ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  divnumden Unicode version

Theorem divnumden 11666
Description: Calculate the reduced form of a quotient using  gcd. (Contributed by Stefan O'Rear, 13-Sep-2014.)
Assertion
Ref Expression
divnumden  |-  ( ( A  e.  ZZ  /\  B  e.  NN )  ->  ( (numer `  ( A  /  B ) )  =  ( A  / 
( A  gcd  B
) )  /\  (denom `  ( A  /  B
) )  =  ( B  /  ( A  gcd  B ) ) ) )

Proof of Theorem divnumden
StepHypRef Expression
1 simpl 108 . . . 4  |-  ( ( A  e.  ZZ  /\  B  e.  NN )  ->  A  e.  ZZ )
2 nnz 8925 . . . . 5  |-  ( B  e.  NN  ->  B  e.  ZZ )
32adantl 273 . . . 4  |-  ( ( A  e.  ZZ  /\  B  e.  NN )  ->  B  e.  ZZ )
4 nnne0 8606 . . . . . . . 8  |-  ( B  e.  NN  ->  B  =/=  0 )
54neneqd 2288 . . . . . . 7  |-  ( B  e.  NN  ->  -.  B  =  0 )
65adantl 273 . . . . . 6  |-  ( ( A  e.  ZZ  /\  B  e.  NN )  ->  -.  B  =  0 )
76intnand 884 . . . . 5  |-  ( ( A  e.  ZZ  /\  B  e.  NN )  ->  -.  ( A  =  0  /\  B  =  0 ) )
8 gcdn0cl 11446 . . . . 5  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  -.  ( A  =  0  /\  B  =  0 ) )  ->  ( A  gcd  B )  e.  NN )
91, 3, 7, 8syl21anc 1183 . . . 4  |-  ( ( A  e.  ZZ  /\  B  e.  NN )  ->  ( A  gcd  B
)  e.  NN )
10 gcddvds 11447 . . . . 5  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( ( A  gcd  B )  ||  A  /\  ( A  gcd  B ) 
||  B ) )
112, 10sylan2 282 . . . 4  |-  ( ( A  e.  ZZ  /\  B  e.  NN )  ->  ( ( A  gcd  B )  ||  A  /\  ( A  gcd  B ) 
||  B ) )
12 gcddiv 11500 . . . 4  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  ( A  gcd  B )  e.  NN )  /\  ( ( A  gcd  B )  ||  A  /\  ( A  gcd  B ) 
||  B ) )  ->  ( ( A  gcd  B )  / 
( A  gcd  B
) )  =  ( ( A  /  ( A  gcd  B ) )  gcd  ( B  / 
( A  gcd  B
) ) ) )
131, 3, 9, 11, 12syl31anc 1187 . . 3  |-  ( ( A  e.  ZZ  /\  B  e.  NN )  ->  ( ( A  gcd  B )  /  ( A  gcd  B ) )  =  ( ( A  /  ( A  gcd  B ) )  gcd  ( B  /  ( A  gcd  B ) ) ) )
149nncnd 8592 . . . 4  |-  ( ( A  e.  ZZ  /\  B  e.  NN )  ->  ( A  gcd  B
)  e.  CC )
159nnap0d 8624 . . . 4  |-  ( ( A  e.  ZZ  /\  B  e.  NN )  ->  ( A  gcd  B
) #  0 )
1614, 15dividapd 8407 . . 3  |-  ( ( A  e.  ZZ  /\  B  e.  NN )  ->  ( ( A  gcd  B )  /  ( A  gcd  B ) )  =  1 )
1713, 16eqtr3d 2134 . 2  |-  ( ( A  e.  ZZ  /\  B  e.  NN )  ->  ( ( A  / 
( A  gcd  B
) )  gcd  ( B  /  ( A  gcd  B ) ) )  =  1 )
18 zcn 8911 . . . 4  |-  ( A  e.  ZZ  ->  A  e.  CC )
1918adantr 272 . . 3  |-  ( ( A  e.  ZZ  /\  B  e.  NN )  ->  A  e.  CC )
20 nncn 8586 . . . 4  |-  ( B  e.  NN  ->  B  e.  CC )
2120adantl 273 . . 3  |-  ( ( A  e.  ZZ  /\  B  e.  NN )  ->  B  e.  CC )
22 simpr 109 . . . 4  |-  ( ( A  e.  ZZ  /\  B  e.  NN )  ->  B  e.  NN )
2322nnap0d 8624 . . 3  |-  ( ( A  e.  ZZ  /\  B  e.  NN )  ->  B #  0 )
24 divcanap7 8342 . . . 4  |-  ( ( A  e.  CC  /\  ( B  e.  CC  /\  B #  0 )  /\  ( ( A  gcd  B )  e.  CC  /\  ( A  gcd  B ) #  0 ) )  -> 
( ( A  / 
( A  gcd  B
) )  /  ( B  /  ( A  gcd  B ) ) )  =  ( A  /  B
) )
2524eqcomd 2105 . . 3  |-  ( ( A  e.  CC  /\  ( B  e.  CC  /\  B #  0 )  /\  ( ( A  gcd  B )  e.  CC  /\  ( A  gcd  B ) #  0 ) )  -> 
( A  /  B
)  =  ( ( A  /  ( A  gcd  B ) )  /  ( B  / 
( A  gcd  B
) ) ) )
2619, 21, 23, 14, 15, 25syl122anc 1193 . 2  |-  ( ( A  e.  ZZ  /\  B  e.  NN )  ->  ( A  /  B
)  =  ( ( A  /  ( A  gcd  B ) )  /  ( B  / 
( A  gcd  B
) ) ) )
27 znq 9266 . . 3  |-  ( ( A  e.  ZZ  /\  B  e.  NN )  ->  ( A  /  B
)  e.  QQ )
2811simpld 111 . . . 4  |-  ( ( A  e.  ZZ  /\  B  e.  NN )  ->  ( A  gcd  B
)  ||  A )
29 gcdcl 11450 . . . . . . 7  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( A  gcd  B
)  e.  NN0 )
3029nn0zd 9023 . . . . . 6  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( A  gcd  B
)  e.  ZZ )
312, 30sylan2 282 . . . . 5  |-  ( ( A  e.  ZZ  /\  B  e.  NN )  ->  ( A  gcd  B
)  e.  ZZ )
329nnne0d 8623 . . . . 5  |-  ( ( A  e.  ZZ  /\  B  e.  NN )  ->  ( A  gcd  B
)  =/=  0 )
33 dvdsval2 11291 . . . . 5  |-  ( ( ( A  gcd  B
)  e.  ZZ  /\  ( A  gcd  B )  =/=  0  /\  A  e.  ZZ )  ->  (
( A  gcd  B
)  ||  A  <->  ( A  /  ( A  gcd  B ) )  e.  ZZ ) )
3431, 32, 1, 33syl3anc 1184 . . . 4  |-  ( ( A  e.  ZZ  /\  B  e.  NN )  ->  ( ( A  gcd  B )  ||  A  <->  ( A  /  ( A  gcd  B ) )  e.  ZZ ) )
3528, 34mpbid 146 . . 3  |-  ( ( A  e.  ZZ  /\  B  e.  NN )  ->  ( A  /  ( A  gcd  B ) )  e.  ZZ )
3611simprd 113 . . . 4  |-  ( ( A  e.  ZZ  /\  B  e.  NN )  ->  ( A  gcd  B
)  ||  B )
37 nndivdvds 11294 . . . . 5  |-  ( ( B  e.  NN  /\  ( A  gcd  B )  e.  NN )  -> 
( ( A  gcd  B )  ||  B  <->  ( B  /  ( A  gcd  B ) )  e.  NN ) )
3822, 9, 37syl2anc 406 . . . 4  |-  ( ( A  e.  ZZ  /\  B  e.  NN )  ->  ( ( A  gcd  B )  ||  B  <->  ( B  /  ( A  gcd  B ) )  e.  NN ) )
3936, 38mpbid 146 . . 3  |-  ( ( A  e.  ZZ  /\  B  e.  NN )  ->  ( B  /  ( A  gcd  B ) )  e.  NN )
40 qnumdenbi 11662 . . 3  |-  ( ( ( A  /  B
)  e.  QQ  /\  ( A  /  ( A  gcd  B ) )  e.  ZZ  /\  ( B  /  ( A  gcd  B ) )  e.  NN )  ->  ( ( ( ( A  /  ( A  gcd  B ) )  gcd  ( B  / 
( A  gcd  B
) ) )  =  1  /\  ( A  /  B )  =  ( ( A  / 
( A  gcd  B
) )  /  ( B  /  ( A  gcd  B ) ) ) )  <-> 
( (numer `  ( A  /  B ) )  =  ( A  / 
( A  gcd  B
) )  /\  (denom `  ( A  /  B
) )  =  ( B  /  ( A  gcd  B ) ) ) ) )
4127, 35, 39, 40syl3anc 1184 . 2  |-  ( ( A  e.  ZZ  /\  B  e.  NN )  ->  ( ( ( ( A  /  ( A  gcd  B ) )  gcd  ( B  / 
( A  gcd  B
) ) )  =  1  /\  ( A  /  B )  =  ( ( A  / 
( A  gcd  B
) )  /  ( B  /  ( A  gcd  B ) ) ) )  <-> 
( (numer `  ( A  /  B ) )  =  ( A  / 
( A  gcd  B
) )  /\  (denom `  ( A  /  B
) )  =  ( B  /  ( A  gcd  B ) ) ) ) )
4217, 26, 41mpbi2and 895 1  |-  ( ( A  e.  ZZ  /\  B  e.  NN )  ->  ( (numer `  ( A  /  B ) )  =  ( A  / 
( A  gcd  B
) )  /\  (denom `  ( A  /  B
) )  =  ( B  /  ( A  gcd  B ) ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    <-> wb 104    /\ w3a 930    = wceq 1299    e. wcel 1448    =/= wne 2267   class class class wbr 3875   ` cfv 5059  (class class class)co 5706   CCcc 7498   0cc0 7500   1c1 7501   # cap 8209    / cdiv 8293   NNcn 8578   ZZcz 8906   QQcq 9261    || cdvds 11288    gcd cgcd 11430  numercnumer 11651  denomcdenom 11652
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 584  ax-in2 585  ax-io 671  ax-5 1391  ax-7 1392  ax-gen 1393  ax-ie1 1437  ax-ie2 1438  ax-8 1450  ax-10 1451  ax-11 1452  ax-i12 1453  ax-bndl 1454  ax-4 1455  ax-13 1459  ax-14 1460  ax-17 1474  ax-i9 1478  ax-ial 1482  ax-i5r 1483  ax-ext 2082  ax-coll 3983  ax-sep 3986  ax-nul 3994  ax-pow 4038  ax-pr 4069  ax-un 4293  ax-setind 4390  ax-iinf 4440  ax-cnex 7586  ax-resscn 7587  ax-1cn 7588  ax-1re 7589  ax-icn 7590  ax-addcl 7591  ax-addrcl 7592  ax-mulcl 7593  ax-mulrcl 7594  ax-addcom 7595  ax-mulcom 7596  ax-addass 7597  ax-mulass 7598  ax-distr 7599  ax-i2m1 7600  ax-0lt1 7601  ax-1rid 7602  ax-0id 7603  ax-rnegex 7604  ax-precex 7605  ax-cnre 7606  ax-pre-ltirr 7607  ax-pre-ltwlin 7608  ax-pre-lttrn 7609  ax-pre-apti 7610  ax-pre-ltadd 7611  ax-pre-mulgt0 7612  ax-pre-mulext 7613  ax-arch 7614  ax-caucvg 7615
This theorem depends on definitions:  df-bi 116  df-dc 787  df-3or 931  df-3an 932  df-tru 1302  df-fal 1305  df-nf 1405  df-sb 1704  df-eu 1963  df-mo 1964  df-clab 2087  df-cleq 2093  df-clel 2096  df-nfc 2229  df-ne 2268  df-nel 2363  df-ral 2380  df-rex 2381  df-reu 2382  df-rmo 2383  df-rab 2384  df-v 2643  df-sbc 2863  df-csb 2956  df-dif 3023  df-un 3025  df-in 3027  df-ss 3034  df-nul 3311  df-if 3422  df-pw 3459  df-sn 3480  df-pr 3481  df-op 3483  df-uni 3684  df-int 3719  df-iun 3762  df-br 3876  df-opab 3930  df-mpt 3931  df-tr 3967  df-id 4153  df-po 4156  df-iso 4157  df-iord 4226  df-on 4228  df-ilim 4229  df-suc 4231  df-iom 4443  df-xp 4483  df-rel 4484  df-cnv 4485  df-co 4486  df-dm 4487  df-rn 4488  df-res 4489  df-ima 4490  df-iota 5024  df-fun 5061  df-fn 5062  df-f 5063  df-f1 5064  df-fo 5065  df-f1o 5066  df-fv 5067  df-riota 5662  df-ov 5709  df-oprab 5710  df-mpo 5711  df-1st 5969  df-2nd 5970  df-recs 6132  df-frec 6218  df-sup 6786  df-pnf 7674  df-mnf 7675  df-xr 7676  df-ltxr 7677  df-le 7678  df-sub 7806  df-neg 7807  df-reap 8203  df-ap 8210  df-div 8294  df-inn 8579  df-2 8637  df-3 8638  df-4 8639  df-n0 8830  df-z 8907  df-uz 9177  df-q 9262  df-rp 9292  df-fz 9632  df-fzo 9761  df-fl 9884  df-mod 9937  df-seqfrec 10060  df-exp 10134  df-cj 10455  df-re 10456  df-im 10457  df-rsqrt 10610  df-abs 10611  df-dvds 11289  df-gcd 11431  df-numer 11653  df-denom 11654
This theorem is referenced by:  divdenle  11667
  Copyright terms: Public domain W3C validator