![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > mpbir2and | Unicode version |
Description: Detach a conjunction of truths in a biconditional. (Contributed by NM, 6-Nov-2011.) (Proof shortened by Wolf Lammen, 24-Nov-2012.) |
Ref | Expression |
---|---|
mpbir2and.1 |
![]() ![]() ![]() ![]() ![]() ![]() |
mpbir2and.2 |
![]() ![]() ![]() ![]() ![]() ![]() |
mpbir2and.3 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
mpbir2and |
![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mpbir2and.1 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() | |
2 | mpbir2and.2 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 1, 2 | jca 306 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
4 | mpbir2and.3 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
5 | 3, 4 | mpbird 167 |
1
![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
This theorem depends on definitions: df-bi 117 |
This theorem is referenced by: nnnninfeq2 7188 nqnq0pi 7498 genpassg 7586 addnqpr 7621 mulnqpr 7637 distrprg 7648 1idpr 7652 ltexpri 7673 recexprlemex 7697 aptipr 7701 cauappcvgprlemladd 7718 ltntri 8147 add20 8493 inelr 8603 recgt0 8869 prodgt0 8871 squeeze0 8923 suprzclex 9415 eluzadd 9621 eluzsub 9622 xrletrid 9871 xrre 9886 xrre3 9888 xleadd1a 9939 elioc2 10002 elico2 10003 elicc2 10004 elfz1eq 10101 fztri3or 10105 fznatpl1 10142 nn0fz0 10185 fzctr 10199 fzo1fzo0n0 10250 fzoaddel 10259 exbtwnz 10319 flid 10353 flqaddz 10366 flqdiv 10392 modqid 10420 frec2uzf1od 10477 iseqf1olemqk 10578 bcval5 10834 abs2difabs 11252 fzomaxdiflem 11256 icodiamlt 11324 dfabsmax 11361 rexico 11365 mul0inf 11384 xrbdtri 11419 sumeq2 11502 sumsnf 11552 fsum00 11605 prodeq2 11700 prodsnf 11735 zsupcllemstep 12082 zssinfcl 12085 gcd0id 12116 gcdneg 12119 nn0seqcvgd 12179 lcmval 12201 lcmneg 12212 qredeq 12234 prmind2 12258 pw2dvdseu 12306 hashdvds 12359 pcpremul 12431 pcidlem 12461 pcgcd1 12466 fldivp1 12486 pcfaclem 12487 4sqlem17 12545 ennnfonelemex 12571 ennnfonelemnn0 12579 mnd1 13027 grp1 13178 0subg 13269 nmznsg 13283 ghmpreima 13336 ghmeql 13337 ghmnsgpreima 13339 kerf1ghm 13344 ring1 13555 dvdsrmuld 13592 1unit 13603 unitmulcl 13609 unitgrp 13612 unitnegcl 13626 rhmdvdsr 13671 elrhmunit 13673 subrngintm 13708 subrguss 13732 subrgunit 13735 rhmeql 13746 rhmima 13747 lsslsp 13925 rnglidlrng 13994 fczpsrbag 14157 tgcl 14232 distop 14253 epttop 14258 neiss 14318 opnneissb 14323 ssnei2 14325 innei 14331 lmconst 14384 cnpnei 14387 cnptopco 14390 cnss1 14394 cnss2 14395 cncnpi 14396 cncnp 14398 cnconst2 14401 cnrest 14403 cnptopresti 14406 cnpdis 14410 lmtopcnp 14418 neitx 14436 tx1cn 14437 tx2cn 14438 txcnp 14439 txcnmpt 14441 txdis1cn 14446 psmetsym 14497 psmetres2 14501 isxmetd 14515 xmetsym 14536 xmetpsmet 14537 metrtri 14545 xblss2ps 14572 xblss2 14573 xblcntrps 14581 xblcntr 14582 bdxmet 14669 bdmet 14670 bdmopn 14672 xmetxp 14675 xmetxpbl 14676 rescncf 14736 cncfco 14746 mulcncflem 14761 mulcncf 14762 suplociccreex 14778 ivthinclemlopn 14790 ivthinclemuopn 14792 hovera 14801 hoverlt1 14803 cnplimcim 14821 cnplimclemr 14823 limccnpcntop 14829 limccnp2cntop 14831 limccoap 14832 dvidlemap 14845 dvcn 14849 dvaddxxbr 14850 dvmulxxbr 14851 dvcoapbr 14856 dvcjbr 14857 dvrecap 14862 rpabscxpbnd 15073 lgsdirprm 15150 lgseisenlem1 15186 lgseisenlem2 15187 lgseisenlem3 15188 lgsquadlem1 15191 2sqlem8 15210 refeq 15518 apdifflemf 15536 ltlenmkv 15560 |
Copyright terms: Public domain | W3C validator |