ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mnd1 Unicode version

Theorem mnd1 12679
Description: The (smallest) structure representing a trivial monoid consists of one element. (Contributed by AV, 28-Apr-2019.) (Proof shortened by AV, 11-Feb-2020.)
Hypothesis
Ref Expression
mnd1.m  |-  M  =  { <. ( Base `  ndx ) ,  { I } >. ,  <. ( +g  `  ndx ) ,  { <. <. I ,  I >. ,  I >. } >. }
Assertion
Ref Expression
mnd1  |-  ( I  e.  V  ->  M  e.  Mnd )

Proof of Theorem mnd1
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mnd1.m . . . 4  |-  M  =  { <. ( Base `  ndx ) ,  { I } >. ,  <. ( +g  `  ndx ) ,  { <. <. I ,  I >. ,  I >. } >. }
21sgrp1 12651 . . 3  |-  ( I  e.  V  ->  M  e. Smgrp )
3 df-ov 5856 . . . . . 6  |-  ( I { <. <. I ,  I >. ,  I >. } I
)  =  ( {
<. <. I ,  I >. ,  I >. } `  <. I ,  I >. )
4 opexg 4213 . . . . . . . 8  |-  ( ( I  e.  V  /\  I  e.  V )  -> 
<. I ,  I >.  e. 
_V )
54anidms 395 . . . . . . 7  |-  ( I  e.  V  ->  <. I ,  I >.  e.  _V )
6 fvsng 5692 . . . . . . 7  |-  ( (
<. I ,  I >.  e. 
_V  /\  I  e.  V )  ->  ( { <. <. I ,  I >. ,  I >. } `  <. I ,  I >. )  =  I )
75, 6mpancom 420 . . . . . 6  |-  ( I  e.  V  ->  ( { <. <. I ,  I >. ,  I >. } `  <. I ,  I >. )  =  I )
83, 7eqtrid 2215 . . . . 5  |-  ( I  e.  V  ->  (
I { <. <. I ,  I >. ,  I >. } I )  =  I )
9 oveq2 5861 . . . . . . . 8  |-  ( y  =  I  ->  (
I { <. <. I ,  I >. ,  I >. } y )  =  ( I { <. <. I ,  I >. ,  I >. } I ) )
10 id 19 . . . . . . . 8  |-  ( y  =  I  ->  y  =  I )
119, 10eqeq12d 2185 . . . . . . 7  |-  ( y  =  I  ->  (
( I { <. <.
I ,  I >. ,  I >. } y )  =  y  <->  ( I { <. <. I ,  I >. ,  I >. } I
)  =  I ) )
12 oveq1 5860 . . . . . . . 8  |-  ( y  =  I  ->  (
y { <. <. I ,  I >. ,  I >. } I )  =  ( I { <. <. I ,  I >. ,  I >. } I ) )
1312, 10eqeq12d 2185 . . . . . . 7  |-  ( y  =  I  ->  (
( y { <. <.
I ,  I >. ,  I >. } I )  =  y  <->  ( I { <. <. I ,  I >. ,  I >. } I
)  =  I ) )
1411, 13anbi12d 470 . . . . . 6  |-  ( y  =  I  ->  (
( ( I { <. <. I ,  I >. ,  I >. } y )  =  y  /\  ( y { <. <.
I ,  I >. ,  I >. } I )  =  y )  <->  ( (
I { <. <. I ,  I >. ,  I >. } I )  =  I  /\  ( I { <. <. I ,  I >. ,  I >. } I
)  =  I ) ) )
1514ralsng 3623 . . . . 5  |-  ( I  e.  V  ->  ( A. y  e.  { I }  ( ( I { <. <. I ,  I >. ,  I >. } y )  =  y  /\  ( y { <. <.
I ,  I >. ,  I >. } I )  =  y )  <->  ( (
I { <. <. I ,  I >. ,  I >. } I )  =  I  /\  ( I { <. <. I ,  I >. ,  I >. } I
)  =  I ) ) )
168, 8, 15mpbir2and 939 . . . 4  |-  ( I  e.  V  ->  A. y  e.  { I }  (
( I { <. <.
I ,  I >. ,  I >. } y )  =  y  /\  (
y { <. <. I ,  I >. ,  I >. } I )  =  y ) )
17 oveq1 5860 . . . . . . 7  |-  ( x  =  I  ->  (
x { <. <. I ,  I >. ,  I >. } y )  =  ( I { <. <. I ,  I >. ,  I >. } y ) )
1817eqeq1d 2179 . . . . . 6  |-  ( x  =  I  ->  (
( x { <. <.
I ,  I >. ,  I >. } y )  =  y  <->  ( I { <. <. I ,  I >. ,  I >. } y )  =  y ) )
1918ovanraleqv 5877 . . . . 5  |-  ( x  =  I  ->  ( A. y  e.  { I }  ( ( x { <. <. I ,  I >. ,  I >. } y )  =  y  /\  ( y { <. <.
I ,  I >. ,  I >. } x )  =  y )  <->  A. y  e.  { I }  (
( I { <. <.
I ,  I >. ,  I >. } y )  =  y  /\  (
y { <. <. I ,  I >. ,  I >. } I )  =  y ) ) )
2019rexsng 3624 . . . 4  |-  ( I  e.  V  ->  ( E. x  e.  { I } A. y  e.  {
I }  ( ( x { <. <. I ,  I >. ,  I >. } y )  =  y  /\  ( y {
<. <. I ,  I >. ,  I >. } x
)  =  y )  <->  A. y  e.  { I }  ( ( I { <. <. I ,  I >. ,  I >. } y )  =  y  /\  ( y { <. <.
I ,  I >. ,  I >. } I )  =  y ) ) )
2116, 20mpbird 166 . . 3  |-  ( I  e.  V  ->  E. x  e.  { I } A. y  e.  { I }  ( ( x { <. <. I ,  I >. ,  I >. } y )  =  y  /\  ( y { <. <.
I ,  I >. ,  I >. } x )  =  y ) )
22 snexg 4170 . . . . . 6  |-  ( I  e.  V  ->  { I }  e.  _V )
23 opexg 4213 . . . . . . . 8  |-  ( (
<. I ,  I >.  e. 
_V  /\  I  e.  V )  ->  <. <. I ,  I >. ,  I >.  e. 
_V )
245, 23mpancom 420 . . . . . . 7  |-  ( I  e.  V  ->  <. <. I ,  I >. ,  I >.  e. 
_V )
25 snexg 4170 . . . . . . 7  |-  ( <. <. I ,  I >. ,  I >.  e.  _V  ->  { <. <. I ,  I >. ,  I >. }  e.  _V )
2624, 25syl 14 . . . . . 6  |-  ( I  e.  V  ->  { <. <.
I ,  I >. ,  I >. }  e.  _V )
271grpbaseg 12526 . . . . . 6  |-  ( ( { I }  e.  _V  /\  { <. <. I ,  I >. ,  I >. }  e.  _V )  ->  { I }  =  ( Base `  M )
)
2822, 26, 27syl2anc 409 . . . . 5  |-  ( I  e.  V  ->  { I }  =  ( Base `  M ) )
291grpplusgg 12527 . . . . . . . . . 10  |-  ( ( { I }  e.  _V  /\  { <. <. I ,  I >. ,  I >. }  e.  _V )  ->  { <. <. I ,  I >. ,  I >. }  =  ( +g  `  M ) )
3022, 26, 29syl2anc 409 . . . . . . . . 9  |-  ( I  e.  V  ->  { <. <.
I ,  I >. ,  I >. }  =  ( +g  `  M ) )
3130oveqd 5870 . . . . . . . 8  |-  ( I  e.  V  ->  (
x { <. <. I ,  I >. ,  I >. } y )  =  ( x ( +g  `  M
) y ) )
3231eqeq1d 2179 . . . . . . 7  |-  ( I  e.  V  ->  (
( x { <. <.
I ,  I >. ,  I >. } y )  =  y  <->  ( x
( +g  `  M ) y )  =  y ) )
3330oveqd 5870 . . . . . . . 8  |-  ( I  e.  V  ->  (
y { <. <. I ,  I >. ,  I >. } x )  =  ( y ( +g  `  M
) x ) )
3433eqeq1d 2179 . . . . . . 7  |-  ( I  e.  V  ->  (
( y { <. <.
I ,  I >. ,  I >. } x )  =  y  <->  ( y
( +g  `  M ) x )  =  y ) )
3532, 34anbi12d 470 . . . . . 6  |-  ( I  e.  V  ->  (
( ( x { <. <. I ,  I >. ,  I >. } y )  =  y  /\  ( y { <. <.
I ,  I >. ,  I >. } x )  =  y )  <->  ( (
x ( +g  `  M
) y )  =  y  /\  ( y ( +g  `  M
) x )  =  y ) ) )
3628, 35raleqbidv 2677 . . . . 5  |-  ( I  e.  V  ->  ( A. y  e.  { I }  ( ( x { <. <. I ,  I >. ,  I >. } y )  =  y  /\  ( y { <. <.
I ,  I >. ,  I >. } x )  =  y )  <->  A. y  e.  ( Base `  M
) ( ( x ( +g  `  M
) y )  =  y  /\  ( y ( +g  `  M
) x )  =  y ) ) )
3728, 36rexeqbidv 2678 . . . 4  |-  ( I  e.  V  ->  ( E. x  e.  { I } A. y  e.  {
I }  ( ( x { <. <. I ,  I >. ,  I >. } y )  =  y  /\  ( y {
<. <. I ,  I >. ,  I >. } x
)  =  y )  <->  E. x  e.  ( Base `  M ) A. y  e.  ( Base `  M ) ( ( x ( +g  `  M
) y )  =  y  /\  ( y ( +g  `  M
) x )  =  y ) ) )
3837anbi2d 461 . . 3  |-  ( I  e.  V  ->  (
( M  e. Smgrp  /\  E. x  e.  { I } A. y  e.  {
I }  ( ( x { <. <. I ,  I >. ,  I >. } y )  =  y  /\  ( y {
<. <. I ,  I >. ,  I >. } x
)  =  y ) )  <->  ( M  e. Smgrp  /\  E. x  e.  (
Base `  M ) A. y  e.  ( Base `  M ) ( ( x ( +g  `  M ) y )  =  y  /\  (
y ( +g  `  M
) x )  =  y ) ) ) )
392, 21, 38mpbi2and 938 . 2  |-  ( I  e.  V  ->  ( M  e. Smgrp  /\  E. x  e.  ( Base `  M
) A. y  e.  ( Base `  M
) ( ( x ( +g  `  M
) y )  =  y  /\  ( y ( +g  `  M
) x )  =  y ) ) )
40 eqid 2170 . . 3  |-  ( Base `  M )  =  (
Base `  M )
41 eqid 2170 . . 3  |-  ( +g  `  M )  =  ( +g  `  M )
4240, 41ismnddef 12654 . 2  |-  ( M  e.  Mnd  <->  ( M  e. Smgrp  /\  E. x  e.  ( Base `  M
) A. y  e.  ( Base `  M
) ( ( x ( +g  `  M
) y )  =  y  /\  ( y ( +g  `  M
) x )  =  y ) ) )
4339, 42sylibr 133 1  |-  ( I  e.  V  ->  M  e.  Mnd )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1348    e. wcel 2141   A.wral 2448   E.wrex 2449   _Vcvv 2730   {csn 3583   {cpr 3584   <.cop 3586   ` cfv 5198  (class class class)co 5853   ndxcnx 12413   Basecbs 12416   +g cplusg 12480  Smgrpcsgrp 12642   Mndcmnd 12652
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-cnex 7865  ax-resscn 7866  ax-1cn 7867  ax-1re 7868  ax-icn 7869  ax-addcl 7870  ax-addrcl 7871  ax-mulcl 7872  ax-addcom 7874  ax-addass 7876  ax-i2m1 7879  ax-0lt1 7880  ax-0id 7882  ax-rnegex 7883  ax-pre-ltirr 7886  ax-pre-ltadd 7890
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-nel 2436  df-ral 2453  df-rex 2454  df-rab 2457  df-v 2732  df-sbc 2956  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-br 3990  df-opab 4051  df-mpt 4052  df-id 4278  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-iota 5160  df-fun 5200  df-fn 5201  df-fv 5206  df-ov 5856  df-pnf 7956  df-mnf 7957  df-ltxr 7959  df-inn 8879  df-2 8937  df-ndx 12419  df-slot 12420  df-base 12422  df-plusg 12493  df-mgm 12610  df-sgrp 12643  df-mnd 12653
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator