ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  divnumden Unicode version

Theorem divnumden 12150
Description: Calculate the reduced form of a quotient using  gcd. (Contributed by Stefan O'Rear, 13-Sep-2014.)
Assertion
Ref Expression
divnumden  |-  ( ( A  e.  ZZ  /\  B  e.  NN )  ->  ( (numer `  ( A  /  B ) )  =  ( A  / 
( A  gcd  B
) )  /\  (denom `  ( A  /  B
) )  =  ( B  /  ( A  gcd  B ) ) ) )

Proof of Theorem divnumden
StepHypRef Expression
1 simpl 108 . . . 4  |-  ( ( A  e.  ZZ  /\  B  e.  NN )  ->  A  e.  ZZ )
2 nnz 9231 . . . . 5  |-  ( B  e.  NN  ->  B  e.  ZZ )
32adantl 275 . . . 4  |-  ( ( A  e.  ZZ  /\  B  e.  NN )  ->  B  e.  ZZ )
4 nnne0 8906 . . . . . . . 8  |-  ( B  e.  NN  ->  B  =/=  0 )
54neneqd 2361 . . . . . . 7  |-  ( B  e.  NN  ->  -.  B  =  0 )
65adantl 275 . . . . . 6  |-  ( ( A  e.  ZZ  /\  B  e.  NN )  ->  -.  B  =  0 )
76intnand 926 . . . . 5  |-  ( ( A  e.  ZZ  /\  B  e.  NN )  ->  -.  ( A  =  0  /\  B  =  0 ) )
8 gcdn0cl 11917 . . . . 5  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  -.  ( A  =  0  /\  B  =  0 ) )  ->  ( A  gcd  B )  e.  NN )
91, 3, 7, 8syl21anc 1232 . . . 4  |-  ( ( A  e.  ZZ  /\  B  e.  NN )  ->  ( A  gcd  B
)  e.  NN )
10 gcddvds 11918 . . . . 5  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( ( A  gcd  B )  ||  A  /\  ( A  gcd  B ) 
||  B ) )
112, 10sylan2 284 . . . 4  |-  ( ( A  e.  ZZ  /\  B  e.  NN )  ->  ( ( A  gcd  B )  ||  A  /\  ( A  gcd  B ) 
||  B ) )
12 gcddiv 11974 . . . 4  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  ( A  gcd  B )  e.  NN )  /\  ( ( A  gcd  B )  ||  A  /\  ( A  gcd  B ) 
||  B ) )  ->  ( ( A  gcd  B )  / 
( A  gcd  B
) )  =  ( ( A  /  ( A  gcd  B ) )  gcd  ( B  / 
( A  gcd  B
) ) ) )
131, 3, 9, 11, 12syl31anc 1236 . . 3  |-  ( ( A  e.  ZZ  /\  B  e.  NN )  ->  ( ( A  gcd  B )  /  ( A  gcd  B ) )  =  ( ( A  /  ( A  gcd  B ) )  gcd  ( B  /  ( A  gcd  B ) ) ) )
149nncnd 8892 . . . 4  |-  ( ( A  e.  ZZ  /\  B  e.  NN )  ->  ( A  gcd  B
)  e.  CC )
159nnap0d 8924 . . . 4  |-  ( ( A  e.  ZZ  /\  B  e.  NN )  ->  ( A  gcd  B
) #  0 )
1614, 15dividapd 8703 . . 3  |-  ( ( A  e.  ZZ  /\  B  e.  NN )  ->  ( ( A  gcd  B )  /  ( A  gcd  B ) )  =  1 )
1713, 16eqtr3d 2205 . 2  |-  ( ( A  e.  ZZ  /\  B  e.  NN )  ->  ( ( A  / 
( A  gcd  B
) )  gcd  ( B  /  ( A  gcd  B ) ) )  =  1 )
18 zcn 9217 . . . 4  |-  ( A  e.  ZZ  ->  A  e.  CC )
1918adantr 274 . . 3  |-  ( ( A  e.  ZZ  /\  B  e.  NN )  ->  A  e.  CC )
20 nncn 8886 . . . 4  |-  ( B  e.  NN  ->  B  e.  CC )
2120adantl 275 . . 3  |-  ( ( A  e.  ZZ  /\  B  e.  NN )  ->  B  e.  CC )
22 simpr 109 . . . 4  |-  ( ( A  e.  ZZ  /\  B  e.  NN )  ->  B  e.  NN )
2322nnap0d 8924 . . 3  |-  ( ( A  e.  ZZ  /\  B  e.  NN )  ->  B #  0 )
24 divcanap7 8638 . . . 4  |-  ( ( A  e.  CC  /\  ( B  e.  CC  /\  B #  0 )  /\  ( ( A  gcd  B )  e.  CC  /\  ( A  gcd  B ) #  0 ) )  -> 
( ( A  / 
( A  gcd  B
) )  /  ( B  /  ( A  gcd  B ) ) )  =  ( A  /  B
) )
2524eqcomd 2176 . . 3  |-  ( ( A  e.  CC  /\  ( B  e.  CC  /\  B #  0 )  /\  ( ( A  gcd  B )  e.  CC  /\  ( A  gcd  B ) #  0 ) )  -> 
( A  /  B
)  =  ( ( A  /  ( A  gcd  B ) )  /  ( B  / 
( A  gcd  B
) ) ) )
2619, 21, 23, 14, 15, 25syl122anc 1242 . 2  |-  ( ( A  e.  ZZ  /\  B  e.  NN )  ->  ( A  /  B
)  =  ( ( A  /  ( A  gcd  B ) )  /  ( B  / 
( A  gcd  B
) ) ) )
27 znq 9583 . . 3  |-  ( ( A  e.  ZZ  /\  B  e.  NN )  ->  ( A  /  B
)  e.  QQ )
2811simpld 111 . . . 4  |-  ( ( A  e.  ZZ  /\  B  e.  NN )  ->  ( A  gcd  B
)  ||  A )
29 gcdcl 11921 . . . . . . 7  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( A  gcd  B
)  e.  NN0 )
3029nn0zd 9332 . . . . . 6  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( A  gcd  B
)  e.  ZZ )
312, 30sylan2 284 . . . . 5  |-  ( ( A  e.  ZZ  /\  B  e.  NN )  ->  ( A  gcd  B
)  e.  ZZ )
329nnne0d 8923 . . . . 5  |-  ( ( A  e.  ZZ  /\  B  e.  NN )  ->  ( A  gcd  B
)  =/=  0 )
33 dvdsval2 11752 . . . . 5  |-  ( ( ( A  gcd  B
)  e.  ZZ  /\  ( A  gcd  B )  =/=  0  /\  A  e.  ZZ )  ->  (
( A  gcd  B
)  ||  A  <->  ( A  /  ( A  gcd  B ) )  e.  ZZ ) )
3431, 32, 1, 33syl3anc 1233 . . . 4  |-  ( ( A  e.  ZZ  /\  B  e.  NN )  ->  ( ( A  gcd  B )  ||  A  <->  ( A  /  ( A  gcd  B ) )  e.  ZZ ) )
3528, 34mpbid 146 . . 3  |-  ( ( A  e.  ZZ  /\  B  e.  NN )  ->  ( A  /  ( A  gcd  B ) )  e.  ZZ )
3611simprd 113 . . . 4  |-  ( ( A  e.  ZZ  /\  B  e.  NN )  ->  ( A  gcd  B
)  ||  B )
37 nndivdvds 11758 . . . . 5  |-  ( ( B  e.  NN  /\  ( A  gcd  B )  e.  NN )  -> 
( ( A  gcd  B )  ||  B  <->  ( B  /  ( A  gcd  B ) )  e.  NN ) )
3822, 9, 37syl2anc 409 . . . 4  |-  ( ( A  e.  ZZ  /\  B  e.  NN )  ->  ( ( A  gcd  B )  ||  B  <->  ( B  /  ( A  gcd  B ) )  e.  NN ) )
3936, 38mpbid 146 . . 3  |-  ( ( A  e.  ZZ  /\  B  e.  NN )  ->  ( B  /  ( A  gcd  B ) )  e.  NN )
40 qnumdenbi 12146 . . 3  |-  ( ( ( A  /  B
)  e.  QQ  /\  ( A  /  ( A  gcd  B ) )  e.  ZZ  /\  ( B  /  ( A  gcd  B ) )  e.  NN )  ->  ( ( ( ( A  /  ( A  gcd  B ) )  gcd  ( B  / 
( A  gcd  B
) ) )  =  1  /\  ( A  /  B )  =  ( ( A  / 
( A  gcd  B
) )  /  ( B  /  ( A  gcd  B ) ) ) )  <-> 
( (numer `  ( A  /  B ) )  =  ( A  / 
( A  gcd  B
) )  /\  (denom `  ( A  /  B
) )  =  ( B  /  ( A  gcd  B ) ) ) ) )
4127, 35, 39, 40syl3anc 1233 . 2  |-  ( ( A  e.  ZZ  /\  B  e.  NN )  ->  ( ( ( ( A  /  ( A  gcd  B ) )  gcd  ( B  / 
( A  gcd  B
) ) )  =  1  /\  ( A  /  B )  =  ( ( A  / 
( A  gcd  B
) )  /  ( B  /  ( A  gcd  B ) ) ) )  <-> 
( (numer `  ( A  /  B ) )  =  ( A  / 
( A  gcd  B
) )  /\  (denom `  ( A  /  B
) )  =  ( B  /  ( A  gcd  B ) ) ) ) )
4217, 26, 41mpbi2and 938 1  |-  ( ( A  e.  ZZ  /\  B  e.  NN )  ->  ( (numer `  ( A  /  B ) )  =  ( A  / 
( A  gcd  B
) )  /\  (denom `  ( A  /  B
) )  =  ( B  /  ( A  gcd  B ) ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    <-> wb 104    /\ w3a 973    = wceq 1348    e. wcel 2141    =/= wne 2340   class class class wbr 3989   ` cfv 5198  (class class class)co 5853   CCcc 7772   0cc0 7774   1c1 7775   # cap 8500    / cdiv 8589   NNcn 8878   ZZcz 9212   QQcq 9578    || cdvds 11749    gcd cgcd 11897  numercnumer 12135  denomcdenom 12136
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4104  ax-sep 4107  ax-nul 4115  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-iinf 4572  ax-cnex 7865  ax-resscn 7866  ax-1cn 7867  ax-1re 7868  ax-icn 7869  ax-addcl 7870  ax-addrcl 7871  ax-mulcl 7872  ax-mulrcl 7873  ax-addcom 7874  ax-mulcom 7875  ax-addass 7876  ax-mulass 7877  ax-distr 7878  ax-i2m1 7879  ax-0lt1 7880  ax-1rid 7881  ax-0id 7882  ax-rnegex 7883  ax-precex 7884  ax-cnre 7885  ax-pre-ltirr 7886  ax-pre-ltwlin 7887  ax-pre-lttrn 7888  ax-pre-apti 7889  ax-pre-ltadd 7890  ax-pre-mulgt0 7891  ax-pre-mulext 7892  ax-arch 7893  ax-caucvg 7894
This theorem depends on definitions:  df-bi 116  df-dc 830  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-nel 2436  df-ral 2453  df-rex 2454  df-reu 2455  df-rmo 2456  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-if 3527  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-iun 3875  df-br 3990  df-opab 4051  df-mpt 4052  df-tr 4088  df-id 4278  df-po 4281  df-iso 4282  df-iord 4351  df-on 4353  df-ilim 4354  df-suc 4356  df-iom 4575  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-fv 5206  df-riota 5809  df-ov 5856  df-oprab 5857  df-mpo 5858  df-1st 6119  df-2nd 6120  df-recs 6284  df-frec 6370  df-sup 6961  df-pnf 7956  df-mnf 7957  df-xr 7958  df-ltxr 7959  df-le 7960  df-sub 8092  df-neg 8093  df-reap 8494  df-ap 8501  df-div 8590  df-inn 8879  df-2 8937  df-3 8938  df-4 8939  df-n0 9136  df-z 9213  df-uz 9488  df-q 9579  df-rp 9611  df-fz 9966  df-fzo 10099  df-fl 10226  df-mod 10279  df-seqfrec 10402  df-exp 10476  df-cj 10806  df-re 10807  df-im 10808  df-rsqrt 10962  df-abs 10963  df-dvds 11750  df-gcd 11898  df-numer 12137  df-denom 12138
This theorem is referenced by:  divdenle  12151
  Copyright terms: Public domain W3C validator