![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > mpbir2and | Unicode version |
Description: Detach a conjunction of truths in a biconditional. (Contributed by NM, 6-Nov-2011.) (Proof shortened by Wolf Lammen, 24-Nov-2012.) |
Ref | Expression |
---|---|
mpbir2and.1 |
![]() ![]() ![]() ![]() ![]() ![]() |
mpbir2and.2 |
![]() ![]() ![]() ![]() ![]() ![]() |
mpbir2and.3 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
mpbir2and |
![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mpbir2and.1 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() | |
2 | mpbir2and.2 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 1, 2 | jca 306 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
4 | mpbir2and.3 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
5 | 3, 4 | mpbird 167 |
1
![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
This theorem depends on definitions: df-bi 117 |
This theorem is referenced by: nnnninfeq2 7126 nqnq0pi 7436 genpassg 7524 addnqpr 7559 mulnqpr 7575 distrprg 7586 1idpr 7590 ltexpri 7611 recexprlemex 7635 aptipr 7639 cauappcvgprlemladd 7656 ltntri 8084 add20 8430 inelr 8540 recgt0 8806 prodgt0 8808 squeeze0 8860 suprzclex 9350 eluzadd 9555 eluzsub 9556 xrletrid 9804 xrre 9819 xrre3 9821 xleadd1a 9872 elioc2 9935 elico2 9936 elicc2 9937 elfz1eq 10034 fztri3or 10038 fznatpl1 10075 nn0fz0 10118 fzctr 10132 fzo1fzo0n0 10182 fzoaddel 10191 exbtwnz 10250 flid 10283 flqaddz 10296 flqdiv 10320 modqid 10348 frec2uzf1od 10405 iseqf1olemqk 10493 bcval5 10742 abs2difabs 11116 fzomaxdiflem 11120 icodiamlt 11188 dfabsmax 11225 rexico 11229 mul0inf 11248 xrbdtri 11283 sumeq2 11366 sumsnf 11416 fsum00 11469 prodeq2 11564 prodsnf 11599 zsupcllemstep 11945 zssinfcl 11948 gcd0id 11979 gcdneg 11982 nn0seqcvgd 12040 lcmval 12062 lcmneg 12073 qredeq 12095 prmind2 12119 pw2dvdseu 12167 hashdvds 12220 pcpremul 12292 pcidlem 12321 pcgcd1 12326 fldivp1 12345 pcfaclem 12346 ennnfonelemex 12414 ennnfonelemnn0 12422 mnd1 12846 grp1 12975 0subg 13057 nmznsg 13071 ring1 13234 dvdsrmuld 13263 1unit 13274 unitmulcl 13280 unitgrp 13283 unitnegcl 13297 subrguss 13355 subrgunit 13358 tgcl 13534 distop 13555 epttop 13560 neiss 13620 opnneissb 13625 ssnei2 13627 innei 13633 lmconst 13686 cnpnei 13689 cnptopco 13692 cnss1 13696 cnss2 13697 cncnpi 13698 cncnp 13700 cnconst2 13703 cnrest 13705 cnptopresti 13708 cnpdis 13712 lmtopcnp 13720 neitx 13738 tx1cn 13739 tx2cn 13740 txcnp 13741 txcnmpt 13743 txdis1cn 13748 psmetsym 13799 psmetres2 13803 isxmetd 13817 xmetsym 13838 xmetpsmet 13839 metrtri 13847 xblss2ps 13874 xblss2 13875 xblcntrps 13883 xblcntr 13884 bdxmet 13971 bdmet 13972 bdmopn 13974 xmetxp 13977 xmetxpbl 13978 rescncf 14038 cncfco 14048 mulcncflem 14060 mulcncf 14061 suplociccreex 14072 ivthinclemlopn 14084 ivthinclemuopn 14086 cnplimcim 14106 cnplimclemr 14108 limccnpcntop 14114 limccnp2cntop 14116 limccoap 14117 dvidlemap 14130 dvcn 14134 dvaddxxbr 14135 dvmulxxbr 14136 dvcoapbr 14141 dvcjbr 14142 dvrecap 14147 rpabscxpbnd 14329 lgsdirprm 14405 lgseisenlem1 14420 lgseisenlem2 14421 2sqlem8 14440 refeq 14746 apdifflemf 14764 ltlenmkv 14787 |
Copyright terms: Public domain | W3C validator |