ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  subrg1 Unicode version

Theorem subrg1 13863
Description: A subring always has the same multiplicative identity. (Contributed by Stefan O'Rear, 27-Nov-2014.)
Hypotheses
Ref Expression
subrg1.1  |-  S  =  ( Rs  A )
subrg1.2  |-  .1.  =  ( 1r `  R )
Assertion
Ref Expression
subrg1  |-  ( A  e.  (SubRing `  R
)  ->  .1.  =  ( 1r `  S ) )

Proof of Theorem subrg1
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 subrg1.2 . 2  |-  .1.  =  ( 1r `  R )
2 eqid 2196 . . . . 5  |-  ( 1r
`  R )  =  ( 1r `  R
)
32subrg1cl 13861 . . . 4  |-  ( A  e.  (SubRing `  R
)  ->  ( 1r `  R )  e.  A
)
4 subrg1.1 . . . . 5  |-  S  =  ( Rs  A )
54subrgbas 13862 . . . 4  |-  ( A  e.  (SubRing `  R
)  ->  A  =  ( Base `  S )
)
63, 5eleqtrd 2275 . . 3  |-  ( A  e.  (SubRing `  R
)  ->  ( 1r `  R )  e.  (
Base `  S )
)
7 eqid 2196 . . . . . . . 8  |-  ( Base `  R )  =  (
Base `  R )
87subrgss 13854 . . . . . . 7  |-  ( A  e.  (SubRing `  R
)  ->  A  C_  ( Base `  R ) )
95, 8eqsstrrd 3221 . . . . . 6  |-  ( A  e.  (SubRing `  R
)  ->  ( Base `  S )  C_  ( Base `  R ) )
109sselda 3184 . . . . 5  |-  ( ( A  e.  (SubRing `  R
)  /\  x  e.  ( Base `  S )
)  ->  x  e.  ( Base `  R )
)
11 subrgrcl 13858 . . . . . . 7  |-  ( A  e.  (SubRing `  R
)  ->  R  e.  Ring )
12 eqid 2196 . . . . . . . 8  |-  ( .r
`  R )  =  ( .r `  R
)
137, 12, 2ringidmlem 13654 . . . . . . 7  |-  ( ( R  e.  Ring  /\  x  e.  ( Base `  R
) )  ->  (
( ( 1r `  R ) ( .r
`  R ) x )  =  x  /\  ( x ( .r
`  R ) ( 1r `  R ) )  =  x ) )
1411, 13sylan 283 . . . . . 6  |-  ( ( A  e.  (SubRing `  R
)  /\  x  e.  ( Base `  R )
)  ->  ( (
( 1r `  R
) ( .r `  R ) x )  =  x  /\  (
x ( .r `  R ) ( 1r
`  R ) )  =  x ) )
154, 12ressmulrg 12847 . . . . . . . . . . 11  |-  ( ( A  e.  (SubRing `  R
)  /\  R  e.  Ring )  ->  ( .r `  R )  =  ( .r `  S ) )
1611, 15mpdan 421 . . . . . . . . . 10  |-  ( A  e.  (SubRing `  R
)  ->  ( .r `  R )  =  ( .r `  S ) )
1716oveqd 5942 . . . . . . . . 9  |-  ( A  e.  (SubRing `  R
)  ->  ( ( 1r `  R ) ( .r `  R ) x )  =  ( ( 1r `  R
) ( .r `  S ) x ) )
1817eqeq1d 2205 . . . . . . . 8  |-  ( A  e.  (SubRing `  R
)  ->  ( (
( 1r `  R
) ( .r `  R ) x )  =  x  <->  ( ( 1r `  R ) ( .r `  S ) x )  =  x ) )
1916oveqd 5942 . . . . . . . . 9  |-  ( A  e.  (SubRing `  R
)  ->  ( x
( .r `  R
) ( 1r `  R ) )  =  ( x ( .r
`  S ) ( 1r `  R ) ) )
2019eqeq1d 2205 . . . . . . . 8  |-  ( A  e.  (SubRing `  R
)  ->  ( (
x ( .r `  R ) ( 1r
`  R ) )  =  x  <->  ( x
( .r `  S
) ( 1r `  R ) )  =  x ) )
2118, 20anbi12d 473 . . . . . . 7  |-  ( A  e.  (SubRing `  R
)  ->  ( (
( ( 1r `  R ) ( .r
`  R ) x )  =  x  /\  ( x ( .r
`  R ) ( 1r `  R ) )  =  x )  <-> 
( ( ( 1r
`  R ) ( .r `  S ) x )  =  x  /\  ( x ( .r `  S ) ( 1r `  R
) )  =  x ) ) )
2221biimpa 296 . . . . . 6  |-  ( ( A  e.  (SubRing `  R
)  /\  ( (
( 1r `  R
) ( .r `  R ) x )  =  x  /\  (
x ( .r `  R ) ( 1r
`  R ) )  =  x ) )  ->  ( ( ( 1r `  R ) ( .r `  S
) x )  =  x  /\  ( x ( .r `  S
) ( 1r `  R ) )  =  x ) )
2314, 22syldan 282 . . . . 5  |-  ( ( A  e.  (SubRing `  R
)  /\  x  e.  ( Base `  R )
)  ->  ( (
( 1r `  R
) ( .r `  S ) x )  =  x  /\  (
x ( .r `  S ) ( 1r
`  R ) )  =  x ) )
2410, 23syldan 282 . . . 4  |-  ( ( A  e.  (SubRing `  R
)  /\  x  e.  ( Base `  S )
)  ->  ( (
( 1r `  R
) ( .r `  S ) x )  =  x  /\  (
x ( .r `  S ) ( 1r
`  R ) )  =  x ) )
2524ralrimiva 2570 . . 3  |-  ( A  e.  (SubRing `  R
)  ->  A. x  e.  ( Base `  S
) ( ( ( 1r `  R ) ( .r `  S
) x )  =  x  /\  ( x ( .r `  S
) ( 1r `  R ) )  =  x ) )
264subrgring 13856 . . . 4  |-  ( A  e.  (SubRing `  R
)  ->  S  e.  Ring )
27 eqid 2196 . . . . 5  |-  ( Base `  S )  =  (
Base `  S )
28 eqid 2196 . . . . 5  |-  ( .r
`  S )  =  ( .r `  S
)
29 eqid 2196 . . . . 5  |-  ( 1r
`  S )  =  ( 1r `  S
)
3027, 28, 29isringid 13657 . . . 4  |-  ( S  e.  Ring  ->  ( ( ( 1r `  R
)  e.  ( Base `  S )  /\  A. x  e.  ( Base `  S ) ( ( ( 1r `  R
) ( .r `  S ) x )  =  x  /\  (
x ( .r `  S ) ( 1r
`  R ) )  =  x ) )  <-> 
( 1r `  S
)  =  ( 1r
`  R ) ) )
3126, 30syl 14 . . 3  |-  ( A  e.  (SubRing `  R
)  ->  ( (
( 1r `  R
)  e.  ( Base `  S )  /\  A. x  e.  ( Base `  S ) ( ( ( 1r `  R
) ( .r `  S ) x )  =  x  /\  (
x ( .r `  S ) ( 1r
`  R ) )  =  x ) )  <-> 
( 1r `  S
)  =  ( 1r
`  R ) ) )
326, 25, 31mpbi2and 945 . 2  |-  ( A  e.  (SubRing `  R
)  ->  ( 1r `  S )  =  ( 1r `  R ) )
331, 32eqtr4id 2248 1  |-  ( A  e.  (SubRing `  R
)  ->  .1.  =  ( 1r `  S ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1364    e. wcel 2167   A.wral 2475   ` cfv 5259  (class class class)co 5925   Basecbs 12703   ↾s cress 12704   .rcmulr 12781   1rcur 13591   Ringcrg 13628  SubRingcsubrg 13849
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-cnex 7987  ax-resscn 7988  ax-1cn 7989  ax-1re 7990  ax-icn 7991  ax-addcl 7992  ax-addrcl 7993  ax-mulcl 7994  ax-addcom 7996  ax-addass 7998  ax-i2m1 8001  ax-0lt1 8002  ax-0id 8004  ax-rnegex 8005  ax-pre-ltirr 8008  ax-pre-lttrn 8010  ax-pre-ltadd 8012
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-br 4035  df-opab 4096  df-mpt 4097  df-id 4329  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-fv 5267  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-pnf 8080  df-mnf 8081  df-ltxr 8083  df-inn 9008  df-2 9066  df-3 9067  df-ndx 12706  df-slot 12707  df-base 12709  df-sets 12710  df-iress 12711  df-plusg 12793  df-mulr 12794  df-0g 12960  df-mgm 13058  df-sgrp 13104  df-mnd 13119  df-subg 13376  df-mgp 13553  df-ur 13592  df-ring 13630  df-subrg 13851
This theorem is referenced by:  subrguss  13868  subrginv  13869  subrgunit  13871  subrgnzr  13874  subsubrg  13877  sralmod  14082  zring1  14233
  Copyright terms: Public domain W3C validator