ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lmcn2 Unicode version

Theorem lmcn2 13074
Description: The image of a convergent sequence under a continuous map is convergent to the image of the original point. Binary operation version. (Contributed by Mario Carneiro, 15-May-2014.)
Hypotheses
Ref Expression
txlm.z  |-  Z  =  ( ZZ>= `  M )
txlm.m  |-  ( ph  ->  M  e.  ZZ )
txlm.j  |-  ( ph  ->  J  e.  (TopOn `  X ) )
txlm.k  |-  ( ph  ->  K  e.  (TopOn `  Y ) )
txlm.f  |-  ( ph  ->  F : Z --> X )
txlm.g  |-  ( ph  ->  G : Z --> Y )
lmcn2.fl  |-  ( ph  ->  F ( ~~> t `  J ) R )
lmcn2.gl  |-  ( ph  ->  G ( ~~> t `  K ) S )
lmcn2.o  |-  ( ph  ->  O  e.  ( ( J  tX  K )  Cn  N ) )
lmcn2.h  |-  H  =  ( n  e.  Z  |->  ( ( F `  n ) O ( G `  n ) ) )
Assertion
Ref Expression
lmcn2  |-  ( ph  ->  H ( ~~> t `  N ) ( R O S ) )
Distinct variable groups:    n, F    n, O    ph, n    n, G    n, J    n, K    n, X    n, Y    n, Z
Allowed substitution hints:    R( n)    S( n)    H( n)    M( n)    N( n)

Proof of Theorem lmcn2
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 txlm.f . . . . . . 7  |-  ( ph  ->  F : Z --> X )
21ffvelrnda 5631 . . . . . 6  |-  ( (
ph  /\  n  e.  Z )  ->  ( F `  n )  e.  X )
3 txlm.g . . . . . . 7  |-  ( ph  ->  G : Z --> Y )
43ffvelrnda 5631 . . . . . 6  |-  ( (
ph  /\  n  e.  Z )  ->  ( G `  n )  e.  Y )
52, 4opelxpd 4644 . . . . 5  |-  ( (
ph  /\  n  e.  Z )  ->  <. ( F `  n ) ,  ( G `  n ) >.  e.  ( X  X.  Y ) )
6 eqidd 2171 . . . . 5  |-  ( ph  ->  ( n  e.  Z  |-> 
<. ( F `  n
) ,  ( G `
 n ) >.
)  =  ( n  e.  Z  |->  <. ( F `  n ) ,  ( G `  n ) >. )
)
7 txlm.j . . . . . . . 8  |-  ( ph  ->  J  e.  (TopOn `  X ) )
8 txlm.k . . . . . . . 8  |-  ( ph  ->  K  e.  (TopOn `  Y ) )
9 txtopon 13056 . . . . . . . 8  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  ->  ( J  tX  K )  e.  (TopOn `  ( X  X.  Y
) ) )
107, 8, 9syl2anc 409 . . . . . . 7  |-  ( ph  ->  ( J  tX  K
)  e.  (TopOn `  ( X  X.  Y
) ) )
11 lmcn2.o . . . . . . . . 9  |-  ( ph  ->  O  e.  ( ( J  tX  K )  Cn  N ) )
12 cntop2 12996 . . . . . . . . 9  |-  ( O  e.  ( ( J 
tX  K )  Cn  N )  ->  N  e.  Top )
1311, 12syl 14 . . . . . . . 8  |-  ( ph  ->  N  e.  Top )
14 toptopon2 12811 . . . . . . . 8  |-  ( N  e.  Top  <->  N  e.  (TopOn `  U. N ) )
1513, 14sylib 121 . . . . . . 7  |-  ( ph  ->  N  e.  (TopOn `  U. N ) )
16 cnf2 12999 . . . . . . 7  |-  ( ( ( J  tX  K
)  e.  (TopOn `  ( X  X.  Y
) )  /\  N  e.  (TopOn `  U. N )  /\  O  e.  ( ( J  tX  K
)  Cn  N ) )  ->  O :
( X  X.  Y
) --> U. N )
1710, 15, 11, 16syl3anc 1233 . . . . . 6  |-  ( ph  ->  O : ( X  X.  Y ) --> U. N )
1817feqmptd 5549 . . . . 5  |-  ( ph  ->  O  =  ( x  e.  ( X  X.  Y )  |->  ( O `
 x ) ) )
19 fveq2 5496 . . . . . 6  |-  ( x  =  <. ( F `  n ) ,  ( G `  n )
>.  ->  ( O `  x )  =  ( O `  <. ( F `  n ) ,  ( G `  n ) >. )
)
20 df-ov 5856 . . . . . 6  |-  ( ( F `  n ) O ( G `  n ) )  =  ( O `  <. ( F `  n ) ,  ( G `  n ) >. )
2119, 20eqtr4di 2221 . . . . 5  |-  ( x  =  <. ( F `  n ) ,  ( G `  n )
>.  ->  ( O `  x )  =  ( ( F `  n
) O ( G `
 n ) ) )
225, 6, 18, 21fmptco 5662 . . . 4  |-  ( ph  ->  ( O  o.  (
n  e.  Z  |->  <.
( F `  n
) ,  ( G `
 n ) >.
) )  =  ( n  e.  Z  |->  ( ( F `  n
) O ( G `
 n ) ) ) )
23 lmcn2.h . . . 4  |-  H  =  ( n  e.  Z  |->  ( ( F `  n ) O ( G `  n ) ) )
2422, 23eqtr4di 2221 . . 3  |-  ( ph  ->  ( O  o.  (
n  e.  Z  |->  <.
( F `  n
) ,  ( G `
 n ) >.
) )  =  H )
25 lmcn2.fl . . . . 5  |-  ( ph  ->  F ( ~~> t `  J ) R )
26 lmcn2.gl . . . . 5  |-  ( ph  ->  G ( ~~> t `  K ) S )
27 txlm.z . . . . . 6  |-  Z  =  ( ZZ>= `  M )
28 txlm.m . . . . . 6  |-  ( ph  ->  M  e.  ZZ )
29 eqid 2170 . . . . . 6  |-  ( n  e.  Z  |->  <. ( F `  n ) ,  ( G `  n ) >. )  =  ( n  e.  Z  |->  <. ( F `  n ) ,  ( G `  n )
>. )
3027, 28, 7, 8, 1, 3, 29txlm 13073 . . . . 5  |-  ( ph  ->  ( ( F ( ~~> t `  J ) R  /\  G ( ~~> t `  K ) S )  <->  ( n  e.  Z  |->  <. ( F `  n ) ,  ( G `  n ) >. )
( ~~> t `  ( J  tX  K ) )
<. R ,  S >. ) )
3125, 26, 30mpbi2and 938 . . . 4  |-  ( ph  ->  ( n  e.  Z  |-> 
<. ( F `  n
) ,  ( G `
 n ) >.
) ( ~~> t `  ( J  tX  K ) ) <. R ,  S >. )
3231, 11lmcn 13045 . . 3  |-  ( ph  ->  ( O  o.  (
n  e.  Z  |->  <.
( F `  n
) ,  ( G `
 n ) >.
) ) ( ~~> t `  N ) ( O `
 <. R ,  S >. ) )
3324, 32eqbrtrrd 4013 . 2  |-  ( ph  ->  H ( ~~> t `  N ) ( O `
 <. R ,  S >. ) )
34 df-ov 5856 . 2  |-  ( R O S )  =  ( O `  <. R ,  S >. )
3533, 34breqtrrdi 4031 1  |-  ( ph  ->  H ( ~~> t `  N ) ( R O S ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1348    e. wcel 2141   <.cop 3586   U.cuni 3796   class class class wbr 3989    |-> cmpt 4050    X. cxp 4609    o. ccom 4615   -->wf 5194   ` cfv 5198  (class class class)co 5853   ZZcz 9212   ZZ>=cuz 9487   Topctop 12789  TopOnctopon 12802    Cn ccn 12979   ~~> tclm 12981    tX ctx 13046
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4104  ax-sep 4107  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-cnex 7865  ax-resscn 7866  ax-1cn 7867  ax-1re 7868  ax-icn 7869  ax-addcl 7870  ax-addrcl 7871  ax-mulcl 7872  ax-addcom 7874  ax-addass 7876  ax-distr 7878  ax-i2m1 7879  ax-0lt1 7880  ax-0id 7882  ax-rnegex 7883  ax-cnre 7885  ax-pre-ltirr 7886  ax-pre-ltwlin 7887  ax-pre-lttrn 7888  ax-pre-apti 7889  ax-pre-ltadd 7890
This theorem depends on definitions:  df-bi 116  df-dc 830  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-nel 2436  df-ral 2453  df-rex 2454  df-reu 2455  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-if 3527  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-iun 3875  df-br 3990  df-opab 4051  df-mpt 4052  df-id 4278  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-fv 5206  df-riota 5809  df-ov 5856  df-oprab 5857  df-mpo 5858  df-1st 6119  df-2nd 6120  df-map 6628  df-pm 6629  df-pnf 7956  df-mnf 7957  df-xr 7958  df-ltxr 7959  df-le 7960  df-sub 8092  df-neg 8093  df-inn 8879  df-n0 9136  df-z 9213  df-uz 9488  df-topgen 12600  df-top 12790  df-topon 12803  df-bases 12835  df-cn 12982  df-cnp 12983  df-lm 12984  df-tx 13047
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator