ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  divnumden Unicode version

Theorem divnumden 12209
Description: Calculate the reduced form of a quotient using  gcd. (Contributed by Stefan O'Rear, 13-Sep-2014.)
Assertion
Ref Expression
divnumden  |-  ( ( A  e.  ZZ  /\  B  e.  NN )  ->  ( (numer `  ( A  /  B ) )  =  ( A  / 
( A  gcd  B
) )  /\  (denom `  ( A  /  B
) )  =  ( B  /  ( A  gcd  B ) ) ) )

Proof of Theorem divnumden
StepHypRef Expression
1 simpl 109 . . . 4  |-  ( ( A  e.  ZZ  /\  B  e.  NN )  ->  A  e.  ZZ )
2 nnz 9285 . . . . 5  |-  ( B  e.  NN  ->  B  e.  ZZ )
32adantl 277 . . . 4  |-  ( ( A  e.  ZZ  /\  B  e.  NN )  ->  B  e.  ZZ )
4 nnne0 8960 . . . . . . . 8  |-  ( B  e.  NN  ->  B  =/=  0 )
54neneqd 2378 . . . . . . 7  |-  ( B  e.  NN  ->  -.  B  =  0 )
65adantl 277 . . . . . 6  |-  ( ( A  e.  ZZ  /\  B  e.  NN )  ->  -.  B  =  0 )
76intnand 932 . . . . 5  |-  ( ( A  e.  ZZ  /\  B  e.  NN )  ->  -.  ( A  =  0  /\  B  =  0 ) )
8 gcdn0cl 11976 . . . . 5  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  -.  ( A  =  0  /\  B  =  0 ) )  ->  ( A  gcd  B )  e.  NN )
91, 3, 7, 8syl21anc 1247 . . . 4  |-  ( ( A  e.  ZZ  /\  B  e.  NN )  ->  ( A  gcd  B
)  e.  NN )
10 gcddvds 11977 . . . . 5  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( ( A  gcd  B )  ||  A  /\  ( A  gcd  B ) 
||  B ) )
112, 10sylan2 286 . . . 4  |-  ( ( A  e.  ZZ  /\  B  e.  NN )  ->  ( ( A  gcd  B )  ||  A  /\  ( A  gcd  B ) 
||  B ) )
12 gcddiv 12033 . . . 4  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  ( A  gcd  B )  e.  NN )  /\  ( ( A  gcd  B )  ||  A  /\  ( A  gcd  B ) 
||  B ) )  ->  ( ( A  gcd  B )  / 
( A  gcd  B
) )  =  ( ( A  /  ( A  gcd  B ) )  gcd  ( B  / 
( A  gcd  B
) ) ) )
131, 3, 9, 11, 12syl31anc 1251 . . 3  |-  ( ( A  e.  ZZ  /\  B  e.  NN )  ->  ( ( A  gcd  B )  /  ( A  gcd  B ) )  =  ( ( A  /  ( A  gcd  B ) )  gcd  ( B  /  ( A  gcd  B ) ) ) )
149nncnd 8946 . . . 4  |-  ( ( A  e.  ZZ  /\  B  e.  NN )  ->  ( A  gcd  B
)  e.  CC )
159nnap0d 8978 . . . 4  |-  ( ( A  e.  ZZ  /\  B  e.  NN )  ->  ( A  gcd  B
) #  0 )
1614, 15dividapd 8756 . . 3  |-  ( ( A  e.  ZZ  /\  B  e.  NN )  ->  ( ( A  gcd  B )  /  ( A  gcd  B ) )  =  1 )
1713, 16eqtr3d 2222 . 2  |-  ( ( A  e.  ZZ  /\  B  e.  NN )  ->  ( ( A  / 
( A  gcd  B
) )  gcd  ( B  /  ( A  gcd  B ) ) )  =  1 )
18 zcn 9271 . . . 4  |-  ( A  e.  ZZ  ->  A  e.  CC )
1918adantr 276 . . 3  |-  ( ( A  e.  ZZ  /\  B  e.  NN )  ->  A  e.  CC )
20 nncn 8940 . . . 4  |-  ( B  e.  NN  ->  B  e.  CC )
2120adantl 277 . . 3  |-  ( ( A  e.  ZZ  /\  B  e.  NN )  ->  B  e.  CC )
22 simpr 110 . . . 4  |-  ( ( A  e.  ZZ  /\  B  e.  NN )  ->  B  e.  NN )
2322nnap0d 8978 . . 3  |-  ( ( A  e.  ZZ  /\  B  e.  NN )  ->  B #  0 )
24 divcanap7 8691 . . . 4  |-  ( ( A  e.  CC  /\  ( B  e.  CC  /\  B #  0 )  /\  ( ( A  gcd  B )  e.  CC  /\  ( A  gcd  B ) #  0 ) )  -> 
( ( A  / 
( A  gcd  B
) )  /  ( B  /  ( A  gcd  B ) ) )  =  ( A  /  B
) )
2524eqcomd 2193 . . 3  |-  ( ( A  e.  CC  /\  ( B  e.  CC  /\  B #  0 )  /\  ( ( A  gcd  B )  e.  CC  /\  ( A  gcd  B ) #  0 ) )  -> 
( A  /  B
)  =  ( ( A  /  ( A  gcd  B ) )  /  ( B  / 
( A  gcd  B
) ) ) )
2619, 21, 23, 14, 15, 25syl122anc 1257 . 2  |-  ( ( A  e.  ZZ  /\  B  e.  NN )  ->  ( A  /  B
)  =  ( ( A  /  ( A  gcd  B ) )  /  ( B  / 
( A  gcd  B
) ) ) )
27 znq 9637 . . 3  |-  ( ( A  e.  ZZ  /\  B  e.  NN )  ->  ( A  /  B
)  e.  QQ )
2811simpld 112 . . . 4  |-  ( ( A  e.  ZZ  /\  B  e.  NN )  ->  ( A  gcd  B
)  ||  A )
29 gcdcl 11980 . . . . . . 7  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( A  gcd  B
)  e.  NN0 )
3029nn0zd 9386 . . . . . 6  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( A  gcd  B
)  e.  ZZ )
312, 30sylan2 286 . . . . 5  |-  ( ( A  e.  ZZ  /\  B  e.  NN )  ->  ( A  gcd  B
)  e.  ZZ )
329nnne0d 8977 . . . . 5  |-  ( ( A  e.  ZZ  /\  B  e.  NN )  ->  ( A  gcd  B
)  =/=  0 )
33 dvdsval2 11810 . . . . 5  |-  ( ( ( A  gcd  B
)  e.  ZZ  /\  ( A  gcd  B )  =/=  0  /\  A  e.  ZZ )  ->  (
( A  gcd  B
)  ||  A  <->  ( A  /  ( A  gcd  B ) )  e.  ZZ ) )
3431, 32, 1, 33syl3anc 1248 . . . 4  |-  ( ( A  e.  ZZ  /\  B  e.  NN )  ->  ( ( A  gcd  B )  ||  A  <->  ( A  /  ( A  gcd  B ) )  e.  ZZ ) )
3528, 34mpbid 147 . . 3  |-  ( ( A  e.  ZZ  /\  B  e.  NN )  ->  ( A  /  ( A  gcd  B ) )  e.  ZZ )
3611simprd 114 . . . 4  |-  ( ( A  e.  ZZ  /\  B  e.  NN )  ->  ( A  gcd  B
)  ||  B )
37 nndivdvds 11816 . . . . 5  |-  ( ( B  e.  NN  /\  ( A  gcd  B )  e.  NN )  -> 
( ( A  gcd  B )  ||  B  <->  ( B  /  ( A  gcd  B ) )  e.  NN ) )
3822, 9, 37syl2anc 411 . . . 4  |-  ( ( A  e.  ZZ  /\  B  e.  NN )  ->  ( ( A  gcd  B )  ||  B  <->  ( B  /  ( A  gcd  B ) )  e.  NN ) )
3936, 38mpbid 147 . . 3  |-  ( ( A  e.  ZZ  /\  B  e.  NN )  ->  ( B  /  ( A  gcd  B ) )  e.  NN )
40 qnumdenbi 12205 . . 3  |-  ( ( ( A  /  B
)  e.  QQ  /\  ( A  /  ( A  gcd  B ) )  e.  ZZ  /\  ( B  /  ( A  gcd  B ) )  e.  NN )  ->  ( ( ( ( A  /  ( A  gcd  B ) )  gcd  ( B  / 
( A  gcd  B
) ) )  =  1  /\  ( A  /  B )  =  ( ( A  / 
( A  gcd  B
) )  /  ( B  /  ( A  gcd  B ) ) ) )  <-> 
( (numer `  ( A  /  B ) )  =  ( A  / 
( A  gcd  B
) )  /\  (denom `  ( A  /  B
) )  =  ( B  /  ( A  gcd  B ) ) ) ) )
4127, 35, 39, 40syl3anc 1248 . 2  |-  ( ( A  e.  ZZ  /\  B  e.  NN )  ->  ( ( ( ( A  /  ( A  gcd  B ) )  gcd  ( B  / 
( A  gcd  B
) ) )  =  1  /\  ( A  /  B )  =  ( ( A  / 
( A  gcd  B
) )  /  ( B  /  ( A  gcd  B ) ) ) )  <-> 
( (numer `  ( A  /  B ) )  =  ( A  / 
( A  gcd  B
) )  /\  (denom `  ( A  /  B
) )  =  ( B  /  ( A  gcd  B ) ) ) ) )
4217, 26, 41mpbi2and 944 1  |-  ( ( A  e.  ZZ  /\  B  e.  NN )  ->  ( (numer `  ( A  /  B ) )  =  ( A  / 
( A  gcd  B
) )  /\  (denom `  ( A  /  B
) )  =  ( B  /  ( A  gcd  B ) ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 979    = wceq 1363    e. wcel 2158    =/= wne 2357   class class class wbr 4015   ` cfv 5228  (class class class)co 5888   CCcc 7822   0cc0 7824   1c1 7825   # cap 8551    / cdiv 8642   NNcn 8932   ZZcz 9266   QQcq 9632    || cdvds 11807    gcd cgcd 11956  numercnumer 12194  denomcdenom 12195
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1457  ax-7 1458  ax-gen 1459  ax-ie1 1503  ax-ie2 1504  ax-8 1514  ax-10 1515  ax-11 1516  ax-i12 1517  ax-bndl 1519  ax-4 1520  ax-17 1536  ax-i9 1540  ax-ial 1544  ax-i5r 1545  ax-13 2160  ax-14 2161  ax-ext 2169  ax-coll 4130  ax-sep 4133  ax-nul 4141  ax-pow 4186  ax-pr 4221  ax-un 4445  ax-setind 4548  ax-iinf 4599  ax-cnex 7915  ax-resscn 7916  ax-1cn 7917  ax-1re 7918  ax-icn 7919  ax-addcl 7920  ax-addrcl 7921  ax-mulcl 7922  ax-mulrcl 7923  ax-addcom 7924  ax-mulcom 7925  ax-addass 7926  ax-mulass 7927  ax-distr 7928  ax-i2m1 7929  ax-0lt1 7930  ax-1rid 7931  ax-0id 7932  ax-rnegex 7933  ax-precex 7934  ax-cnre 7935  ax-pre-ltirr 7936  ax-pre-ltwlin 7937  ax-pre-lttrn 7938  ax-pre-apti 7939  ax-pre-ltadd 7940  ax-pre-mulgt0 7941  ax-pre-mulext 7942  ax-arch 7943  ax-caucvg 7944
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 980  df-3an 981  df-tru 1366  df-fal 1369  df-nf 1471  df-sb 1773  df-eu 2039  df-mo 2040  df-clab 2174  df-cleq 2180  df-clel 2183  df-nfc 2318  df-ne 2358  df-nel 2453  df-ral 2470  df-rex 2471  df-reu 2472  df-rmo 2473  df-rab 2474  df-v 2751  df-sbc 2975  df-csb 3070  df-dif 3143  df-un 3145  df-in 3147  df-ss 3154  df-nul 3435  df-if 3547  df-pw 3589  df-sn 3610  df-pr 3611  df-op 3613  df-uni 3822  df-int 3857  df-iun 3900  df-br 4016  df-opab 4077  df-mpt 4078  df-tr 4114  df-id 4305  df-po 4308  df-iso 4309  df-iord 4378  df-on 4380  df-ilim 4381  df-suc 4383  df-iom 4602  df-xp 4644  df-rel 4645  df-cnv 4646  df-co 4647  df-dm 4648  df-rn 4649  df-res 4650  df-ima 4651  df-iota 5190  df-fun 5230  df-fn 5231  df-f 5232  df-f1 5233  df-fo 5234  df-f1o 5235  df-fv 5236  df-riota 5844  df-ov 5891  df-oprab 5892  df-mpo 5893  df-1st 6154  df-2nd 6155  df-recs 6319  df-frec 6405  df-sup 6996  df-pnf 8007  df-mnf 8008  df-xr 8009  df-ltxr 8010  df-le 8011  df-sub 8143  df-neg 8144  df-reap 8545  df-ap 8552  df-div 8643  df-inn 8933  df-2 8991  df-3 8992  df-4 8993  df-n0 9190  df-z 9267  df-uz 9542  df-q 9633  df-rp 9667  df-fz 10022  df-fzo 10156  df-fl 10283  df-mod 10336  df-seqfrec 10459  df-exp 10533  df-cj 10864  df-re 10865  df-im 10866  df-rsqrt 11020  df-abs 11021  df-dvds 11808  df-gcd 11957  df-numer 12196  df-denom 12197
This theorem is referenced by:  divdenle  12210
  Copyright terms: Public domain W3C validator