ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  subrg1 Unicode version

Theorem subrg1 13993
Description: A subring always has the same multiplicative identity. (Contributed by Stefan O'Rear, 27-Nov-2014.)
Hypotheses
Ref Expression
subrg1.1  |-  S  =  ( Rs  A )
subrg1.2  |-  .1.  =  ( 1r `  R )
Assertion
Ref Expression
subrg1  |-  ( A  e.  (SubRing `  R
)  ->  .1.  =  ( 1r `  S ) )

Proof of Theorem subrg1
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 subrg1.2 . 2  |-  .1.  =  ( 1r `  R )
2 eqid 2205 . . . . 5  |-  ( 1r
`  R )  =  ( 1r `  R
)
32subrg1cl 13991 . . . 4  |-  ( A  e.  (SubRing `  R
)  ->  ( 1r `  R )  e.  A
)
4 subrg1.1 . . . . 5  |-  S  =  ( Rs  A )
54subrgbas 13992 . . . 4  |-  ( A  e.  (SubRing `  R
)  ->  A  =  ( Base `  S )
)
63, 5eleqtrd 2284 . . 3  |-  ( A  e.  (SubRing `  R
)  ->  ( 1r `  R )  e.  (
Base `  S )
)
7 eqid 2205 . . . . . . . 8  |-  ( Base `  R )  =  (
Base `  R )
87subrgss 13984 . . . . . . 7  |-  ( A  e.  (SubRing `  R
)  ->  A  C_  ( Base `  R ) )
95, 8eqsstrrd 3230 . . . . . 6  |-  ( A  e.  (SubRing `  R
)  ->  ( Base `  S )  C_  ( Base `  R ) )
109sselda 3193 . . . . 5  |-  ( ( A  e.  (SubRing `  R
)  /\  x  e.  ( Base `  S )
)  ->  x  e.  ( Base `  R )
)
11 subrgrcl 13988 . . . . . . 7  |-  ( A  e.  (SubRing `  R
)  ->  R  e.  Ring )
12 eqid 2205 . . . . . . . 8  |-  ( .r
`  R )  =  ( .r `  R
)
137, 12, 2ringidmlem 13784 . . . . . . 7  |-  ( ( R  e.  Ring  /\  x  e.  ( Base `  R
) )  ->  (
( ( 1r `  R ) ( .r
`  R ) x )  =  x  /\  ( x ( .r
`  R ) ( 1r `  R ) )  =  x ) )
1411, 13sylan 283 . . . . . 6  |-  ( ( A  e.  (SubRing `  R
)  /\  x  e.  ( Base `  R )
)  ->  ( (
( 1r `  R
) ( .r `  R ) x )  =  x  /\  (
x ( .r `  R ) ( 1r
`  R ) )  =  x ) )
154, 12ressmulrg 12977 . . . . . . . . . . 11  |-  ( ( A  e.  (SubRing `  R
)  /\  R  e.  Ring )  ->  ( .r `  R )  =  ( .r `  S ) )
1611, 15mpdan 421 . . . . . . . . . 10  |-  ( A  e.  (SubRing `  R
)  ->  ( .r `  R )  =  ( .r `  S ) )
1716oveqd 5961 . . . . . . . . 9  |-  ( A  e.  (SubRing `  R
)  ->  ( ( 1r `  R ) ( .r `  R ) x )  =  ( ( 1r `  R
) ( .r `  S ) x ) )
1817eqeq1d 2214 . . . . . . . 8  |-  ( A  e.  (SubRing `  R
)  ->  ( (
( 1r `  R
) ( .r `  R ) x )  =  x  <->  ( ( 1r `  R ) ( .r `  S ) x )  =  x ) )
1916oveqd 5961 . . . . . . . . 9  |-  ( A  e.  (SubRing `  R
)  ->  ( x
( .r `  R
) ( 1r `  R ) )  =  ( x ( .r
`  S ) ( 1r `  R ) ) )
2019eqeq1d 2214 . . . . . . . 8  |-  ( A  e.  (SubRing `  R
)  ->  ( (
x ( .r `  R ) ( 1r
`  R ) )  =  x  <->  ( x
( .r `  S
) ( 1r `  R ) )  =  x ) )
2118, 20anbi12d 473 . . . . . . 7  |-  ( A  e.  (SubRing `  R
)  ->  ( (
( ( 1r `  R ) ( .r
`  R ) x )  =  x  /\  ( x ( .r
`  R ) ( 1r `  R ) )  =  x )  <-> 
( ( ( 1r
`  R ) ( .r `  S ) x )  =  x  /\  ( x ( .r `  S ) ( 1r `  R
) )  =  x ) ) )
2221biimpa 296 . . . . . 6  |-  ( ( A  e.  (SubRing `  R
)  /\  ( (
( 1r `  R
) ( .r `  R ) x )  =  x  /\  (
x ( .r `  R ) ( 1r
`  R ) )  =  x ) )  ->  ( ( ( 1r `  R ) ( .r `  S
) x )  =  x  /\  ( x ( .r `  S
) ( 1r `  R ) )  =  x ) )
2314, 22syldan 282 . . . . 5  |-  ( ( A  e.  (SubRing `  R
)  /\  x  e.  ( Base `  R )
)  ->  ( (
( 1r `  R
) ( .r `  S ) x )  =  x  /\  (
x ( .r `  S ) ( 1r
`  R ) )  =  x ) )
2410, 23syldan 282 . . . 4  |-  ( ( A  e.  (SubRing `  R
)  /\  x  e.  ( Base `  S )
)  ->  ( (
( 1r `  R
) ( .r `  S ) x )  =  x  /\  (
x ( .r `  S ) ( 1r
`  R ) )  =  x ) )
2524ralrimiva 2579 . . 3  |-  ( A  e.  (SubRing `  R
)  ->  A. x  e.  ( Base `  S
) ( ( ( 1r `  R ) ( .r `  S
) x )  =  x  /\  ( x ( .r `  S
) ( 1r `  R ) )  =  x ) )
264subrgring 13986 . . . 4  |-  ( A  e.  (SubRing `  R
)  ->  S  e.  Ring )
27 eqid 2205 . . . . 5  |-  ( Base `  S )  =  (
Base `  S )
28 eqid 2205 . . . . 5  |-  ( .r
`  S )  =  ( .r `  S
)
29 eqid 2205 . . . . 5  |-  ( 1r
`  S )  =  ( 1r `  S
)
3027, 28, 29isringid 13787 . . . 4  |-  ( S  e.  Ring  ->  ( ( ( 1r `  R
)  e.  ( Base `  S )  /\  A. x  e.  ( Base `  S ) ( ( ( 1r `  R
) ( .r `  S ) x )  =  x  /\  (
x ( .r `  S ) ( 1r
`  R ) )  =  x ) )  <-> 
( 1r `  S
)  =  ( 1r
`  R ) ) )
3126, 30syl 14 . . 3  |-  ( A  e.  (SubRing `  R
)  ->  ( (
( 1r `  R
)  e.  ( Base `  S )  /\  A. x  e.  ( Base `  S ) ( ( ( 1r `  R
) ( .r `  S ) x )  =  x  /\  (
x ( .r `  S ) ( 1r
`  R ) )  =  x ) )  <-> 
( 1r `  S
)  =  ( 1r
`  R ) ) )
326, 25, 31mpbi2and 946 . 2  |-  ( A  e.  (SubRing `  R
)  ->  ( 1r `  S )  =  ( 1r `  R ) )
331, 32eqtr4id 2257 1  |-  ( A  e.  (SubRing `  R
)  ->  .1.  =  ( 1r `  S ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1373    e. wcel 2176   A.wral 2484   ` cfv 5271  (class class class)co 5944   Basecbs 12832   ↾s cress 12833   .rcmulr 12910   1rcur 13721   Ringcrg 13758  SubRingcsubrg 13979
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-sep 4162  ax-pow 4218  ax-pr 4253  ax-un 4480  ax-setind 4585  ax-cnex 8016  ax-resscn 8017  ax-1cn 8018  ax-1re 8019  ax-icn 8020  ax-addcl 8021  ax-addrcl 8022  ax-mulcl 8023  ax-addcom 8025  ax-addass 8027  ax-i2m1 8030  ax-0lt1 8031  ax-0id 8033  ax-rnegex 8034  ax-pre-ltirr 8037  ax-pre-lttrn 8039  ax-pre-ltadd 8041
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-nel 2472  df-ral 2489  df-rex 2490  df-reu 2491  df-rmo 2492  df-rab 2493  df-v 2774  df-sbc 2999  df-csb 3094  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3461  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-br 4045  df-opab 4106  df-mpt 4107  df-id 4340  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-rn 4686  df-res 4687  df-ima 4688  df-iota 5232  df-fun 5273  df-fn 5274  df-fv 5279  df-riota 5899  df-ov 5947  df-oprab 5948  df-mpo 5949  df-pnf 8109  df-mnf 8110  df-ltxr 8112  df-inn 9037  df-2 9095  df-3 9096  df-ndx 12835  df-slot 12836  df-base 12838  df-sets 12839  df-iress 12840  df-plusg 12922  df-mulr 12923  df-0g 13090  df-mgm 13188  df-sgrp 13234  df-mnd 13249  df-subg 13506  df-mgp 13683  df-ur 13722  df-ring 13760  df-subrg 13981
This theorem is referenced by:  subrguss  13998  subrginv  13999  subrgunit  14001  subrgnzr  14004  subsubrg  14007  sralmod  14212  zring1  14363
  Copyright terms: Public domain W3C validator