| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > remim | Unicode version | ||
| Description: Value of the conjugate of
a complex number. The value is the real part
minus |
| Ref | Expression |
|---|---|
| remim |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cjval 11241 |
. 2
| |
| 2 | replim 11255 |
. . . . . 6
| |
| 3 | 2 | oveq1d 5977 |
. . . . 5
|
| 4 | recl 11249 |
. . . . . . 7
| |
| 5 | 4 | recnd 8131 |
. . . . . 6
|
| 6 | ax-icn 8050 |
. . . . . . 7
| |
| 7 | imcl 11250 |
. . . . . . . 8
| |
| 8 | 7 | recnd 8131 |
. . . . . . 7
|
| 9 | mulcl 8082 |
. . . . . . 7
| |
| 10 | 6, 8, 9 | sylancr 414 |
. . . . . 6
|
| 11 | 5, 10, 5 | ppncand 8453 |
. . . . 5
|
| 12 | 3, 11 | eqtrd 2239 |
. . . 4
|
| 13 | 4, 4 | readdcld 8132 |
. . . 4
|
| 14 | 12, 13 | eqeltrd 2283 |
. . 3
|
| 15 | 5, 10, 10 | pnncand 8452 |
. . . . . . 7
|
| 16 | 2 | oveq1d 5977 |
. . . . . . 7
|
| 17 | 6 | a1i 9 |
. . . . . . . 8
|
| 18 | 17, 8, 8 | adddid 8127 |
. . . . . . 7
|
| 19 | 15, 16, 18 | 3eqtr4d 2249 |
. . . . . 6
|
| 20 | 19 | oveq2d 5978 |
. . . . 5
|
| 21 | 7, 7 | readdcld 8132 |
. . . . . . 7
|
| 22 | 21 | recnd 8131 |
. . . . . 6
|
| 23 | mulass 8086 |
. . . . . . 7
| |
| 24 | 6, 6, 23 | mp3an12 1340 |
. . . . . 6
|
| 25 | 22, 24 | syl 14 |
. . . . 5
|
| 26 | 20, 25 | eqtr4d 2242 |
. . . 4
|
| 27 | ixi 8686 |
. . . . . 6
| |
| 28 | neg1rr 9172 |
. . . . . 6
| |
| 29 | 27, 28 | eqeltri 2279 |
. . . . 5
|
| 30 | remulcl 8083 |
. . . . 5
| |
| 31 | 29, 21, 30 | sylancr 414 |
. . . 4
|
| 32 | 26, 31 | eqeltrd 2283 |
. . 3
|
| 33 | 5, 10 | subcld 8413 |
. . . 4
|
| 34 | cju 9064 |
. . . 4
| |
| 35 | oveq2 5970 |
. . . . . . 7
| |
| 36 | 35 | eleq1d 2275 |
. . . . . 6
|
| 37 | oveq2 5970 |
. . . . . . . 8
| |
| 38 | 37 | oveq2d 5978 |
. . . . . . 7
|
| 39 | 38 | eleq1d 2275 |
. . . . . 6
|
| 40 | 36, 39 | anbi12d 473 |
. . . . 5
|
| 41 | 40 | riota2 5940 |
. . . 4
|
| 42 | 33, 34, 41 | syl2anc 411 |
. . 3
|
| 43 | 14, 32, 42 | mpbi2and 946 |
. 2
|
| 44 | 1, 43 | eqtrd 2239 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-sep 4173 ax-pow 4229 ax-pr 4264 ax-un 4493 ax-setind 4598 ax-cnex 8046 ax-resscn 8047 ax-1cn 8048 ax-1re 8049 ax-icn 8050 ax-addcl 8051 ax-addrcl 8052 ax-mulcl 8053 ax-mulrcl 8054 ax-addcom 8055 ax-mulcom 8056 ax-addass 8057 ax-mulass 8058 ax-distr 8059 ax-i2m1 8060 ax-0lt1 8061 ax-1rid 8062 ax-0id 8063 ax-rnegex 8064 ax-precex 8065 ax-cnre 8066 ax-pre-ltirr 8067 ax-pre-ltwlin 8068 ax-pre-lttrn 8069 ax-pre-apti 8070 ax-pre-ltadd 8071 ax-pre-mulgt0 8072 ax-pre-mulext 8073 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-nel 2473 df-ral 2490 df-rex 2491 df-reu 2492 df-rmo 2493 df-rab 2494 df-v 2775 df-sbc 3003 df-dif 3172 df-un 3174 df-in 3176 df-ss 3183 df-pw 3623 df-sn 3644 df-pr 3645 df-op 3647 df-uni 3860 df-br 4055 df-opab 4117 df-mpt 4118 df-id 4353 df-po 4356 df-iso 4357 df-xp 4694 df-rel 4695 df-cnv 4696 df-co 4697 df-dm 4698 df-rn 4699 df-res 4700 df-ima 4701 df-iota 5246 df-fun 5287 df-fn 5288 df-f 5289 df-fv 5293 df-riota 5917 df-ov 5965 df-oprab 5966 df-mpo 5967 df-pnf 8139 df-mnf 8140 df-xr 8141 df-ltxr 8142 df-le 8143 df-sub 8275 df-neg 8276 df-reap 8678 df-ap 8685 df-div 8776 df-2 9125 df-cj 11238 df-re 11239 df-im 11240 |
| This theorem is referenced by: cjreb 11262 recj 11263 remullem 11267 imcj 11271 cjadd 11280 cjneg 11286 imval2 11290 cji 11298 remimd 11338 |
| Copyright terms: Public domain | W3C validator |