Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > mpbir2and | Unicode version |
Description: Detach a conjunction of truths in a biconditional. (Contributed by NM, 6-Nov-2011.) (Proof shortened by Wolf Lammen, 24-Nov-2012.) |
Ref | Expression |
---|---|
mpbir2and.1 | |
mpbir2and.2 | |
mpbir2and.3 |
Ref | Expression |
---|---|
mpbir2and |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mpbir2and.1 | . . 3 | |
2 | mpbir2and.2 | . . 3 | |
3 | 1, 2 | jca 304 | . 2 |
4 | mpbir2and.3 | . 2 | |
5 | 3, 4 | mpbird 166 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: nnnninfeq2 7103 nqnq0pi 7393 genpassg 7481 addnqpr 7516 mulnqpr 7532 distrprg 7543 1idpr 7547 ltexpri 7568 recexprlemex 7592 aptipr 7596 cauappcvgprlemladd 7613 ltntri 8040 add20 8386 inelr 8496 recgt0 8759 prodgt0 8761 squeeze0 8813 suprzclex 9303 eluzadd 9508 eluzsub 9509 xrletrid 9755 xrre 9770 xrre3 9772 xleadd1a 9823 elioc2 9886 elico2 9887 elicc2 9888 elfz1eq 9984 fztri3or 9988 fznatpl1 10025 nn0fz0 10068 fzctr 10082 fzo1fzo0n0 10132 fzoaddel 10141 exbtwnz 10200 flid 10233 flqaddz 10246 flqdiv 10270 modqid 10298 frec2uzf1od 10355 iseqf1olemqk 10443 bcval5 10690 abs2difabs 11065 fzomaxdiflem 11069 icodiamlt 11137 dfabsmax 11174 rexico 11178 mul0inf 11197 xrbdtri 11232 sumeq2 11315 sumsnf 11365 fsum00 11418 prodeq2 11513 prodsnf 11548 zsupcllemstep 11893 zssinfcl 11896 gcd0id 11927 gcdneg 11930 nn0seqcvgd 11988 lcmval 12010 lcmneg 12021 qredeq 12043 prmind2 12067 pw2dvdseu 12115 hashdvds 12168 pcpremul 12240 pcidlem 12269 pcgcd1 12274 fldivp1 12293 pcfaclem 12294 ennnfonelemex 12362 ennnfonelemnn0 12370 mnd1 12672 tgcl 12823 distop 12844 epttop 12849 neiss 12909 opnneissb 12914 ssnei2 12916 innei 12922 lmconst 12975 cnpnei 12978 cnptopco 12981 cnss1 12985 cnss2 12986 cncnpi 12987 cncnp 12989 cnconst2 12992 cnrest 12994 cnptopresti 12997 cnpdis 13001 lmtopcnp 13009 neitx 13027 tx1cn 13028 tx2cn 13029 txcnp 13030 txcnmpt 13032 txdis1cn 13037 psmetsym 13088 psmetres2 13092 isxmetd 13106 xmetsym 13127 xmetpsmet 13128 metrtri 13136 xblss2ps 13163 xblss2 13164 xblcntrps 13172 xblcntr 13173 bdxmet 13260 bdmet 13261 bdmopn 13263 xmetxp 13266 xmetxpbl 13267 rescncf 13327 cncfco 13337 mulcncflem 13349 mulcncf 13350 suplociccreex 13361 ivthinclemlopn 13373 ivthinclemuopn 13375 cnplimcim 13395 cnplimclemr 13397 limccnpcntop 13403 limccnp2cntop 13405 limccoap 13406 dvidlemap 13419 dvcn 13423 dvaddxxbr 13424 dvmulxxbr 13425 dvcoapbr 13430 dvcjbr 13431 dvrecap 13436 rpabscxpbnd 13618 lgsdirprm 13694 2sqlem8 13718 refeq 14025 apdifflemf 14043 |
Copyright terms: Public domain | W3C validator |