ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lmcn2 Unicode version

Theorem lmcn2 14802
Description: The image of a convergent sequence under a continuous map is convergent to the image of the original point. Binary operation version. (Contributed by Mario Carneiro, 15-May-2014.)
Hypotheses
Ref Expression
txlm.z  |-  Z  =  ( ZZ>= `  M )
txlm.m  |-  ( ph  ->  M  e.  ZZ )
txlm.j  |-  ( ph  ->  J  e.  (TopOn `  X ) )
txlm.k  |-  ( ph  ->  K  e.  (TopOn `  Y ) )
txlm.f  |-  ( ph  ->  F : Z --> X )
txlm.g  |-  ( ph  ->  G : Z --> Y )
lmcn2.fl  |-  ( ph  ->  F ( ~~> t `  J ) R )
lmcn2.gl  |-  ( ph  ->  G ( ~~> t `  K ) S )
lmcn2.o  |-  ( ph  ->  O  e.  ( ( J  tX  K )  Cn  N ) )
lmcn2.h  |-  H  =  ( n  e.  Z  |->  ( ( F `  n ) O ( G `  n ) ) )
Assertion
Ref Expression
lmcn2  |-  ( ph  ->  H ( ~~> t `  N ) ( R O S ) )
Distinct variable groups:    n, F    n, O    ph, n    n, G    n, J    n, K    n, X    n, Y    n, Z
Allowed substitution hints:    R( n)    S( n)    H( n)    M( n)    N( n)

Proof of Theorem lmcn2
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 txlm.f . . . . . . 7  |-  ( ph  ->  F : Z --> X )
21ffvelcdmda 5725 . . . . . 6  |-  ( (
ph  /\  n  e.  Z )  ->  ( F `  n )  e.  X )
3 txlm.g . . . . . . 7  |-  ( ph  ->  G : Z --> Y )
43ffvelcdmda 5725 . . . . . 6  |-  ( (
ph  /\  n  e.  Z )  ->  ( G `  n )  e.  Y )
52, 4opelxpd 4713 . . . . 5  |-  ( (
ph  /\  n  e.  Z )  ->  <. ( F `  n ) ,  ( G `  n ) >.  e.  ( X  X.  Y ) )
6 eqidd 2207 . . . . 5  |-  ( ph  ->  ( n  e.  Z  |-> 
<. ( F `  n
) ,  ( G `
 n ) >.
)  =  ( n  e.  Z  |->  <. ( F `  n ) ,  ( G `  n ) >. )
)
7 txlm.j . . . . . . . 8  |-  ( ph  ->  J  e.  (TopOn `  X ) )
8 txlm.k . . . . . . . 8  |-  ( ph  ->  K  e.  (TopOn `  Y ) )
9 txtopon 14784 . . . . . . . 8  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  ->  ( J  tX  K )  e.  (TopOn `  ( X  X.  Y
) ) )
107, 8, 9syl2anc 411 . . . . . . 7  |-  ( ph  ->  ( J  tX  K
)  e.  (TopOn `  ( X  X.  Y
) ) )
11 lmcn2.o . . . . . . . . 9  |-  ( ph  ->  O  e.  ( ( J  tX  K )  Cn  N ) )
12 cntop2 14724 . . . . . . . . 9  |-  ( O  e.  ( ( J 
tX  K )  Cn  N )  ->  N  e.  Top )
1311, 12syl 14 . . . . . . . 8  |-  ( ph  ->  N  e.  Top )
14 toptopon2 14541 . . . . . . . 8  |-  ( N  e.  Top  <->  N  e.  (TopOn `  U. N ) )
1513, 14sylib 122 . . . . . . 7  |-  ( ph  ->  N  e.  (TopOn `  U. N ) )
16 cnf2 14727 . . . . . . 7  |-  ( ( ( J  tX  K
)  e.  (TopOn `  ( X  X.  Y
) )  /\  N  e.  (TopOn `  U. N )  /\  O  e.  ( ( J  tX  K
)  Cn  N ) )  ->  O :
( X  X.  Y
) --> U. N )
1710, 15, 11, 16syl3anc 1250 . . . . . 6  |-  ( ph  ->  O : ( X  X.  Y ) --> U. N )
1817feqmptd 5642 . . . . 5  |-  ( ph  ->  O  =  ( x  e.  ( X  X.  Y )  |->  ( O `
 x ) ) )
19 fveq2 5586 . . . . . 6  |-  ( x  =  <. ( F `  n ) ,  ( G `  n )
>.  ->  ( O `  x )  =  ( O `  <. ( F `  n ) ,  ( G `  n ) >. )
)
20 df-ov 5957 . . . . . 6  |-  ( ( F `  n ) O ( G `  n ) )  =  ( O `  <. ( F `  n ) ,  ( G `  n ) >. )
2119, 20eqtr4di 2257 . . . . 5  |-  ( x  =  <. ( F `  n ) ,  ( G `  n )
>.  ->  ( O `  x )  =  ( ( F `  n
) O ( G `
 n ) ) )
225, 6, 18, 21fmptco 5756 . . . 4  |-  ( ph  ->  ( O  o.  (
n  e.  Z  |->  <.
( F `  n
) ,  ( G `
 n ) >.
) )  =  ( n  e.  Z  |->  ( ( F `  n
) O ( G `
 n ) ) ) )
23 lmcn2.h . . . 4  |-  H  =  ( n  e.  Z  |->  ( ( F `  n ) O ( G `  n ) ) )
2422, 23eqtr4di 2257 . . 3  |-  ( ph  ->  ( O  o.  (
n  e.  Z  |->  <.
( F `  n
) ,  ( G `
 n ) >.
) )  =  H )
25 lmcn2.fl . . . . 5  |-  ( ph  ->  F ( ~~> t `  J ) R )
26 lmcn2.gl . . . . 5  |-  ( ph  ->  G ( ~~> t `  K ) S )
27 txlm.z . . . . . 6  |-  Z  =  ( ZZ>= `  M )
28 txlm.m . . . . . 6  |-  ( ph  ->  M  e.  ZZ )
29 eqid 2206 . . . . . 6  |-  ( n  e.  Z  |->  <. ( F `  n ) ,  ( G `  n ) >. )  =  ( n  e.  Z  |->  <. ( F `  n ) ,  ( G `  n )
>. )
3027, 28, 7, 8, 1, 3, 29txlm 14801 . . . . 5  |-  ( ph  ->  ( ( F ( ~~> t `  J ) R  /\  G ( ~~> t `  K ) S )  <->  ( n  e.  Z  |->  <. ( F `  n ) ,  ( G `  n ) >. )
( ~~> t `  ( J  tX  K ) )
<. R ,  S >. ) )
3125, 26, 30mpbi2and 946 . . . 4  |-  ( ph  ->  ( n  e.  Z  |-> 
<. ( F `  n
) ,  ( G `
 n ) >.
) ( ~~> t `  ( J  tX  K ) ) <. R ,  S >. )
3231, 11lmcn 14773 . . 3  |-  ( ph  ->  ( O  o.  (
n  e.  Z  |->  <.
( F `  n
) ,  ( G `
 n ) >.
) ) ( ~~> t `  N ) ( O `
 <. R ,  S >. ) )
3324, 32eqbrtrrd 4072 . 2  |-  ( ph  ->  H ( ~~> t `  N ) ( O `
 <. R ,  S >. ) )
34 df-ov 5957 . 2  |-  ( R O S )  =  ( O `  <. R ,  S >. )
3533, 34breqtrrdi 4090 1  |-  ( ph  ->  H ( ~~> t `  N ) ( R O S ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1373    e. wcel 2177   <.cop 3638   U.cuni 3853   class class class wbr 4048    |-> cmpt 4110    X. cxp 4678    o. ccom 4684   -->wf 5273   ` cfv 5277  (class class class)co 5954   ZZcz 9385   ZZ>=cuz 9661   Topctop 14519  TopOnctopon 14532    Cn ccn 14707   ~~> tclm 14709    tX ctx 14774
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-coll 4164  ax-sep 4167  ax-pow 4223  ax-pr 4258  ax-un 4485  ax-setind 4590  ax-cnex 8029  ax-resscn 8030  ax-1cn 8031  ax-1re 8032  ax-icn 8033  ax-addcl 8034  ax-addrcl 8035  ax-mulcl 8036  ax-addcom 8038  ax-addass 8040  ax-distr 8042  ax-i2m1 8043  ax-0lt1 8044  ax-0id 8046  ax-rnegex 8047  ax-cnre 8049  ax-pre-ltirr 8050  ax-pre-ltwlin 8051  ax-pre-lttrn 8052  ax-pre-apti 8053  ax-pre-ltadd 8054
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-nel 2473  df-ral 2490  df-rex 2491  df-reu 2492  df-rab 2494  df-v 2775  df-sbc 3001  df-csb 3096  df-dif 3170  df-un 3172  df-in 3174  df-ss 3181  df-if 3574  df-pw 3620  df-sn 3641  df-pr 3642  df-op 3644  df-uni 3854  df-int 3889  df-iun 3932  df-br 4049  df-opab 4111  df-mpt 4112  df-id 4345  df-xp 4686  df-rel 4687  df-cnv 4688  df-co 4689  df-dm 4690  df-rn 4691  df-res 4692  df-ima 4693  df-iota 5238  df-fun 5279  df-fn 5280  df-f 5281  df-f1 5282  df-fo 5283  df-f1o 5284  df-fv 5285  df-riota 5909  df-ov 5957  df-oprab 5958  df-mpo 5959  df-1st 6236  df-2nd 6237  df-map 6747  df-pm 6748  df-pnf 8122  df-mnf 8123  df-xr 8124  df-ltxr 8125  df-le 8126  df-sub 8258  df-neg 8259  df-inn 9050  df-n0 9309  df-z 9386  df-uz 9662  df-topgen 13142  df-top 14520  df-topon 14533  df-bases 14565  df-cn 14710  df-cnp 14711  df-lm 14712  df-tx 14775
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator