| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mpbir2and | Unicode version | ||
| Description: Detach a conjunction of truths in a biconditional. (Contributed by NM, 6-Nov-2011.) (Proof shortened by Wolf Lammen, 24-Nov-2012.) |
| Ref | Expression |
|---|---|
| mpbir2and.1 |
|
| mpbir2and.2 |
|
| mpbir2and.3 |
|
| Ref | Expression |
|---|---|
| mpbir2and |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mpbir2and.1 |
. . 3
| |
| 2 | mpbir2and.2 |
. . 3
| |
| 3 | 1, 2 | jca 306 |
. 2
|
| 4 | mpbir2and.3 |
. 2
| |
| 5 | 3, 4 | mpbird 167 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: nnnninfeq2 7196 nqnq0pi 7507 genpassg 7595 addnqpr 7630 mulnqpr 7646 distrprg 7657 1idpr 7661 ltexpri 7682 recexprlemex 7706 aptipr 7710 cauappcvgprlemladd 7727 ltntri 8156 add20 8503 inelr 8613 recgt0 8879 prodgt0 8881 squeeze0 8933 suprzclex 9426 eluzadd 9632 eluzsub 9633 xrletrid 9882 xrre 9897 xrre3 9899 xleadd1a 9950 elioc2 10013 elico2 10014 elicc2 10015 elfz1eq 10112 fztri3or 10116 fznatpl1 10153 nn0fz0 10196 fzctr 10210 fzo1fzo0n0 10261 fzoaddel 10270 zsupcllemstep 10321 zssinfcl 10324 exbtwnz 10342 flid 10376 flqaddz 10389 flqdiv 10415 modqid 10443 frec2uzf1od 10500 iseqf1olemqk 10601 bcval5 10857 abs2difabs 11275 fzomaxdiflem 11279 icodiamlt 11347 dfabsmax 11384 rexico 11388 mul0inf 11408 xrbdtri 11443 sumeq2 11526 sumsnf 11576 fsum00 11629 prodeq2 11724 prodsnf 11759 bitsfzolem 12121 bitsfzo 12122 bitsmod 12123 bitscmp 12125 gcd0id 12156 gcdneg 12159 nn0seqcvgd 12219 lcmval 12241 lcmneg 12252 qredeq 12274 prmind2 12298 pw2dvdseu 12346 hashdvds 12399 pcpremul 12472 pcidlem 12502 pcgcd1 12507 fldivp1 12527 pcfaclem 12528 4sqlem17 12586 ennnfonelemex 12641 ennnfonelemnn0 12649 mnd1 13097 grp1 13248 0subg 13339 nmznsg 13353 ghmpreima 13406 ghmeql 13407 ghmnsgpreima 13409 kerf1ghm 13414 ring1 13625 dvdsrmuld 13662 1unit 13673 unitmulcl 13679 unitgrp 13682 unitnegcl 13696 rhmdvdsr 13741 elrhmunit 13743 subrngintm 13778 subrguss 13802 subrgunit 13805 rhmeql 13816 rhmima 13817 lsslsp 13995 rnglidlrng 14064 fczpsrbag 14235 tgcl 14310 distop 14331 epttop 14336 neiss 14396 opnneissb 14401 ssnei2 14403 innei 14409 lmconst 14462 cnpnei 14465 cnptopco 14468 cnss1 14472 cnss2 14473 cncnpi 14474 cncnp 14476 cnconst2 14479 cnrest 14481 cnptopresti 14484 cnpdis 14488 lmtopcnp 14496 neitx 14514 tx1cn 14515 tx2cn 14516 txcnp 14517 txcnmpt 14519 txdis1cn 14524 psmetsym 14575 psmetres2 14579 isxmetd 14593 xmetsym 14614 xmetpsmet 14615 metrtri 14623 xblss2ps 14650 xblss2 14651 xblcntrps 14659 xblcntr 14660 bdxmet 14747 bdmet 14748 bdmopn 14750 xmetxp 14753 xmetxpbl 14754 rescncf 14827 cncfco 14837 mulcncflem 14853 mulcncf 14854 suplociccreex 14870 ivthinclemlopn 14882 ivthinclemuopn 14884 hovera 14893 hoverlt1 14895 cnplimcim 14913 cnplimclemr 14915 limccnpcntop 14921 limccnp2cntop 14923 limccoap 14924 dvidlemap 14937 dvidrelem 14938 dvidsslem 14939 dvcn 14946 dvaddxxbr 14947 dvmulxxbr 14948 dvcoapbr 14953 dvcjbr 14954 dvrecap 14959 rpabscxpbnd 15186 dvdsppwf1o 15235 lgsdirprm 15285 lgseisenlem1 15321 lgseisenlem2 15322 lgseisenlem3 15323 lgsquadlem1 15328 2sqlem8 15374 refeq 15682 apdifflemf 15700 ltlenmkv 15724 |
| Copyright terms: Public domain | W3C validator |