ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lmcn2 Unicode version

Theorem lmcn2 13447
Description: The image of a convergent sequence under a continuous map is convergent to the image of the original point. Binary operation version. (Contributed by Mario Carneiro, 15-May-2014.)
Hypotheses
Ref Expression
txlm.z  |-  Z  =  ( ZZ>= `  M )
txlm.m  |-  ( ph  ->  M  e.  ZZ )
txlm.j  |-  ( ph  ->  J  e.  (TopOn `  X ) )
txlm.k  |-  ( ph  ->  K  e.  (TopOn `  Y ) )
txlm.f  |-  ( ph  ->  F : Z --> X )
txlm.g  |-  ( ph  ->  G : Z --> Y )
lmcn2.fl  |-  ( ph  ->  F ( ~~> t `  J ) R )
lmcn2.gl  |-  ( ph  ->  G ( ~~> t `  K ) S )
lmcn2.o  |-  ( ph  ->  O  e.  ( ( J  tX  K )  Cn  N ) )
lmcn2.h  |-  H  =  ( n  e.  Z  |->  ( ( F `  n ) O ( G `  n ) ) )
Assertion
Ref Expression
lmcn2  |-  ( ph  ->  H ( ~~> t `  N ) ( R O S ) )
Distinct variable groups:    n, F    n, O    ph, n    n, G    n, J    n, K    n, X    n, Y    n, Z
Allowed substitution hints:    R( n)    S( n)    H( n)    M( n)    N( n)

Proof of Theorem lmcn2
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 txlm.f . . . . . . 7  |-  ( ph  ->  F : Z --> X )
21ffvelcdmda 5647 . . . . . 6  |-  ( (
ph  /\  n  e.  Z )  ->  ( F `  n )  e.  X )
3 txlm.g . . . . . . 7  |-  ( ph  ->  G : Z --> Y )
43ffvelcdmda 5647 . . . . . 6  |-  ( (
ph  /\  n  e.  Z )  ->  ( G `  n )  e.  Y )
52, 4opelxpd 4656 . . . . 5  |-  ( (
ph  /\  n  e.  Z )  ->  <. ( F `  n ) ,  ( G `  n ) >.  e.  ( X  X.  Y ) )
6 eqidd 2178 . . . . 5  |-  ( ph  ->  ( n  e.  Z  |-> 
<. ( F `  n
) ,  ( G `
 n ) >.
)  =  ( n  e.  Z  |->  <. ( F `  n ) ,  ( G `  n ) >. )
)
7 txlm.j . . . . . . . 8  |-  ( ph  ->  J  e.  (TopOn `  X ) )
8 txlm.k . . . . . . . 8  |-  ( ph  ->  K  e.  (TopOn `  Y ) )
9 txtopon 13429 . . . . . . . 8  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  ->  ( J  tX  K )  e.  (TopOn `  ( X  X.  Y
) ) )
107, 8, 9syl2anc 411 . . . . . . 7  |-  ( ph  ->  ( J  tX  K
)  e.  (TopOn `  ( X  X.  Y
) ) )
11 lmcn2.o . . . . . . . . 9  |-  ( ph  ->  O  e.  ( ( J  tX  K )  Cn  N ) )
12 cntop2 13369 . . . . . . . . 9  |-  ( O  e.  ( ( J 
tX  K )  Cn  N )  ->  N  e.  Top )
1311, 12syl 14 . . . . . . . 8  |-  ( ph  ->  N  e.  Top )
14 toptopon2 13184 . . . . . . . 8  |-  ( N  e.  Top  <->  N  e.  (TopOn `  U. N ) )
1513, 14sylib 122 . . . . . . 7  |-  ( ph  ->  N  e.  (TopOn `  U. N ) )
16 cnf2 13372 . . . . . . 7  |-  ( ( ( J  tX  K
)  e.  (TopOn `  ( X  X.  Y
) )  /\  N  e.  (TopOn `  U. N )  /\  O  e.  ( ( J  tX  K
)  Cn  N ) )  ->  O :
( X  X.  Y
) --> U. N )
1710, 15, 11, 16syl3anc 1238 . . . . . 6  |-  ( ph  ->  O : ( X  X.  Y ) --> U. N )
1817feqmptd 5565 . . . . 5  |-  ( ph  ->  O  =  ( x  e.  ( X  X.  Y )  |->  ( O `
 x ) ) )
19 fveq2 5511 . . . . . 6  |-  ( x  =  <. ( F `  n ) ,  ( G `  n )
>.  ->  ( O `  x )  =  ( O `  <. ( F `  n ) ,  ( G `  n ) >. )
)
20 df-ov 5872 . . . . . 6  |-  ( ( F `  n ) O ( G `  n ) )  =  ( O `  <. ( F `  n ) ,  ( G `  n ) >. )
2119, 20eqtr4di 2228 . . . . 5  |-  ( x  =  <. ( F `  n ) ,  ( G `  n )
>.  ->  ( O `  x )  =  ( ( F `  n
) O ( G `
 n ) ) )
225, 6, 18, 21fmptco 5678 . . . 4  |-  ( ph  ->  ( O  o.  (
n  e.  Z  |->  <.
( F `  n
) ,  ( G `
 n ) >.
) )  =  ( n  e.  Z  |->  ( ( F `  n
) O ( G `
 n ) ) ) )
23 lmcn2.h . . . 4  |-  H  =  ( n  e.  Z  |->  ( ( F `  n ) O ( G `  n ) ) )
2422, 23eqtr4di 2228 . . 3  |-  ( ph  ->  ( O  o.  (
n  e.  Z  |->  <.
( F `  n
) ,  ( G `
 n ) >.
) )  =  H )
25 lmcn2.fl . . . . 5  |-  ( ph  ->  F ( ~~> t `  J ) R )
26 lmcn2.gl . . . . 5  |-  ( ph  ->  G ( ~~> t `  K ) S )
27 txlm.z . . . . . 6  |-  Z  =  ( ZZ>= `  M )
28 txlm.m . . . . . 6  |-  ( ph  ->  M  e.  ZZ )
29 eqid 2177 . . . . . 6  |-  ( n  e.  Z  |->  <. ( F `  n ) ,  ( G `  n ) >. )  =  ( n  e.  Z  |->  <. ( F `  n ) ,  ( G `  n )
>. )
3027, 28, 7, 8, 1, 3, 29txlm 13446 . . . . 5  |-  ( ph  ->  ( ( F ( ~~> t `  J ) R  /\  G ( ~~> t `  K ) S )  <->  ( n  e.  Z  |->  <. ( F `  n ) ,  ( G `  n ) >. )
( ~~> t `  ( J  tX  K ) )
<. R ,  S >. ) )
3125, 26, 30mpbi2and 943 . . . 4  |-  ( ph  ->  ( n  e.  Z  |-> 
<. ( F `  n
) ,  ( G `
 n ) >.
) ( ~~> t `  ( J  tX  K ) ) <. R ,  S >. )
3231, 11lmcn 13418 . . 3  |-  ( ph  ->  ( O  o.  (
n  e.  Z  |->  <.
( F `  n
) ,  ( G `
 n ) >.
) ) ( ~~> t `  N ) ( O `
 <. R ,  S >. ) )
3324, 32eqbrtrrd 4024 . 2  |-  ( ph  ->  H ( ~~> t `  N ) ( O `
 <. R ,  S >. ) )
34 df-ov 5872 . 2  |-  ( R O S )  =  ( O `  <. R ,  S >. )
3533, 34breqtrrdi 4042 1  |-  ( ph  ->  H ( ~~> t `  N ) ( R O S ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1353    e. wcel 2148   <.cop 3594   U.cuni 3807   class class class wbr 4000    |-> cmpt 4061    X. cxp 4621    o. ccom 4627   -->wf 5208   ` cfv 5212  (class class class)co 5869   ZZcz 9242   ZZ>=cuz 9517   Topctop 13162  TopOnctopon 13175    Cn ccn 13352   ~~> tclm 13354    tX ctx 13419
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4115  ax-sep 4118  ax-pow 4171  ax-pr 4206  ax-un 4430  ax-setind 4533  ax-cnex 7893  ax-resscn 7894  ax-1cn 7895  ax-1re 7896  ax-icn 7897  ax-addcl 7898  ax-addrcl 7899  ax-mulcl 7900  ax-addcom 7902  ax-addass 7904  ax-distr 7906  ax-i2m1 7907  ax-0lt1 7908  ax-0id 7910  ax-rnegex 7911  ax-cnre 7913  ax-pre-ltirr 7914  ax-pre-ltwlin 7915  ax-pre-lttrn 7916  ax-pre-apti 7917  ax-pre-ltadd 7918
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rab 2464  df-v 2739  df-sbc 2963  df-csb 3058  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-if 3535  df-pw 3576  df-sn 3597  df-pr 3598  df-op 3600  df-uni 3808  df-int 3843  df-iun 3886  df-br 4001  df-opab 4062  df-mpt 4063  df-id 4290  df-xp 4629  df-rel 4630  df-cnv 4631  df-co 4632  df-dm 4633  df-rn 4634  df-res 4635  df-ima 4636  df-iota 5174  df-fun 5214  df-fn 5215  df-f 5216  df-f1 5217  df-fo 5218  df-f1o 5219  df-fv 5220  df-riota 5825  df-ov 5872  df-oprab 5873  df-mpo 5874  df-1st 6135  df-2nd 6136  df-map 6644  df-pm 6645  df-pnf 7984  df-mnf 7985  df-xr 7986  df-ltxr 7987  df-le 7988  df-sub 8120  df-neg 8121  df-inn 8909  df-n0 9166  df-z 9243  df-uz 9518  df-topgen 12657  df-top 13163  df-topon 13176  df-bases 13208  df-cn 13355  df-cnp 13356  df-lm 13357  df-tx 13420
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator