| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mpbir2and | Unicode version | ||
| Description: Detach a conjunction of truths in a biconditional. (Contributed by NM, 6-Nov-2011.) (Proof shortened by Wolf Lammen, 24-Nov-2012.) |
| Ref | Expression |
|---|---|
| mpbir2and.1 |
|
| mpbir2and.2 |
|
| mpbir2and.3 |
|
| Ref | Expression |
|---|---|
| mpbir2and |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mpbir2and.1 |
. . 3
| |
| 2 | mpbir2and.2 |
. . 3
| |
| 3 | 1, 2 | jca 306 |
. 2
|
| 4 | mpbir2and.3 |
. 2
| |
| 5 | 3, 4 | mpbird 167 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: nnnninfeq2 7204 nqnq0pi 7522 genpassg 7610 addnqpr 7645 mulnqpr 7661 distrprg 7672 1idpr 7676 ltexpri 7697 recexprlemex 7721 aptipr 7725 cauappcvgprlemladd 7742 ltntri 8171 add20 8518 inelr 8628 recgt0 8894 prodgt0 8896 squeeze0 8948 suprzclex 9441 eluzadd 9647 eluzsub 9648 xrletrid 9897 xrre 9912 xrre3 9914 xleadd1a 9965 elioc2 10028 elico2 10029 elicc2 10030 elfz1eq 10127 fztri3or 10131 fznatpl1 10168 nn0fz0 10211 fzctr 10225 fzo1fzo0n0 10276 fzoaddel 10285 zsupcllemstep 10336 zssinfcl 10339 exbtwnz 10357 flid 10391 flqaddz 10404 flqdiv 10430 modqid 10458 frec2uzf1od 10515 iseqf1olemqk 10616 bcval5 10872 abs2difabs 11290 fzomaxdiflem 11294 icodiamlt 11362 dfabsmax 11399 rexico 11403 mul0inf 11423 xrbdtri 11458 sumeq2 11541 sumsnf 11591 fsum00 11644 prodeq2 11739 prodsnf 11774 bitsfzolem 12136 bitsfzo 12137 bitsmod 12138 bitscmp 12140 gcd0id 12171 gcdneg 12174 nn0seqcvgd 12234 lcmval 12256 lcmneg 12267 qredeq 12289 prmind2 12313 pw2dvdseu 12361 hashdvds 12414 pcpremul 12487 pcidlem 12517 pcgcd1 12522 fldivp1 12542 pcfaclem 12543 4sqlem17 12601 ennnfonelemex 12656 ennnfonelemnn0 12664 mnd1 13157 grp1 13308 0subg 13405 nmznsg 13419 ghmpreima 13472 ghmeql 13473 ghmnsgpreima 13475 kerf1ghm 13480 ring1 13691 dvdsrmuld 13728 1unit 13739 unitmulcl 13745 unitgrp 13748 unitnegcl 13762 rhmdvdsr 13807 elrhmunit 13809 subrngintm 13844 subrguss 13868 subrgunit 13871 rhmeql 13882 rhmima 13883 lsslsp 14061 rnglidlrng 14130 fczpsrbag 14301 tgcl 14384 distop 14405 epttop 14410 neiss 14470 opnneissb 14475 ssnei2 14477 innei 14483 lmconst 14536 cnpnei 14539 cnptopco 14542 cnss1 14546 cnss2 14547 cncnpi 14548 cncnp 14550 cnconst2 14553 cnrest 14555 cnptopresti 14558 cnpdis 14562 lmtopcnp 14570 neitx 14588 tx1cn 14589 tx2cn 14590 txcnp 14591 txcnmpt 14593 txdis1cn 14598 psmetsym 14649 psmetres2 14653 isxmetd 14667 xmetsym 14688 xmetpsmet 14689 metrtri 14697 xblss2ps 14724 xblss2 14725 xblcntrps 14733 xblcntr 14734 bdxmet 14821 bdmet 14822 bdmopn 14824 xmetxp 14827 xmetxpbl 14828 rescncf 14901 cncfco 14911 mulcncflem 14927 mulcncf 14928 suplociccreex 14944 ivthinclemlopn 14956 ivthinclemuopn 14958 hovera 14967 hoverlt1 14969 cnplimcim 14987 cnplimclemr 14989 limccnpcntop 14995 limccnp2cntop 14997 limccoap 14998 dvidlemap 15011 dvidrelem 15012 dvidsslem 15013 dvcn 15020 dvaddxxbr 15021 dvmulxxbr 15022 dvcoapbr 15027 dvcjbr 15028 dvrecap 15033 rpabscxpbnd 15260 dvdsppwf1o 15309 lgsdirprm 15359 lgseisenlem1 15395 lgseisenlem2 15396 lgseisenlem3 15397 lgsquadlem1 15402 2sqlem8 15448 refeq 15759 apdifflemf 15777 ltlenmkv 15801 |
| Copyright terms: Public domain | W3C validator |