ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lmcn2 Unicode version

Theorem lmcn2 14516
Description: The image of a convergent sequence under a continuous map is convergent to the image of the original point. Binary operation version. (Contributed by Mario Carneiro, 15-May-2014.)
Hypotheses
Ref Expression
txlm.z  |-  Z  =  ( ZZ>= `  M )
txlm.m  |-  ( ph  ->  M  e.  ZZ )
txlm.j  |-  ( ph  ->  J  e.  (TopOn `  X ) )
txlm.k  |-  ( ph  ->  K  e.  (TopOn `  Y ) )
txlm.f  |-  ( ph  ->  F : Z --> X )
txlm.g  |-  ( ph  ->  G : Z --> Y )
lmcn2.fl  |-  ( ph  ->  F ( ~~> t `  J ) R )
lmcn2.gl  |-  ( ph  ->  G ( ~~> t `  K ) S )
lmcn2.o  |-  ( ph  ->  O  e.  ( ( J  tX  K )  Cn  N ) )
lmcn2.h  |-  H  =  ( n  e.  Z  |->  ( ( F `  n ) O ( G `  n ) ) )
Assertion
Ref Expression
lmcn2  |-  ( ph  ->  H ( ~~> t `  N ) ( R O S ) )
Distinct variable groups:    n, F    n, O    ph, n    n, G    n, J    n, K    n, X    n, Y    n, Z
Allowed substitution hints:    R( n)    S( n)    H( n)    M( n)    N( n)

Proof of Theorem lmcn2
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 txlm.f . . . . . . 7  |-  ( ph  ->  F : Z --> X )
21ffvelcdmda 5697 . . . . . 6  |-  ( (
ph  /\  n  e.  Z )  ->  ( F `  n )  e.  X )
3 txlm.g . . . . . . 7  |-  ( ph  ->  G : Z --> Y )
43ffvelcdmda 5697 . . . . . 6  |-  ( (
ph  /\  n  e.  Z )  ->  ( G `  n )  e.  Y )
52, 4opelxpd 4696 . . . . 5  |-  ( (
ph  /\  n  e.  Z )  ->  <. ( F `  n ) ,  ( G `  n ) >.  e.  ( X  X.  Y ) )
6 eqidd 2197 . . . . 5  |-  ( ph  ->  ( n  e.  Z  |-> 
<. ( F `  n
) ,  ( G `
 n ) >.
)  =  ( n  e.  Z  |->  <. ( F `  n ) ,  ( G `  n ) >. )
)
7 txlm.j . . . . . . . 8  |-  ( ph  ->  J  e.  (TopOn `  X ) )
8 txlm.k . . . . . . . 8  |-  ( ph  ->  K  e.  (TopOn `  Y ) )
9 txtopon 14498 . . . . . . . 8  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  ->  ( J  tX  K )  e.  (TopOn `  ( X  X.  Y
) ) )
107, 8, 9syl2anc 411 . . . . . . 7  |-  ( ph  ->  ( J  tX  K
)  e.  (TopOn `  ( X  X.  Y
) ) )
11 lmcn2.o . . . . . . . . 9  |-  ( ph  ->  O  e.  ( ( J  tX  K )  Cn  N ) )
12 cntop2 14438 . . . . . . . . 9  |-  ( O  e.  ( ( J 
tX  K )  Cn  N )  ->  N  e.  Top )
1311, 12syl 14 . . . . . . . 8  |-  ( ph  ->  N  e.  Top )
14 toptopon2 14255 . . . . . . . 8  |-  ( N  e.  Top  <->  N  e.  (TopOn `  U. N ) )
1513, 14sylib 122 . . . . . . 7  |-  ( ph  ->  N  e.  (TopOn `  U. N ) )
16 cnf2 14441 . . . . . . 7  |-  ( ( ( J  tX  K
)  e.  (TopOn `  ( X  X.  Y
) )  /\  N  e.  (TopOn `  U. N )  /\  O  e.  ( ( J  tX  K
)  Cn  N ) )  ->  O :
( X  X.  Y
) --> U. N )
1710, 15, 11, 16syl3anc 1249 . . . . . 6  |-  ( ph  ->  O : ( X  X.  Y ) --> U. N )
1817feqmptd 5614 . . . . 5  |-  ( ph  ->  O  =  ( x  e.  ( X  X.  Y )  |->  ( O `
 x ) ) )
19 fveq2 5558 . . . . . 6  |-  ( x  =  <. ( F `  n ) ,  ( G `  n )
>.  ->  ( O `  x )  =  ( O `  <. ( F `  n ) ,  ( G `  n ) >. )
)
20 df-ov 5925 . . . . . 6  |-  ( ( F `  n ) O ( G `  n ) )  =  ( O `  <. ( F `  n ) ,  ( G `  n ) >. )
2119, 20eqtr4di 2247 . . . . 5  |-  ( x  =  <. ( F `  n ) ,  ( G `  n )
>.  ->  ( O `  x )  =  ( ( F `  n
) O ( G `
 n ) ) )
225, 6, 18, 21fmptco 5728 . . . 4  |-  ( ph  ->  ( O  o.  (
n  e.  Z  |->  <.
( F `  n
) ,  ( G `
 n ) >.
) )  =  ( n  e.  Z  |->  ( ( F `  n
) O ( G `
 n ) ) ) )
23 lmcn2.h . . . 4  |-  H  =  ( n  e.  Z  |->  ( ( F `  n ) O ( G `  n ) ) )
2422, 23eqtr4di 2247 . . 3  |-  ( ph  ->  ( O  o.  (
n  e.  Z  |->  <.
( F `  n
) ,  ( G `
 n ) >.
) )  =  H )
25 lmcn2.fl . . . . 5  |-  ( ph  ->  F ( ~~> t `  J ) R )
26 lmcn2.gl . . . . 5  |-  ( ph  ->  G ( ~~> t `  K ) S )
27 txlm.z . . . . . 6  |-  Z  =  ( ZZ>= `  M )
28 txlm.m . . . . . 6  |-  ( ph  ->  M  e.  ZZ )
29 eqid 2196 . . . . . 6  |-  ( n  e.  Z  |->  <. ( F `  n ) ,  ( G `  n ) >. )  =  ( n  e.  Z  |->  <. ( F `  n ) ,  ( G `  n )
>. )
3027, 28, 7, 8, 1, 3, 29txlm 14515 . . . . 5  |-  ( ph  ->  ( ( F ( ~~> t `  J ) R  /\  G ( ~~> t `  K ) S )  <->  ( n  e.  Z  |->  <. ( F `  n ) ,  ( G `  n ) >. )
( ~~> t `  ( J  tX  K ) )
<. R ,  S >. ) )
3125, 26, 30mpbi2and 945 . . . 4  |-  ( ph  ->  ( n  e.  Z  |-> 
<. ( F `  n
) ,  ( G `
 n ) >.
) ( ~~> t `  ( J  tX  K ) ) <. R ,  S >. )
3231, 11lmcn 14487 . . 3  |-  ( ph  ->  ( O  o.  (
n  e.  Z  |->  <.
( F `  n
) ,  ( G `
 n ) >.
) ) ( ~~> t `  N ) ( O `
 <. R ,  S >. ) )
3324, 32eqbrtrrd 4057 . 2  |-  ( ph  ->  H ( ~~> t `  N ) ( O `
 <. R ,  S >. ) )
34 df-ov 5925 . 2  |-  ( R O S )  =  ( O `  <. R ,  S >. )
3533, 34breqtrrdi 4075 1  |-  ( ph  ->  H ( ~~> t `  N ) ( R O S ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1364    e. wcel 2167   <.cop 3625   U.cuni 3839   class class class wbr 4033    |-> cmpt 4094    X. cxp 4661    o. ccom 4667   -->wf 5254   ` cfv 5258  (class class class)co 5922   ZZcz 9326   ZZ>=cuz 9601   Topctop 14233  TopOnctopon 14246    Cn ccn 14421   ~~> tclm 14423    tX ctx 14488
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-cnex 7970  ax-resscn 7971  ax-1cn 7972  ax-1re 7973  ax-icn 7974  ax-addcl 7975  ax-addrcl 7976  ax-mulcl 7977  ax-addcom 7979  ax-addass 7981  ax-distr 7983  ax-i2m1 7984  ax-0lt1 7985  ax-0id 7987  ax-rnegex 7988  ax-cnre 7990  ax-pre-ltirr 7991  ax-pre-ltwlin 7992  ax-pre-lttrn 7993  ax-pre-apti 7994  ax-pre-ltadd 7995
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-if 3562  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-id 4328  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-1st 6198  df-2nd 6199  df-map 6709  df-pm 6710  df-pnf 8063  df-mnf 8064  df-xr 8065  df-ltxr 8066  df-le 8067  df-sub 8199  df-neg 8200  df-inn 8991  df-n0 9250  df-z 9327  df-uz 9602  df-topgen 12931  df-top 14234  df-topon 14247  df-bases 14279  df-cn 14424  df-cnp 14425  df-lm 14426  df-tx 14489
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator