ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  remim Unicode version

Theorem remim 10625
Description: Value of the conjugate of a complex number. The value is the real part minus  _i times the imaginary part. Definition 10-3.2 of [Gleason] p. 132. (Contributed by NM, 10-May-1999.) (Revised by Mario Carneiro, 7-Nov-2013.)
Assertion
Ref Expression
remim  |-  ( A  e.  CC  ->  (
* `  A )  =  ( ( Re
`  A )  -  ( _i  x.  (
Im `  A )
) ) )

Proof of Theorem remim
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 cjval 10610 . 2  |-  ( A  e.  CC  ->  (
* `  A )  =  ( iota_ x  e.  CC  ( ( A  +  x )  e.  RR  /\  ( _i  x.  ( A  -  x ) )  e.  RR ) ) )
2 replim 10624 . . . . . 6  |-  ( A  e.  CC  ->  A  =  ( ( Re
`  A )  +  ( _i  x.  (
Im `  A )
) ) )
32oveq1d 5782 . . . . 5  |-  ( A  e.  CC  ->  ( A  +  ( (
Re `  A )  -  ( _i  x.  ( Im `  A ) ) ) )  =  ( ( ( Re
`  A )  +  ( _i  x.  (
Im `  A )
) )  +  ( ( Re `  A
)  -  ( _i  x.  ( Im `  A ) ) ) ) )
4 recl 10618 . . . . . . 7  |-  ( A  e.  CC  ->  (
Re `  A )  e.  RR )
54recnd 7787 . . . . . 6  |-  ( A  e.  CC  ->  (
Re `  A )  e.  CC )
6 ax-icn 7708 . . . . . . 7  |-  _i  e.  CC
7 imcl 10619 . . . . . . . 8  |-  ( A  e.  CC  ->  (
Im `  A )  e.  RR )
87recnd 7787 . . . . . . 7  |-  ( A  e.  CC  ->  (
Im `  A )  e.  CC )
9 mulcl 7740 . . . . . . 7  |-  ( ( _i  e.  CC  /\  ( Im `  A )  e.  CC )  -> 
( _i  x.  (
Im `  A )
)  e.  CC )
106, 8, 9sylancr 410 . . . . . 6  |-  ( A  e.  CC  ->  (
_i  x.  ( Im `  A ) )  e.  CC )
115, 10, 5ppncand 8106 . . . . 5  |-  ( A  e.  CC  ->  (
( ( Re `  A )  +  ( _i  x.  ( Im
`  A ) ) )  +  ( ( Re `  A )  -  ( _i  x.  ( Im `  A ) ) ) )  =  ( ( Re `  A )  +  ( Re `  A ) ) )
123, 11eqtrd 2170 . . . 4  |-  ( A  e.  CC  ->  ( A  +  ( (
Re `  A )  -  ( _i  x.  ( Im `  A ) ) ) )  =  ( ( Re `  A )  +  ( Re `  A ) ) )
134, 4readdcld 7788 . . . 4  |-  ( A  e.  CC  ->  (
( Re `  A
)  +  ( Re
`  A ) )  e.  RR )
1412, 13eqeltrd 2214 . . 3  |-  ( A  e.  CC  ->  ( A  +  ( (
Re `  A )  -  ( _i  x.  ( Im `  A ) ) ) )  e.  RR )
155, 10, 10pnncand 8105 . . . . . . 7  |-  ( A  e.  CC  ->  (
( ( Re `  A )  +  ( _i  x.  ( Im
`  A ) ) )  -  ( ( Re `  A )  -  ( _i  x.  ( Im `  A ) ) ) )  =  ( ( _i  x.  ( Im `  A ) )  +  ( _i  x.  ( Im `  A ) ) ) )
162oveq1d 5782 . . . . . . 7  |-  ( A  e.  CC  ->  ( A  -  ( (
Re `  A )  -  ( _i  x.  ( Im `  A ) ) ) )  =  ( ( ( Re
`  A )  +  ( _i  x.  (
Im `  A )
) )  -  (
( Re `  A
)  -  ( _i  x.  ( Im `  A ) ) ) ) )
176a1i 9 . . . . . . . 8  |-  ( A  e.  CC  ->  _i  e.  CC )
1817, 8, 8adddid 7783 . . . . . . 7  |-  ( A  e.  CC  ->  (
_i  x.  ( (
Im `  A )  +  ( Im `  A ) ) )  =  ( ( _i  x.  ( Im `  A ) )  +  ( _i  x.  (
Im `  A )
) ) )
1915, 16, 183eqtr4d 2180 . . . . . 6  |-  ( A  e.  CC  ->  ( A  -  ( (
Re `  A )  -  ( _i  x.  ( Im `  A ) ) ) )  =  ( _i  x.  (
( Im `  A
)  +  ( Im
`  A ) ) ) )
2019oveq2d 5783 . . . . 5  |-  ( A  e.  CC  ->  (
_i  x.  ( A  -  ( ( Re
`  A )  -  ( _i  x.  (
Im `  A )
) ) ) )  =  ( _i  x.  ( _i  x.  (
( Im `  A
)  +  ( Im
`  A ) ) ) ) )
217, 7readdcld 7788 . . . . . . 7  |-  ( A  e.  CC  ->  (
( Im `  A
)  +  ( Im
`  A ) )  e.  RR )
2221recnd 7787 . . . . . 6  |-  ( A  e.  CC  ->  (
( Im `  A
)  +  ( Im
`  A ) )  e.  CC )
23 mulass 7744 . . . . . . 7  |-  ( ( _i  e.  CC  /\  _i  e.  CC  /\  (
( Im `  A
)  +  ( Im
`  A ) )  e.  CC )  -> 
( ( _i  x.  _i )  x.  (
( Im `  A
)  +  ( Im
`  A ) ) )  =  ( _i  x.  ( _i  x.  ( ( Im `  A )  +  ( Im `  A ) ) ) ) )
246, 6, 23mp3an12 1305 . . . . . 6  |-  ( ( ( Im `  A
)  +  ( Im
`  A ) )  e.  CC  ->  (
( _i  x.  _i )  x.  ( (
Im `  A )  +  ( Im `  A ) ) )  =  ( _i  x.  ( _i  x.  (
( Im `  A
)  +  ( Im
`  A ) ) ) ) )
2522, 24syl 14 . . . . 5  |-  ( A  e.  CC  ->  (
( _i  x.  _i )  x.  ( (
Im `  A )  +  ( Im `  A ) ) )  =  ( _i  x.  ( _i  x.  (
( Im `  A
)  +  ( Im
`  A ) ) ) ) )
2620, 25eqtr4d 2173 . . . 4  |-  ( A  e.  CC  ->  (
_i  x.  ( A  -  ( ( Re
`  A )  -  ( _i  x.  (
Im `  A )
) ) ) )  =  ( ( _i  x.  _i )  x.  ( ( Im `  A )  +  ( Im `  A ) ) ) )
27 ixi 8338 . . . . . 6  |-  ( _i  x.  _i )  = 
-u 1
28 neg1rr 8819 . . . . . 6  |-  -u 1  e.  RR
2927, 28eqeltri 2210 . . . . 5  |-  ( _i  x.  _i )  e.  RR
30 remulcl 7741 . . . . 5  |-  ( ( ( _i  x.  _i )  e.  RR  /\  (
( Im `  A
)  +  ( Im
`  A ) )  e.  RR )  -> 
( ( _i  x.  _i )  x.  (
( Im `  A
)  +  ( Im
`  A ) ) )  e.  RR )
3129, 21, 30sylancr 410 . . . 4  |-  ( A  e.  CC  ->  (
( _i  x.  _i )  x.  ( (
Im `  A )  +  ( Im `  A ) ) )  e.  RR )
3226, 31eqeltrd 2214 . . 3  |-  ( A  e.  CC  ->  (
_i  x.  ( A  -  ( ( Re
`  A )  -  ( _i  x.  (
Im `  A )
) ) ) )  e.  RR )
335, 10subcld 8066 . . . 4  |-  ( A  e.  CC  ->  (
( Re `  A
)  -  ( _i  x.  ( Im `  A ) ) )  e.  CC )
34 cju 8712 . . . 4  |-  ( A  e.  CC  ->  E! x  e.  CC  (
( A  +  x
)  e.  RR  /\  ( _i  x.  ( A  -  x )
)  e.  RR ) )
35 oveq2 5775 . . . . . . 7  |-  ( x  =  ( ( Re
`  A )  -  ( _i  x.  (
Im `  A )
) )  ->  ( A  +  x )  =  ( A  +  ( ( Re `  A )  -  (
_i  x.  ( Im `  A ) ) ) ) )
3635eleq1d 2206 . . . . . 6  |-  ( x  =  ( ( Re
`  A )  -  ( _i  x.  (
Im `  A )
) )  ->  (
( A  +  x
)  e.  RR  <->  ( A  +  ( ( Re
`  A )  -  ( _i  x.  (
Im `  A )
) ) )  e.  RR ) )
37 oveq2 5775 . . . . . . . 8  |-  ( x  =  ( ( Re
`  A )  -  ( _i  x.  (
Im `  A )
) )  ->  ( A  -  x )  =  ( A  -  ( ( Re `  A )  -  (
_i  x.  ( Im `  A ) ) ) ) )
3837oveq2d 5783 . . . . . . 7  |-  ( x  =  ( ( Re
`  A )  -  ( _i  x.  (
Im `  A )
) )  ->  (
_i  x.  ( A  -  x ) )  =  ( _i  x.  ( A  -  ( (
Re `  A )  -  ( _i  x.  ( Im `  A ) ) ) ) ) )
3938eleq1d 2206 . . . . . 6  |-  ( x  =  ( ( Re
`  A )  -  ( _i  x.  (
Im `  A )
) )  ->  (
( _i  x.  ( A  -  x )
)  e.  RR  <->  ( _i  x.  ( A  -  (
( Re `  A
)  -  ( _i  x.  ( Im `  A ) ) ) ) )  e.  RR ) )
4036, 39anbi12d 464 . . . . 5  |-  ( x  =  ( ( Re
`  A )  -  ( _i  x.  (
Im `  A )
) )  ->  (
( ( A  +  x )  e.  RR  /\  ( _i  x.  ( A  -  x )
)  e.  RR )  <-> 
( ( A  +  ( ( Re `  A )  -  (
_i  x.  ( Im `  A ) ) ) )  e.  RR  /\  ( _i  x.  ( A  -  ( (
Re `  A )  -  ( _i  x.  ( Im `  A ) ) ) ) )  e.  RR ) ) )
4140riota2 5745 . . . 4  |-  ( ( ( ( Re `  A )  -  (
_i  x.  ( Im `  A ) ) )  e.  CC  /\  E! x  e.  CC  (
( A  +  x
)  e.  RR  /\  ( _i  x.  ( A  -  x )
)  e.  RR ) )  ->  ( (
( A  +  ( ( Re `  A
)  -  ( _i  x.  ( Im `  A ) ) ) )  e.  RR  /\  ( _i  x.  ( A  -  ( (
Re `  A )  -  ( _i  x.  ( Im `  A ) ) ) ) )  e.  RR )  <->  ( iota_ x  e.  CC  ( ( A  +  x )  e.  RR  /\  (
_i  x.  ( A  -  x ) )  e.  RR ) )  =  ( ( Re `  A )  -  (
_i  x.  ( Im `  A ) ) ) ) )
4233, 34, 41syl2anc 408 . . 3  |-  ( A  e.  CC  ->  (
( ( A  +  ( ( Re `  A )  -  (
_i  x.  ( Im `  A ) ) ) )  e.  RR  /\  ( _i  x.  ( A  -  ( (
Re `  A )  -  ( _i  x.  ( Im `  A ) ) ) ) )  e.  RR )  <->  ( iota_ x  e.  CC  ( ( A  +  x )  e.  RR  /\  (
_i  x.  ( A  -  x ) )  e.  RR ) )  =  ( ( Re `  A )  -  (
_i  x.  ( Im `  A ) ) ) ) )
4314, 32, 42mpbi2and 927 . 2  |-  ( A  e.  CC  ->  ( iota_ x  e.  CC  (
( A  +  x
)  e.  RR  /\  ( _i  x.  ( A  -  x )
)  e.  RR ) )  =  ( ( Re `  A )  -  ( _i  x.  ( Im `  A ) ) ) )
441, 43eqtrd 2170 1  |-  ( A  e.  CC  ->  (
* `  A )  =  ( ( Re
`  A )  -  ( _i  x.  (
Im `  A )
) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1331    e. wcel 1480   E!wreu 2416   ` cfv 5118   iota_crio 5722  (class class class)co 5767   CCcc 7611   RRcr 7612   1c1 7614   _ici 7615    + caddc 7616    x. cmul 7618    - cmin 7926   -ucneg 7927   *ccj 10604   Recre 10605   Imcim 10606
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2119  ax-sep 4041  ax-pow 4093  ax-pr 4126  ax-un 4350  ax-setind 4447  ax-cnex 7704  ax-resscn 7705  ax-1cn 7706  ax-1re 7707  ax-icn 7708  ax-addcl 7709  ax-addrcl 7710  ax-mulcl 7711  ax-mulrcl 7712  ax-addcom 7713  ax-mulcom 7714  ax-addass 7715  ax-mulass 7716  ax-distr 7717  ax-i2m1 7718  ax-0lt1 7719  ax-1rid 7720  ax-0id 7721  ax-rnegex 7722  ax-precex 7723  ax-cnre 7724  ax-pre-ltirr 7725  ax-pre-ltwlin 7726  ax-pre-lttrn 7727  ax-pre-apti 7728  ax-pre-ltadd 7729  ax-pre-mulgt0 7730  ax-pre-mulext 7731
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2000  df-mo 2001  df-clab 2124  df-cleq 2130  df-clel 2133  df-nfc 2268  df-ne 2307  df-nel 2402  df-ral 2419  df-rex 2420  df-reu 2421  df-rmo 2422  df-rab 2423  df-v 2683  df-sbc 2905  df-dif 3068  df-un 3070  df-in 3072  df-ss 3079  df-pw 3507  df-sn 3528  df-pr 3529  df-op 3531  df-uni 3732  df-br 3925  df-opab 3985  df-mpt 3986  df-id 4210  df-po 4213  df-iso 4214  df-xp 4540  df-rel 4541  df-cnv 4542  df-co 4543  df-dm 4544  df-rn 4545  df-res 4546  df-ima 4547  df-iota 5083  df-fun 5120  df-fn 5121  df-f 5122  df-fv 5126  df-riota 5723  df-ov 5770  df-oprab 5771  df-mpo 5772  df-pnf 7795  df-mnf 7796  df-xr 7797  df-ltxr 7798  df-le 7799  df-sub 7928  df-neg 7929  df-reap 8330  df-ap 8337  df-div 8426  df-2 8772  df-cj 10607  df-re 10608  df-im 10609
This theorem is referenced by:  cjreb  10631  recj  10632  remullem  10636  imcj  10640  cjadd  10649  cjneg  10655  imval2  10659  cji  10667  remimd  10707
  Copyright terms: Public domain W3C validator