ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  subrg1 Unicode version

Theorem subrg1 14195
Description: A subring always has the same multiplicative identity. (Contributed by Stefan O'Rear, 27-Nov-2014.)
Hypotheses
Ref Expression
subrg1.1  |-  S  =  ( Rs  A )
subrg1.2  |-  .1.  =  ( 1r `  R )
Assertion
Ref Expression
subrg1  |-  ( A  e.  (SubRing `  R
)  ->  .1.  =  ( 1r `  S ) )

Proof of Theorem subrg1
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 subrg1.2 . 2  |-  .1.  =  ( 1r `  R )
2 eqid 2229 . . . . 5  |-  ( 1r
`  R )  =  ( 1r `  R
)
32subrg1cl 14193 . . . 4  |-  ( A  e.  (SubRing `  R
)  ->  ( 1r `  R )  e.  A
)
4 subrg1.1 . . . . 5  |-  S  =  ( Rs  A )
54subrgbas 14194 . . . 4  |-  ( A  e.  (SubRing `  R
)  ->  A  =  ( Base `  S )
)
63, 5eleqtrd 2308 . . 3  |-  ( A  e.  (SubRing `  R
)  ->  ( 1r `  R )  e.  (
Base `  S )
)
7 eqid 2229 . . . . . . . 8  |-  ( Base `  R )  =  (
Base `  R )
87subrgss 14186 . . . . . . 7  |-  ( A  e.  (SubRing `  R
)  ->  A  C_  ( Base `  R ) )
95, 8eqsstrrd 3261 . . . . . 6  |-  ( A  e.  (SubRing `  R
)  ->  ( Base `  S )  C_  ( Base `  R ) )
109sselda 3224 . . . . 5  |-  ( ( A  e.  (SubRing `  R
)  /\  x  e.  ( Base `  S )
)  ->  x  e.  ( Base `  R )
)
11 subrgrcl 14190 . . . . . . 7  |-  ( A  e.  (SubRing `  R
)  ->  R  e.  Ring )
12 eqid 2229 . . . . . . . 8  |-  ( .r
`  R )  =  ( .r `  R
)
137, 12, 2ringidmlem 13985 . . . . . . 7  |-  ( ( R  e.  Ring  /\  x  e.  ( Base `  R
) )  ->  (
( ( 1r `  R ) ( .r
`  R ) x )  =  x  /\  ( x ( .r
`  R ) ( 1r `  R ) )  =  x ) )
1411, 13sylan 283 . . . . . 6  |-  ( ( A  e.  (SubRing `  R
)  /\  x  e.  ( Base `  R )
)  ->  ( (
( 1r `  R
) ( .r `  R ) x )  =  x  /\  (
x ( .r `  R ) ( 1r
`  R ) )  =  x ) )
154, 12ressmulrg 13178 . . . . . . . . . . 11  |-  ( ( A  e.  (SubRing `  R
)  /\  R  e.  Ring )  ->  ( .r `  R )  =  ( .r `  S ) )
1611, 15mpdan 421 . . . . . . . . . 10  |-  ( A  e.  (SubRing `  R
)  ->  ( .r `  R )  =  ( .r `  S ) )
1716oveqd 6018 . . . . . . . . 9  |-  ( A  e.  (SubRing `  R
)  ->  ( ( 1r `  R ) ( .r `  R ) x )  =  ( ( 1r `  R
) ( .r `  S ) x ) )
1817eqeq1d 2238 . . . . . . . 8  |-  ( A  e.  (SubRing `  R
)  ->  ( (
( 1r `  R
) ( .r `  R ) x )  =  x  <->  ( ( 1r `  R ) ( .r `  S ) x )  =  x ) )
1916oveqd 6018 . . . . . . . . 9  |-  ( A  e.  (SubRing `  R
)  ->  ( x
( .r `  R
) ( 1r `  R ) )  =  ( x ( .r
`  S ) ( 1r `  R ) ) )
2019eqeq1d 2238 . . . . . . . 8  |-  ( A  e.  (SubRing `  R
)  ->  ( (
x ( .r `  R ) ( 1r
`  R ) )  =  x  <->  ( x
( .r `  S
) ( 1r `  R ) )  =  x ) )
2118, 20anbi12d 473 . . . . . . 7  |-  ( A  e.  (SubRing `  R
)  ->  ( (
( ( 1r `  R ) ( .r
`  R ) x )  =  x  /\  ( x ( .r
`  R ) ( 1r `  R ) )  =  x )  <-> 
( ( ( 1r
`  R ) ( .r `  S ) x )  =  x  /\  ( x ( .r `  S ) ( 1r `  R
) )  =  x ) ) )
2221biimpa 296 . . . . . 6  |-  ( ( A  e.  (SubRing `  R
)  /\  ( (
( 1r `  R
) ( .r `  R ) x )  =  x  /\  (
x ( .r `  R ) ( 1r
`  R ) )  =  x ) )  ->  ( ( ( 1r `  R ) ( .r `  S
) x )  =  x  /\  ( x ( .r `  S
) ( 1r `  R ) )  =  x ) )
2314, 22syldan 282 . . . . 5  |-  ( ( A  e.  (SubRing `  R
)  /\  x  e.  ( Base `  R )
)  ->  ( (
( 1r `  R
) ( .r `  S ) x )  =  x  /\  (
x ( .r `  S ) ( 1r
`  R ) )  =  x ) )
2410, 23syldan 282 . . . 4  |-  ( ( A  e.  (SubRing `  R
)  /\  x  e.  ( Base `  S )
)  ->  ( (
( 1r `  R
) ( .r `  S ) x )  =  x  /\  (
x ( .r `  S ) ( 1r
`  R ) )  =  x ) )
2524ralrimiva 2603 . . 3  |-  ( A  e.  (SubRing `  R
)  ->  A. x  e.  ( Base `  S
) ( ( ( 1r `  R ) ( .r `  S
) x )  =  x  /\  ( x ( .r `  S
) ( 1r `  R ) )  =  x ) )
264subrgring 14188 . . . 4  |-  ( A  e.  (SubRing `  R
)  ->  S  e.  Ring )
27 eqid 2229 . . . . 5  |-  ( Base `  S )  =  (
Base `  S )
28 eqid 2229 . . . . 5  |-  ( .r
`  S )  =  ( .r `  S
)
29 eqid 2229 . . . . 5  |-  ( 1r
`  S )  =  ( 1r `  S
)
3027, 28, 29isringid 13988 . . . 4  |-  ( S  e.  Ring  ->  ( ( ( 1r `  R
)  e.  ( Base `  S )  /\  A. x  e.  ( Base `  S ) ( ( ( 1r `  R
) ( .r `  S ) x )  =  x  /\  (
x ( .r `  S ) ( 1r
`  R ) )  =  x ) )  <-> 
( 1r `  S
)  =  ( 1r
`  R ) ) )
3126, 30syl 14 . . 3  |-  ( A  e.  (SubRing `  R
)  ->  ( (
( 1r `  R
)  e.  ( Base `  S )  /\  A. x  e.  ( Base `  S ) ( ( ( 1r `  R
) ( .r `  S ) x )  =  x  /\  (
x ( .r `  S ) ( 1r
`  R ) )  =  x ) )  <-> 
( 1r `  S
)  =  ( 1r
`  R ) ) )
326, 25, 31mpbi2and 949 . 2  |-  ( A  e.  (SubRing `  R
)  ->  ( 1r `  S )  =  ( 1r `  R ) )
331, 32eqtr4id 2281 1  |-  ( A  e.  (SubRing `  R
)  ->  .1.  =  ( 1r `  S ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1395    e. wcel 2200   A.wral 2508   ` cfv 5318  (class class class)co 6001   Basecbs 13032   ↾s cress 13033   .rcmulr 13111   1rcur 13922   Ringcrg 13959  SubRingcsubrg 14181
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-cnex 8090  ax-resscn 8091  ax-1cn 8092  ax-1re 8093  ax-icn 8094  ax-addcl 8095  ax-addrcl 8096  ax-mulcl 8097  ax-addcom 8099  ax-addass 8101  ax-i2m1 8104  ax-0lt1 8105  ax-0id 8107  ax-rnegex 8108  ax-pre-ltirr 8111  ax-pre-lttrn 8113  ax-pre-ltadd 8115
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-br 4084  df-opab 4146  df-mpt 4147  df-id 4384  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-fv 5326  df-riota 5954  df-ov 6004  df-oprab 6005  df-mpo 6006  df-pnf 8183  df-mnf 8184  df-ltxr 8186  df-inn 9111  df-2 9169  df-3 9170  df-ndx 13035  df-slot 13036  df-base 13038  df-sets 13039  df-iress 13040  df-plusg 13123  df-mulr 13124  df-0g 13291  df-mgm 13389  df-sgrp 13435  df-mnd 13450  df-subg 13707  df-mgp 13884  df-ur 13923  df-ring 13961  df-subrg 14183
This theorem is referenced by:  subrguss  14200  subrginv  14201  subrgunit  14203  subrgnzr  14206  subsubrg  14209  sralmod  14414  zring1  14565
  Copyright terms: Public domain W3C validator