| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > remim | Unicode version | ||
| Description: Value of the conjugate of
a complex number. The value is the real part
minus |
| Ref | Expression |
|---|---|
| remim |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cjval 11351 |
. 2
| |
| 2 | replim 11365 |
. . . . . 6
| |
| 3 | 2 | oveq1d 6015 |
. . . . 5
|
| 4 | recl 11359 |
. . . . . . 7
| |
| 5 | 4 | recnd 8171 |
. . . . . 6
|
| 6 | ax-icn 8090 |
. . . . . . 7
| |
| 7 | imcl 11360 |
. . . . . . . 8
| |
| 8 | 7 | recnd 8171 |
. . . . . . 7
|
| 9 | mulcl 8122 |
. . . . . . 7
| |
| 10 | 6, 8, 9 | sylancr 414 |
. . . . . 6
|
| 11 | 5, 10, 5 | ppncand 8493 |
. . . . 5
|
| 12 | 3, 11 | eqtrd 2262 |
. . . 4
|
| 13 | 4, 4 | readdcld 8172 |
. . . 4
|
| 14 | 12, 13 | eqeltrd 2306 |
. . 3
|
| 15 | 5, 10, 10 | pnncand 8492 |
. . . . . . 7
|
| 16 | 2 | oveq1d 6015 |
. . . . . . 7
|
| 17 | 6 | a1i 9 |
. . . . . . . 8
|
| 18 | 17, 8, 8 | adddid 8167 |
. . . . . . 7
|
| 19 | 15, 16, 18 | 3eqtr4d 2272 |
. . . . . 6
|
| 20 | 19 | oveq2d 6016 |
. . . . 5
|
| 21 | 7, 7 | readdcld 8172 |
. . . . . . 7
|
| 22 | 21 | recnd 8171 |
. . . . . 6
|
| 23 | mulass 8126 |
. . . . . . 7
| |
| 24 | 6, 6, 23 | mp3an12 1361 |
. . . . . 6
|
| 25 | 22, 24 | syl 14 |
. . . . 5
|
| 26 | 20, 25 | eqtr4d 2265 |
. . . 4
|
| 27 | ixi 8726 |
. . . . . 6
| |
| 28 | neg1rr 9212 |
. . . . . 6
| |
| 29 | 27, 28 | eqeltri 2302 |
. . . . 5
|
| 30 | remulcl 8123 |
. . . . 5
| |
| 31 | 29, 21, 30 | sylancr 414 |
. . . 4
|
| 32 | 26, 31 | eqeltrd 2306 |
. . 3
|
| 33 | 5, 10 | subcld 8453 |
. . . 4
|
| 34 | cju 9104 |
. . . 4
| |
| 35 | oveq2 6008 |
. . . . . . 7
| |
| 36 | 35 | eleq1d 2298 |
. . . . . 6
|
| 37 | oveq2 6008 |
. . . . . . . 8
| |
| 38 | 37 | oveq2d 6016 |
. . . . . . 7
|
| 39 | 38 | eleq1d 2298 |
. . . . . 6
|
| 40 | 36, 39 | anbi12d 473 |
. . . . 5
|
| 41 | 40 | riota2 5977 |
. . . 4
|
| 42 | 33, 34, 41 | syl2anc 411 |
. . 3
|
| 43 | 14, 32, 42 | mpbi2and 949 |
. 2
|
| 44 | 1, 43 | eqtrd 2262 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-pow 4257 ax-pr 4292 ax-un 4523 ax-setind 4628 ax-cnex 8086 ax-resscn 8087 ax-1cn 8088 ax-1re 8089 ax-icn 8090 ax-addcl 8091 ax-addrcl 8092 ax-mulcl 8093 ax-mulrcl 8094 ax-addcom 8095 ax-mulcom 8096 ax-addass 8097 ax-mulass 8098 ax-distr 8099 ax-i2m1 8100 ax-0lt1 8101 ax-1rid 8102 ax-0id 8103 ax-rnegex 8104 ax-precex 8105 ax-cnre 8106 ax-pre-ltirr 8107 ax-pre-ltwlin 8108 ax-pre-lttrn 8109 ax-pre-apti 8110 ax-pre-ltadd 8111 ax-pre-mulgt0 8112 ax-pre-mulext 8113 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rmo 2516 df-rab 2517 df-v 2801 df-sbc 3029 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-br 4083 df-opab 4145 df-mpt 4146 df-id 4383 df-po 4386 df-iso 4387 df-xp 4724 df-rel 4725 df-cnv 4726 df-co 4727 df-dm 4728 df-rn 4729 df-res 4730 df-ima 4731 df-iota 5277 df-fun 5319 df-fn 5320 df-f 5321 df-fv 5325 df-riota 5953 df-ov 6003 df-oprab 6004 df-mpo 6005 df-pnf 8179 df-mnf 8180 df-xr 8181 df-ltxr 8182 df-le 8183 df-sub 8315 df-neg 8316 df-reap 8718 df-ap 8725 df-div 8816 df-2 9165 df-cj 11348 df-re 11349 df-im 11350 |
| This theorem is referenced by: cjreb 11372 recj 11373 remullem 11377 imcj 11381 cjadd 11390 cjneg 11396 imval2 11400 cji 11408 remimd 11448 |
| Copyright terms: Public domain | W3C validator |