3623   {cpr 3624   <.cop 3626   ` cfv 5259  (class class class)co 5925   ndxcnx 12700   Basecbs 12703   +g cplusg 12780  Smgrpcsgrp 13103   Mndcmnd 13118
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-cnex 7987  ax-resscn 7988  ax-1cn 7989  ax-1re 7990  ax-icn 7991  ax-addcl 7992  ax-addrcl 7993  ax-mulcl 7994  ax-addcom 7996  ax-addass 7998  ax-i2m1 8001  ax-0lt1 8002  ax-0id 8004  ax-rnegex 8005  ax-pre-ltirr 8008  ax-pre-ltadd 8012
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-rab 2484  df-v 2765  df-sbc 2990  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-br 4035  df-opab 4096  df-mpt 4097  df-id 4329  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-iota 5220  df-fun 5261  df-fn 5262  df-fv 5267  df-ov 5928  df-pnf 8080  df-mnf 8081  df-ltxr 8083  df-inn 9008  df-2 9066  df-ndx 12706  df-slot 12707  df-base 12709  df-plusg 12793  df-mgm 13058  df-sgrp 13104  df-mnd 13119
This theorem is referenced by:  grp1  13308  ring1  13691
  Copyright terms: Public domain W3C validator