Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > mpbir2and | Unicode version |
Description: Detach a conjunction of truths in a biconditional. (Contributed by NM, 6-Nov-2011.) (Proof shortened by Wolf Lammen, 24-Nov-2012.) |
Ref | Expression |
---|---|
mpbir2and.1 | |
mpbir2and.2 | |
mpbir2and.3 |
Ref | Expression |
---|---|
mpbir2and |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mpbir2and.1 | . . 3 | |
2 | mpbir2and.2 | . . 3 | |
3 | 1, 2 | jca 304 | . 2 |
4 | mpbir2and.3 | . 2 | |
5 | 3, 4 | mpbird 166 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: nnnninfeq2 7089 nqnq0pi 7375 genpassg 7463 addnqpr 7498 mulnqpr 7514 distrprg 7525 1idpr 7529 ltexpri 7550 recexprlemex 7574 aptipr 7578 cauappcvgprlemladd 7595 ltntri 8022 add20 8368 inelr 8478 recgt0 8741 prodgt0 8743 squeeze0 8795 suprzclex 9285 eluzadd 9490 eluzsub 9491 xrletrid 9737 xrre 9752 xrre3 9754 xleadd1a 9805 elioc2 9868 elico2 9869 elicc2 9870 elfz1eq 9966 fztri3or 9970 fznatpl1 10007 nn0fz0 10050 fzctr 10064 fzo1fzo0n0 10114 fzoaddel 10123 exbtwnz 10182 flid 10215 flqaddz 10228 flqdiv 10252 modqid 10280 frec2uzf1od 10337 iseqf1olemqk 10425 bcval5 10672 abs2difabs 11046 fzomaxdiflem 11050 icodiamlt 11118 dfabsmax 11155 rexico 11159 mul0inf 11178 xrbdtri 11213 sumeq2 11296 sumsnf 11346 fsum00 11399 prodeq2 11494 prodsnf 11529 zsupcllemstep 11874 zssinfcl 11877 gcd0id 11908 gcdneg 11911 nn0seqcvgd 11969 lcmval 11991 lcmneg 12002 qredeq 12024 prmind2 12048 pw2dvdseu 12096 hashdvds 12149 pcpremul 12221 pcidlem 12250 pcgcd1 12255 fldivp1 12274 pcfaclem 12275 ennnfonelemex 12343 ennnfonelemnn0 12351 tgcl 12664 distop 12685 epttop 12690 neiss 12750 opnneissb 12755 ssnei2 12757 innei 12763 lmconst 12816 cnpnei 12819 cnptopco 12822 cnss1 12826 cnss2 12827 cncnpi 12828 cncnp 12830 cnconst2 12833 cnrest 12835 cnptopresti 12838 cnpdis 12842 lmtopcnp 12850 neitx 12868 tx1cn 12869 tx2cn 12870 txcnp 12871 txcnmpt 12873 txdis1cn 12878 psmetsym 12929 psmetres2 12933 isxmetd 12947 xmetsym 12968 xmetpsmet 12969 metrtri 12977 xblss2ps 13004 xblss2 13005 xblcntrps 13013 xblcntr 13014 bdxmet 13101 bdmet 13102 bdmopn 13104 xmetxp 13107 xmetxpbl 13108 rescncf 13168 cncfco 13178 mulcncflem 13190 mulcncf 13191 suplociccreex 13202 ivthinclemlopn 13214 ivthinclemuopn 13216 cnplimcim 13236 cnplimclemr 13238 limccnpcntop 13244 limccnp2cntop 13246 limccoap 13247 dvidlemap 13260 dvcn 13264 dvaddxxbr 13265 dvmulxxbr 13266 dvcoapbr 13271 dvcjbr 13272 dvrecap 13277 rpabscxpbnd 13459 lgsdirprm 13535 2sqlem8 13559 refeq 13867 apdifflemf 13885 |
Copyright terms: Public domain | W3C validator |