Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > mnd1 | Unicode version |
Description: The (smallest) structure representing a trivial monoid consists of one element. (Contributed by AV, 28-Apr-2019.) (Proof shortened by AV, 11-Feb-2020.) |
Ref | Expression |
---|---|
mnd1.m |
Ref | Expression |
---|---|
mnd1 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mnd1.m | . . . 4 | |
2 | 1 | sgrp1 12651 | . . 3 Smgrp |
3 | df-ov 5856 | . . . . . 6 | |
4 | opexg 4213 | . . . . . . . 8 | |
5 | 4 | anidms 395 | . . . . . . 7 |
6 | fvsng 5692 | . . . . . . 7 | |
7 | 5, 6 | mpancom 420 | . . . . . 6 |
8 | 3, 7 | eqtrid 2215 | . . . . 5 |
9 | oveq2 5861 | . . . . . . . 8 | |
10 | id 19 | . . . . . . . 8 | |
11 | 9, 10 | eqeq12d 2185 | . . . . . . 7 |
12 | oveq1 5860 | . . . . . . . 8 | |
13 | 12, 10 | eqeq12d 2185 | . . . . . . 7 |
14 | 11, 13 | anbi12d 470 | . . . . . 6 |
15 | 14 | ralsng 3623 | . . . . 5 |
16 | 8, 8, 15 | mpbir2and 939 | . . . 4 |
17 | oveq1 5860 | . . . . . . 7 | |
18 | 17 | eqeq1d 2179 | . . . . . 6 |
19 | 18 | ovanraleqv 5877 | . . . . 5 |
20 | 19 | rexsng 3624 | . . . 4 |
21 | 16, 20 | mpbird 166 | . . 3 |
22 | snexg 4170 | . . . . . 6 | |
23 | opexg 4213 | . . . . . . . 8 | |
24 | 5, 23 | mpancom 420 | . . . . . . 7 |
25 | snexg 4170 | . . . . . . 7 | |
26 | 24, 25 | syl 14 | . . . . . 6 |
27 | 1 | grpbaseg 12526 | . . . . . 6 |
28 | 22, 26, 27 | syl2anc 409 | . . . . 5 |
29 | 1 | grpplusgg 12527 | . . . . . . . . . 10 |
30 | 22, 26, 29 | syl2anc 409 | . . . . . . . . 9 |
31 | 30 | oveqd 5870 | . . . . . . . 8 |
32 | 31 | eqeq1d 2179 | . . . . . . 7 |
33 | 30 | oveqd 5870 | . . . . . . . 8 |
34 | 33 | eqeq1d 2179 | . . . . . . 7 |
35 | 32, 34 | anbi12d 470 | . . . . . 6 |
36 | 28, 35 | raleqbidv 2677 | . . . . 5 |
37 | 28, 36 | rexeqbidv 2678 | . . . 4 |
38 | 37 | anbi2d 461 | . . 3 Smgrp Smgrp |
39 | 2, 21, 38 | mpbi2and 938 | . 2 Smgrp |
40 | eqid 2170 | . . 3 | |
41 | eqid 2170 | . . 3 | |
42 | 40, 41 | ismnddef 12654 | . 2 Smgrp |
43 | 39, 42 | sylibr 133 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wceq 1348 wcel 2141 wral 2448 wrex 2449 cvv 2730 csn 3583 cpr 3584 cop 3586 cfv 5198 (class class class)co 5853 cnx 12413 cbs 12416 cplusg 12480 Smgrpcsgrp 12642 cmnd 12652 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 ax-un 4418 ax-setind 4521 ax-cnex 7865 ax-resscn 7866 ax-1cn 7867 ax-1re 7868 ax-icn 7869 ax-addcl 7870 ax-addrcl 7871 ax-mulcl 7872 ax-addcom 7874 ax-addass 7876 ax-i2m1 7879 ax-0lt1 7880 ax-0id 7882 ax-rnegex 7883 ax-pre-ltirr 7886 ax-pre-ltadd 7890 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-nel 2436 df-ral 2453 df-rex 2454 df-rab 2457 df-v 2732 df-sbc 2956 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-nul 3415 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-int 3832 df-br 3990 df-opab 4051 df-mpt 4052 df-id 4278 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-res 4623 df-iota 5160 df-fun 5200 df-fn 5201 df-fv 5206 df-ov 5856 df-pnf 7956 df-mnf 7957 df-ltxr 7959 df-inn 8879 df-2 8937 df-ndx 12419 df-slot 12420 df-base 12422 df-plusg 12493 df-mgm 12610 df-sgrp 12643 df-mnd 12653 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |