ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  resqrtcl Unicode version

Theorem resqrtcl 10741
Description: Closure of the square root function. (Contributed by Mario Carneiro, 9-Jul-2013.)
Assertion
Ref Expression
resqrtcl  |-  ( ( A  e.  RR  /\  0  <_  A )  -> 
( sqr `  A
)  e.  RR )

Proof of Theorem resqrtcl
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 resqrex 10738 . 2  |-  ( ( A  e.  RR  /\  0  <_  A )  ->  E. y  e.  RR  ( 0  <_  y  /\  ( y ^ 2 )  =  A ) )
2 simp1l 988 . . . . . 6  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  y  e.  RR  /\  ( 0  <_  y  /\  ( y ^ 2 )  =  A ) )  ->  A  e.  RR )
3 sqrtrval 10712 . . . . . 6  |-  ( A  e.  RR  ->  ( sqr `  A )  =  ( iota_ x  e.  RR  ( ( x ^
2 )  =  A  /\  0  <_  x
) ) )
42, 3syl 14 . . . . 5  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  y  e.  RR  /\  ( 0  <_  y  /\  ( y ^ 2 )  =  A ) )  ->  ( sqr `  A )  =  (
iota_ x  e.  RR  ( ( x ^
2 )  =  A  /\  0  <_  x
) ) )
5 simp3r 993 . . . . . 6  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  y  e.  RR  /\  ( 0  <_  y  /\  ( y ^ 2 )  =  A ) )  ->  ( y ^ 2 )  =  A )
6 simp3l 992 . . . . . 6  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  y  e.  RR  /\  ( 0  <_  y  /\  ( y ^ 2 )  =  A ) )  ->  0  <_  y )
7 simp2 965 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  y  e.  RR  /\  ( 0  <_  y  /\  ( y ^ 2 )  =  A ) )  ->  y  e.  RR )
8 rersqreu 10740 . . . . . . . 8  |-  ( ( A  e.  RR  /\  0  <_  A )  ->  E! x  e.  RR  ( ( x ^
2 )  =  A  /\  0  <_  x
) )
983ad2ant1 985 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  y  e.  RR  /\  ( 0  <_  y  /\  ( y ^ 2 )  =  A ) )  ->  E! x  e.  RR  ( ( x ^ 2 )  =  A  /\  0  <_  x ) )
10 oveq1 5747 . . . . . . . . . 10  |-  ( x  =  y  ->  (
x ^ 2 )  =  ( y ^
2 ) )
1110eqeq1d 2124 . . . . . . . . 9  |-  ( x  =  y  ->  (
( x ^ 2 )  =  A  <->  ( y ^ 2 )  =  A ) )
12 breq2 3901 . . . . . . . . 9  |-  ( x  =  y  ->  (
0  <_  x  <->  0  <_  y ) )
1311, 12anbi12d 462 . . . . . . . 8  |-  ( x  =  y  ->  (
( ( x ^
2 )  =  A  /\  0  <_  x
)  <->  ( ( y ^ 2 )  =  A  /\  0  <_ 
y ) ) )
1413riota2 5718 . . . . . . 7  |-  ( ( y  e.  RR  /\  E! x  e.  RR  ( ( x ^
2 )  =  A  /\  0  <_  x
) )  ->  (
( ( y ^
2 )  =  A  /\  0  <_  y
)  <->  ( iota_ x  e.  RR  ( ( x ^ 2 )  =  A  /\  0  <_  x ) )  =  y ) )
157, 9, 14syl2anc 406 . . . . . 6  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  y  e.  RR  /\  ( 0  <_  y  /\  ( y ^ 2 )  =  A ) )  ->  ( (
( y ^ 2 )  =  A  /\  0  <_  y )  <->  ( iota_ x  e.  RR  ( ( x ^ 2 )  =  A  /\  0  <_  x ) )  =  y ) )
165, 6, 15mpbi2and 910 . . . . 5  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  y  e.  RR  /\  ( 0  <_  y  /\  ( y ^ 2 )  =  A ) )  ->  ( iota_ x  e.  RR  ( ( x ^ 2 )  =  A  /\  0  <_  x ) )  =  y )
174, 16eqtrd 2148 . . . 4  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  y  e.  RR  /\  ( 0  <_  y  /\  ( y ^ 2 )  =  A ) )  ->  ( sqr `  A )  =  y )
1817, 7eqeltrd 2192 . . 3  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  y  e.  RR  /\  ( 0  <_  y  /\  ( y ^ 2 )  =  A ) )  ->  ( sqr `  A )  e.  RR )
1918rexlimdv3a 2526 . 2  |-  ( ( A  e.  RR  /\  0  <_  A )  -> 
( E. y  e.  RR  ( 0  <_ 
y  /\  ( y ^ 2 )  =  A )  ->  ( sqr `  A )  e.  RR ) )
201, 19mpd 13 1  |-  ( ( A  e.  RR  /\  0  <_  A )  -> 
( sqr `  A
)  e.  RR )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    /\ w3a 945    = wceq 1314    e. wcel 1463   E.wrex 2392   E!wreu 2393   class class class wbr 3897   ` cfv 5091   iota_crio 5695  (class class class)co 5740   RRcr 7583   0cc0 7584    <_ cle 7765   2c2 8728   ^cexp 10232   sqrcsqrt 10708
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 586  ax-in2 587  ax-io 681  ax-5 1406  ax-7 1407  ax-gen 1408  ax-ie1 1452  ax-ie2 1453  ax-8 1465  ax-10 1466  ax-11 1467  ax-i12 1468  ax-bndl 1469  ax-4 1470  ax-13 1474  ax-14 1475  ax-17 1489  ax-i9 1493  ax-ial 1497  ax-i5r 1498  ax-ext 2097  ax-coll 4011  ax-sep 4014  ax-nul 4022  ax-pow 4066  ax-pr 4099  ax-un 4323  ax-setind 4420  ax-iinf 4470  ax-cnex 7675  ax-resscn 7676  ax-1cn 7677  ax-1re 7678  ax-icn 7679  ax-addcl 7680  ax-addrcl 7681  ax-mulcl 7682  ax-mulrcl 7683  ax-addcom 7684  ax-mulcom 7685  ax-addass 7686  ax-mulass 7687  ax-distr 7688  ax-i2m1 7689  ax-0lt1 7690  ax-1rid 7691  ax-0id 7692  ax-rnegex 7693  ax-precex 7694  ax-cnre 7695  ax-pre-ltirr 7696  ax-pre-ltwlin 7697  ax-pre-lttrn 7698  ax-pre-apti 7699  ax-pre-ltadd 7700  ax-pre-mulgt0 7701  ax-pre-mulext 7702  ax-arch 7703  ax-caucvg 7704
This theorem depends on definitions:  df-bi 116  df-dc 803  df-3or 946  df-3an 947  df-tru 1317  df-fal 1320  df-nf 1420  df-sb 1719  df-eu 1978  df-mo 1979  df-clab 2102  df-cleq 2108  df-clel 2111  df-nfc 2245  df-ne 2284  df-nel 2379  df-ral 2396  df-rex 2397  df-reu 2398  df-rmo 2399  df-rab 2400  df-v 2660  df-sbc 2881  df-csb 2974  df-dif 3041  df-un 3043  df-in 3045  df-ss 3052  df-nul 3332  df-if 3443  df-pw 3480  df-sn 3501  df-pr 3502  df-op 3504  df-uni 3705  df-int 3740  df-iun 3783  df-br 3898  df-opab 3958  df-mpt 3959  df-tr 3995  df-id 4183  df-po 4186  df-iso 4187  df-iord 4256  df-on 4258  df-ilim 4259  df-suc 4261  df-iom 4473  df-xp 4513  df-rel 4514  df-cnv 4515  df-co 4516  df-dm 4517  df-rn 4518  df-res 4519  df-ima 4520  df-iota 5056  df-fun 5093  df-fn 5094  df-f 5095  df-f1 5096  df-fo 5097  df-f1o 5098  df-fv 5099  df-riota 5696  df-ov 5743  df-oprab 5744  df-mpo 5745  df-1st 6004  df-2nd 6005  df-recs 6168  df-frec 6254  df-pnf 7766  df-mnf 7767  df-xr 7768  df-ltxr 7769  df-le 7770  df-sub 7899  df-neg 7900  df-reap 8300  df-ap 8307  df-div 8393  df-inn 8678  df-2 8736  df-3 8737  df-4 8738  df-n0 8929  df-z 9006  df-uz 9276  df-rp 9391  df-seqfrec 10159  df-exp 10233  df-rsqrt 10710
This theorem is referenced by:  rersqrtthlem  10742  remsqsqrt  10744  sqrtgt0  10746  sqrtmul  10747  sqrtle  10748  sqrtlt  10749  sqrt11ap  10750  sqrt11  10751  rpsqrtcl  10753  sqrtdiv  10754  sqrtsq2  10755  abscl  10763  amgm2  10830  sqrtcli  10832  resqrtcld  10875
  Copyright terms: Public domain W3C validator