| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > subrg1 | Unicode version | ||
| Description: A subring always has the same multiplicative identity. (Contributed by Stefan O'Rear, 27-Nov-2014.) |
| Ref | Expression |
|---|---|
| subrg1.1 |
|
| subrg1.2 |
|
| Ref | Expression |
|---|---|
| subrg1 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | subrg1.2 |
. 2
| |
| 2 | eqid 2196 |
. . . . 5
| |
| 3 | 2 | subrg1cl 13861 |
. . . 4
|
| 4 | subrg1.1 |
. . . . 5
| |
| 5 | 4 | subrgbas 13862 |
. . . 4
|
| 6 | 3, 5 | eleqtrd 2275 |
. . 3
|
| 7 | eqid 2196 |
. . . . . . . 8
| |
| 8 | 7 | subrgss 13854 |
. . . . . . 7
|
| 9 | 5, 8 | eqsstrrd 3221 |
. . . . . 6
|
| 10 | 9 | sselda 3184 |
. . . . 5
|
| 11 | subrgrcl 13858 |
. . . . . . 7
| |
| 12 | eqid 2196 |
. . . . . . . 8
| |
| 13 | 7, 12, 2 | ringidmlem 13654 |
. . . . . . 7
|
| 14 | 11, 13 | sylan 283 |
. . . . . 6
|
| 15 | 4, 12 | ressmulrg 12847 |
. . . . . . . . . . 11
|
| 16 | 11, 15 | mpdan 421 |
. . . . . . . . . 10
|
| 17 | 16 | oveqd 5942 |
. . . . . . . . 9
|
| 18 | 17 | eqeq1d 2205 |
. . . . . . . 8
|
| 19 | 16 | oveqd 5942 |
. . . . . . . . 9
|
| 20 | 19 | eqeq1d 2205 |
. . . . . . . 8
|
| 21 | 18, 20 | anbi12d 473 |
. . . . . . 7
|
| 22 | 21 | biimpa 296 |
. . . . . 6
|
| 23 | 14, 22 | syldan 282 |
. . . . 5
|
| 24 | 10, 23 | syldan 282 |
. . . 4
|
| 25 | 24 | ralrimiva 2570 |
. . 3
|
| 26 | 4 | subrgring 13856 |
. . . 4
|
| 27 | eqid 2196 |
. . . . 5
| |
| 28 | eqid 2196 |
. . . . 5
| |
| 29 | eqid 2196 |
. . . . 5
| |
| 30 | 27, 28, 29 | isringid 13657 |
. . . 4
|
| 31 | 26, 30 | syl 14 |
. . 3
|
| 32 | 6, 25, 31 | mpbi2and 945 |
. 2
|
| 33 | 1, 32 | eqtr4id 2248 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-setind 4574 ax-cnex 7987 ax-resscn 7988 ax-1cn 7989 ax-1re 7990 ax-icn 7991 ax-addcl 7992 ax-addrcl 7993 ax-mulcl 7994 ax-addcom 7996 ax-addass 7998 ax-i2m1 8001 ax-0lt1 8002 ax-0id 8004 ax-rnegex 8005 ax-pre-ltirr 8008 ax-pre-lttrn 8010 ax-pre-ltadd 8012 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rmo 2483 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3452 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-int 3876 df-br 4035 df-opab 4096 df-mpt 4097 df-id 4329 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-res 4676 df-ima 4677 df-iota 5220 df-fun 5261 df-fn 5262 df-fv 5267 df-riota 5880 df-ov 5928 df-oprab 5929 df-mpo 5930 df-pnf 8080 df-mnf 8081 df-ltxr 8083 df-inn 9008 df-2 9066 df-3 9067 df-ndx 12706 df-slot 12707 df-base 12709 df-sets 12710 df-iress 12711 df-plusg 12793 df-mulr 12794 df-0g 12960 df-mgm 13058 df-sgrp 13104 df-mnd 13119 df-subg 13376 df-mgp 13553 df-ur 13592 df-ring 13630 df-subrg 13851 |
| This theorem is referenced by: subrguss 13868 subrginv 13869 subrgunit 13871 subrgnzr 13874 subsubrg 13877 sralmod 14082 zring1 14233 |
| Copyright terms: Public domain | W3C validator |