ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  4sqlem7 Unicode version

Theorem 4sqlem7 12310
Description: Lemma for 4sq (not yet proved here) . (Contributed by Mario Carneiro, 15-Jul-2014.)
Hypotheses
Ref Expression
4sqlem5.2  |-  ( ph  ->  A  e.  ZZ )
4sqlem5.3  |-  ( ph  ->  M  e.  NN )
4sqlem5.4  |-  B  =  ( ( ( A  +  ( M  / 
2 ) )  mod 
M )  -  ( M  /  2 ) )
Assertion
Ref Expression
4sqlem7  |-  ( ph  ->  ( B ^ 2 )  <_  ( (
( M ^ 2 )  /  2 )  /  2 ) )

Proof of Theorem 4sqlem7
StepHypRef Expression
1 4sqlem5.2 . . . . . . 7  |-  ( ph  ->  A  e.  ZZ )
2 4sqlem5.3 . . . . . . 7  |-  ( ph  ->  M  e.  NN )
3 4sqlem5.4 . . . . . . 7  |-  B  =  ( ( ( A  +  ( M  / 
2 ) )  mod 
M )  -  ( M  /  2 ) )
41, 2, 34sqlem5 12308 . . . . . 6  |-  ( ph  ->  ( B  e.  ZZ  /\  ( ( A  -  B )  /  M
)  e.  ZZ ) )
54simpld 111 . . . . 5  |-  ( ph  ->  B  e.  ZZ )
65zred 9309 . . . 4  |-  ( ph  ->  B  e.  RR )
72nnrpd 9626 . . . . . 6  |-  ( ph  ->  M  e.  RR+ )
87rphalfcld 9641 . . . . 5  |-  ( ph  ->  ( M  /  2
)  e.  RR+ )
98rpred 9628 . . . 4  |-  ( ph  ->  ( M  /  2
)  e.  RR )
101, 2, 34sqlem6 12309 . . . . 5  |-  ( ph  ->  ( -u ( M  /  2 )  <_  B  /\  B  <  ( M  /  2 ) ) )
1110simprd 113 . . . 4  |-  ( ph  ->  B  <  ( M  /  2 ) )
126, 9, 11ltled 8013 . . 3  |-  ( ph  ->  B  <_  ( M  /  2 ) )
1310simpld 111 . . . 4  |-  ( ph  -> 
-u ( M  / 
2 )  <_  B
)
149, 6, 13lenegcon1d 8421 . . 3  |-  ( ph  -> 
-u B  <_  ( M  /  2 ) )
158rpge0d 9632 . . . 4  |-  ( ph  ->  0  <_  ( M  /  2 ) )
16 lenegsq 11033 . . . 4  |-  ( ( B  e.  RR  /\  ( M  /  2
)  e.  RR  /\  0  <_  ( M  / 
2 ) )  -> 
( ( B  <_ 
( M  /  2
)  /\  -u B  <_ 
( M  /  2
) )  <->  ( B ^ 2 )  <_ 
( ( M  / 
2 ) ^ 2 ) ) )
176, 9, 15, 16syl3anc 1228 . . 3  |-  ( ph  ->  ( ( B  <_ 
( M  /  2
)  /\  -u B  <_ 
( M  /  2
) )  <->  ( B ^ 2 )  <_ 
( ( M  / 
2 ) ^ 2 ) ) )
1812, 14, 17mpbi2and 933 . 2  |-  ( ph  ->  ( B ^ 2 )  <_  ( ( M  /  2 ) ^
2 ) )
19 2cnd 8926 . . . . 5  |-  ( ph  ->  2  e.  CC )
2019sqvald 10581 . . . 4  |-  ( ph  ->  ( 2 ^ 2 )  =  ( 2  x.  2 ) )
2120oveq2d 5857 . . 3  |-  ( ph  ->  ( ( M ^
2 )  /  (
2 ^ 2 ) )  =  ( ( M ^ 2 )  /  ( 2  x.  2 ) ) )
222nncnd 8867 . . . 4  |-  ( ph  ->  M  e.  CC )
23 2ap0 8946 . . . . 5  |-  2 #  0
2423a1i 9 . . . 4  |-  ( ph  ->  2 #  0 )
2522, 19, 24sqdivapd 10597 . . 3  |-  ( ph  ->  ( ( M  / 
2 ) ^ 2 )  =  ( ( M ^ 2 )  /  ( 2 ^ 2 ) ) )
2622sqcld 10582 . . . 4  |-  ( ph  ->  ( M ^ 2 )  e.  CC )
2726, 19, 19, 24, 24divdivap1d 8714 . . 3  |-  ( ph  ->  ( ( ( M ^ 2 )  / 
2 )  /  2
)  =  ( ( M ^ 2 )  /  ( 2  x.  2 ) ) )
2821, 25, 273eqtr4d 2208 . 2  |-  ( ph  ->  ( ( M  / 
2 ) ^ 2 )  =  ( ( ( M ^ 2 )  /  2 )  /  2 ) )
2918, 28breqtrd 4007 1  |-  ( ph  ->  ( B ^ 2 )  <_  ( (
( M ^ 2 )  /  2 )  /  2 ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1343    e. wcel 2136   class class class wbr 3981  (class class class)co 5841   RRcr 7748   0cc0 7749    + caddc 7752    x. cmul 7754    < clt 7929    <_ cle 7930    - cmin 8065   -ucneg 8066   # cap 8475    / cdiv 8564   NNcn 8853   2c2 8904   ZZcz 9187    mod cmo 10253   ^cexp 10450
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-coll 4096  ax-sep 4099  ax-nul 4107  ax-pow 4152  ax-pr 4186  ax-un 4410  ax-setind 4513  ax-iinf 4564  ax-cnex 7840  ax-resscn 7841  ax-1cn 7842  ax-1re 7843  ax-icn 7844  ax-addcl 7845  ax-addrcl 7846  ax-mulcl 7847  ax-mulrcl 7848  ax-addcom 7849  ax-mulcom 7850  ax-addass 7851  ax-mulass 7852  ax-distr 7853  ax-i2m1 7854  ax-0lt1 7855  ax-1rid 7856  ax-0id 7857  ax-rnegex 7858  ax-precex 7859  ax-cnre 7860  ax-pre-ltirr 7861  ax-pre-ltwlin 7862  ax-pre-lttrn 7863  ax-pre-apti 7864  ax-pre-ltadd 7865  ax-pre-mulgt0 7866  ax-pre-mulext 7867  ax-arch 7868  ax-caucvg 7869
This theorem depends on definitions:  df-bi 116  df-dc 825  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2296  df-ne 2336  df-nel 2431  df-ral 2448  df-rex 2449  df-reu 2450  df-rmo 2451  df-rab 2452  df-v 2727  df-sbc 2951  df-csb 3045  df-dif 3117  df-un 3119  df-in 3121  df-ss 3128  df-nul 3409  df-if 3520  df-pw 3560  df-sn 3581  df-pr 3582  df-op 3584  df-uni 3789  df-int 3824  df-iun 3867  df-br 3982  df-opab 4043  df-mpt 4044  df-tr 4080  df-id 4270  df-po 4273  df-iso 4274  df-iord 4343  df-on 4345  df-ilim 4346  df-suc 4348  df-iom 4567  df-xp 4609  df-rel 4610  df-cnv 4611  df-co 4612  df-dm 4613  df-rn 4614  df-res 4615  df-ima 4616  df-iota 5152  df-fun 5189  df-fn 5190  df-f 5191  df-f1 5192  df-fo 5193  df-f1o 5194  df-fv 5195  df-riota 5797  df-ov 5844  df-oprab 5845  df-mpo 5846  df-1st 6105  df-2nd 6106  df-recs 6269  df-frec 6355  df-pnf 7931  df-mnf 7932  df-xr 7933  df-ltxr 7934  df-le 7935  df-sub 8067  df-neg 8068  df-reap 8469  df-ap 8476  df-div 8565  df-inn 8854  df-2 8912  df-3 8913  df-4 8914  df-n0 9111  df-z 9188  df-uz 9463  df-q 9554  df-rp 9586  df-fl 10201  df-mod 10254  df-seqfrec 10377  df-exp 10451  df-cj 10780  df-re 10781  df-im 10782  df-rsqrt 10936  df-abs 10937
This theorem is referenced by:  2sqlem8  13559
  Copyright terms: Public domain W3C validator