ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  oddpwdclemxy Unicode version

Theorem oddpwdclemxy 12310
Description: Lemma for oddpwdc 12315. Another way of stating that decomposing a natural number into a power of two and an odd number is unique. (Contributed by Jim Kingdon, 16-Nov-2021.)
Assertion
Ref Expression
oddpwdclemxy  |-  ( ( ( ( X  e.  NN  /\  -.  2  ||  X )  /\  Y  e.  NN0 )  /\  A  =  ( ( 2 ^ Y )  x.  X ) )  -> 
( X  =  ( A  /  ( 2 ^ ( iota_ z  e. 
NN0  ( ( 2 ^ z )  ||  A  /\  -.  ( 2 ^ ( z  +  1 ) )  ||  A ) ) ) )  /\  Y  =  ( iota_ z  e.  NN0  ( ( 2 ^ z )  ||  A  /\  -.  ( 2 ^ ( z  +  1 ) )  ||  A
) ) ) )
Distinct variable groups:    z, A    z, Y
Allowed substitution hint:    X( z)

Proof of Theorem oddpwdclemxy
StepHypRef Expression
1 2nn 9146 . . . . . 6  |-  2  e.  NN
21a1i 9 . . . . 5  |-  ( ( ( ( X  e.  NN  /\  -.  2  ||  X )  /\  Y  e.  NN0 )  /\  A  =  ( ( 2 ^ Y )  x.  X ) )  -> 
2  e.  NN )
3 simplll 533 . . . . . . . . 9  |-  ( ( ( ( X  e.  NN  /\  -.  2  ||  X )  /\  Y  e.  NN0 )  /\  A  =  ( ( 2 ^ Y )  x.  X ) )  ->  X  e.  NN )
43nnzd 9441 . . . . . . . 8  |-  ( ( ( ( X  e.  NN  /\  -.  2  ||  X )  /\  Y  e.  NN0 )  /\  A  =  ( ( 2 ^ Y )  x.  X ) )  ->  X  e.  ZZ )
5 simplr 528 . . . . . . . . . 10  |-  ( ( ( ( X  e.  NN  /\  -.  2  ||  X )  /\  Y  e.  NN0 )  /\  A  =  ( ( 2 ^ Y )  x.  X ) )  ->  Y  e.  NN0 )
62, 5nnexpcld 10769 . . . . . . . . 9  |-  ( ( ( ( X  e.  NN  /\  -.  2  ||  X )  /\  Y  e.  NN0 )  /\  A  =  ( ( 2 ^ Y )  x.  X ) )  -> 
( 2 ^ Y
)  e.  NN )
76nnzd 9441 . . . . . . . 8  |-  ( ( ( ( X  e.  NN  /\  -.  2  ||  X )  /\  Y  e.  NN0 )  /\  A  =  ( ( 2 ^ Y )  x.  X ) )  -> 
( 2 ^ Y
)  e.  ZZ )
8 simpr 110 . . . . . . . . . 10  |-  ( ( ( ( X  e.  NN  /\  -.  2  ||  X )  /\  Y  e.  NN0 )  /\  A  =  ( ( 2 ^ Y )  x.  X ) )  ->  A  =  ( (
2 ^ Y )  x.  X ) )
96, 3nnmulcld 9033 . . . . . . . . . 10  |-  ( ( ( ( X  e.  NN  /\  -.  2  ||  X )  /\  Y  e.  NN0 )  /\  A  =  ( ( 2 ^ Y )  x.  X ) )  -> 
( ( 2 ^ Y )  x.  X
)  e.  NN )
108, 9eqeltrd 2270 . . . . . . . . 9  |-  ( ( ( ( X  e.  NN  /\  -.  2  ||  X )  /\  Y  e.  NN0 )  /\  A  =  ( ( 2 ^ Y )  x.  X ) )  ->  A  e.  NN )
1110nnzd 9441 . . . . . . . 8  |-  ( ( ( ( X  e.  NN  /\  -.  2  ||  X )  /\  Y  e.  NN0 )  /\  A  =  ( ( 2 ^ Y )  x.  X ) )  ->  A  e.  ZZ )
126nncnd 8998 . . . . . . . . . 10  |-  ( ( ( ( X  e.  NN  /\  -.  2  ||  X )  /\  Y  e.  NN0 )  /\  A  =  ( ( 2 ^ Y )  x.  X ) )  -> 
( 2 ^ Y
)  e.  CC )
133nncnd 8998 . . . . . . . . . 10  |-  ( ( ( ( X  e.  NN  /\  -.  2  ||  X )  /\  Y  e.  NN0 )  /\  A  =  ( ( 2 ^ Y )  x.  X ) )  ->  X  e.  CC )
1412, 13mulcomd 8043 . . . . . . . . 9  |-  ( ( ( ( X  e.  NN  /\  -.  2  ||  X )  /\  Y  e.  NN0 )  /\  A  =  ( ( 2 ^ Y )  x.  X ) )  -> 
( ( 2 ^ Y )  x.  X
)  =  ( X  x.  ( 2 ^ Y ) ) )
158, 14eqtr2d 2227 . . . . . . . 8  |-  ( ( ( ( X  e.  NN  /\  -.  2  ||  X )  /\  Y  e.  NN0 )  /\  A  =  ( ( 2 ^ Y )  x.  X ) )  -> 
( X  x.  (
2 ^ Y ) )  =  A )
16 dvds0lem 11947 . . . . . . . 8  |-  ( ( ( X  e.  ZZ  /\  ( 2 ^ Y
)  e.  ZZ  /\  A  e.  ZZ )  /\  ( X  x.  (
2 ^ Y ) )  =  A )  ->  ( 2 ^ Y )  ||  A
)
174, 7, 11, 15, 16syl31anc 1252 . . . . . . 7  |-  ( ( ( ( X  e.  NN  /\  -.  2  ||  X )  /\  Y  e.  NN0 )  /\  A  =  ( ( 2 ^ Y )  x.  X ) )  -> 
( 2 ^ Y
)  ||  A )
18 simpllr 534 . . . . . . . . 9  |-  ( ( ( ( X  e.  NN  /\  -.  2  ||  X )  /\  Y  e.  NN0 )  /\  A  =  ( ( 2 ^ Y )  x.  X ) )  ->  -.  2  ||  X )
198breq2d 4042 . . . . . . . . . 10  |-  ( ( ( ( X  e.  NN  /\  -.  2  ||  X )  /\  Y  e.  NN0 )  /\  A  =  ( ( 2 ^ Y )  x.  X ) )  -> 
( ( ( 2 ^ Y )  x.  2 )  ||  A  <->  ( ( 2 ^ Y
)  x.  2 ) 
||  ( ( 2 ^ Y )  x.  X ) ) )
202nnzd 9441 . . . . . . . . . . 11  |-  ( ( ( ( X  e.  NN  /\  -.  2  ||  X )  /\  Y  e.  NN0 )  /\  A  =  ( ( 2 ^ Y )  x.  X ) )  -> 
2  e.  ZZ )
216nnne0d 9029 . . . . . . . . . . 11  |-  ( ( ( ( X  e.  NN  /\  -.  2  ||  X )  /\  Y  e.  NN0 )  /\  A  =  ( ( 2 ^ Y )  x.  X ) )  -> 
( 2 ^ Y
)  =/=  0 )
22 dvdscmulr 11966 . . . . . . . . . . 11  |-  ( ( 2  e.  ZZ  /\  X  e.  ZZ  /\  (
( 2 ^ Y
)  e.  ZZ  /\  ( 2 ^ Y
)  =/=  0 ) )  ->  ( (
( 2 ^ Y
)  x.  2 ) 
||  ( ( 2 ^ Y )  x.  X )  <->  2  ||  X ) )
2320, 4, 7, 21, 22syl112anc 1253 . . . . . . . . . 10  |-  ( ( ( ( X  e.  NN  /\  -.  2  ||  X )  /\  Y  e.  NN0 )  /\  A  =  ( ( 2 ^ Y )  x.  X ) )  -> 
( ( ( 2 ^ Y )  x.  2 )  ||  (
( 2 ^ Y
)  x.  X )  <->  2  ||  X ) )
2419, 23bitrd 188 . . . . . . . . 9  |-  ( ( ( ( X  e.  NN  /\  -.  2  ||  X )  /\  Y  e.  NN0 )  /\  A  =  ( ( 2 ^ Y )  x.  X ) )  -> 
( ( ( 2 ^ Y )  x.  2 )  ||  A  <->  2 
||  X ) )
2518, 24mtbird 674 . . . . . . . 8  |-  ( ( ( ( X  e.  NN  /\  -.  2  ||  X )  /\  Y  e.  NN0 )  /\  A  =  ( ( 2 ^ Y )  x.  X ) )  ->  -.  ( ( 2 ^ Y )  x.  2 )  ||  A )
262nncnd 8998 . . . . . . . . . 10  |-  ( ( ( ( X  e.  NN  /\  -.  2  ||  X )  /\  Y  e.  NN0 )  /\  A  =  ( ( 2 ^ Y )  x.  X ) )  -> 
2  e.  CC )
2726, 5expp1d 10748 . . . . . . . . 9  |-  ( ( ( ( X  e.  NN  /\  -.  2  ||  X )  /\  Y  e.  NN0 )  /\  A  =  ( ( 2 ^ Y )  x.  X ) )  -> 
( 2 ^ ( Y  +  1 ) )  =  ( ( 2 ^ Y )  x.  2 ) )
2827breq1d 4040 . . . . . . . 8  |-  ( ( ( ( X  e.  NN  /\  -.  2  ||  X )  /\  Y  e.  NN0 )  /\  A  =  ( ( 2 ^ Y )  x.  X ) )  -> 
( ( 2 ^ ( Y  +  1 ) )  ||  A  <->  ( ( 2 ^ Y
)  x.  2 ) 
||  A ) )
2925, 28mtbird 674 . . . . . . 7  |-  ( ( ( ( X  e.  NN  /\  -.  2  ||  X )  /\  Y  e.  NN0 )  /\  A  =  ( ( 2 ^ Y )  x.  X ) )  ->  -.  ( 2 ^ ( Y  +  1 ) )  ||  A )
30 pw2dvdseu 12309 . . . . . . . . 9  |-  ( A  e.  NN  ->  E! z  e.  NN0  ( ( 2 ^ z ) 
||  A  /\  -.  ( 2 ^ (
z  +  1 ) )  ||  A ) )
3110, 30syl 14 . . . . . . . 8  |-  ( ( ( ( X  e.  NN  /\  -.  2  ||  X )  /\  Y  e.  NN0 )  /\  A  =  ( ( 2 ^ Y )  x.  X ) )  ->  E! z  e.  NN0  ( ( 2 ^ z )  ||  A  /\  -.  ( 2 ^ ( z  +  1 ) )  ||  A
) )
32 oveq2 5927 . . . . . . . . . . 11  |-  ( z  =  Y  ->  (
2 ^ z )  =  ( 2 ^ Y ) )
3332breq1d 4040 . . . . . . . . . 10  |-  ( z  =  Y  ->  (
( 2 ^ z
)  ||  A  <->  ( 2 ^ Y )  ||  A ) )
34 oveq1 5926 . . . . . . . . . . . . 13  |-  ( z  =  Y  ->  (
z  +  1 )  =  ( Y  + 
1 ) )
3534oveq2d 5935 . . . . . . . . . . . 12  |-  ( z  =  Y  ->  (
2 ^ ( z  +  1 ) )  =  ( 2 ^ ( Y  +  1 ) ) )
3635breq1d 4040 . . . . . . . . . . 11  |-  ( z  =  Y  ->  (
( 2 ^ (
z  +  1 ) )  ||  A  <->  ( 2 ^ ( Y  + 
1 ) )  ||  A ) )
3736notbid 668 . . . . . . . . . 10  |-  ( z  =  Y  ->  ( -.  ( 2 ^ (
z  +  1 ) )  ||  A  <->  -.  (
2 ^ ( Y  +  1 ) ) 
||  A ) )
3833, 37anbi12d 473 . . . . . . . . 9  |-  ( z  =  Y  ->  (
( ( 2 ^ z )  ||  A  /\  -.  ( 2 ^ ( z  +  1 ) )  ||  A
)  <->  ( ( 2 ^ Y )  ||  A  /\  -.  ( 2 ^ ( Y  + 
1 ) )  ||  A ) ) )
3938riota2 5897 . . . . . . . 8  |-  ( ( Y  e.  NN0  /\  E! z  e.  NN0  ( ( 2 ^ z )  ||  A  /\  -.  ( 2 ^ ( z  +  1 ) )  ||  A
) )  ->  (
( ( 2 ^ Y )  ||  A  /\  -.  ( 2 ^ ( Y  +  1 ) )  ||  A
)  <->  ( iota_ z  e. 
NN0  ( ( 2 ^ z )  ||  A  /\  -.  ( 2 ^ ( z  +  1 ) )  ||  A ) )  =  Y ) )
405, 31, 39syl2anc 411 . . . . . . 7  |-  ( ( ( ( X  e.  NN  /\  -.  2  ||  X )  /\  Y  e.  NN0 )  /\  A  =  ( ( 2 ^ Y )  x.  X ) )  -> 
( ( ( 2 ^ Y )  ||  A  /\  -.  ( 2 ^ ( Y  + 
1 ) )  ||  A )  <->  ( iota_ z  e.  NN0  ( (
2 ^ z ) 
||  A  /\  -.  ( 2 ^ (
z  +  1 ) )  ||  A ) )  =  Y ) )
4117, 29, 40mpbi2and 945 . . . . . 6  |-  ( ( ( ( X  e.  NN  /\  -.  2  ||  X )  /\  Y  e.  NN0 )  /\  A  =  ( ( 2 ^ Y )  x.  X ) )  -> 
( iota_ z  e.  NN0  ( ( 2 ^ z )  ||  A  /\  -.  ( 2 ^ ( z  +  1 ) )  ||  A
) )  =  Y )
4241, 5eqeltrd 2270 . . . . 5  |-  ( ( ( ( X  e.  NN  /\  -.  2  ||  X )  /\  Y  e.  NN0 )  /\  A  =  ( ( 2 ^ Y )  x.  X ) )  -> 
( iota_ z  e.  NN0  ( ( 2 ^ z )  ||  A  /\  -.  ( 2 ^ ( z  +  1 ) )  ||  A
) )  e.  NN0 )
432, 42nnexpcld 10769 . . . 4  |-  ( ( ( ( X  e.  NN  /\  -.  2  ||  X )  /\  Y  e.  NN0 )  /\  A  =  ( ( 2 ^ Y )  x.  X ) )  -> 
( 2 ^ ( iota_ z  e.  NN0  (
( 2 ^ z
)  ||  A  /\  -.  ( 2 ^ (
z  +  1 ) )  ||  A ) ) )  e.  NN )
4443nncnd 8998 . . 3  |-  ( ( ( ( X  e.  NN  /\  -.  2  ||  X )  /\  Y  e.  NN0 )  /\  A  =  ( ( 2 ^ Y )  x.  X ) )  -> 
( 2 ^ ( iota_ z  e.  NN0  (
( 2 ^ z
)  ||  A  /\  -.  ( 2 ^ (
z  +  1 ) )  ||  A ) ) )  e.  CC )
4543nnap0d 9030 . . 3  |-  ( ( ( ( X  e.  NN  /\  -.  2  ||  X )  /\  Y  e.  NN0 )  /\  A  =  ( ( 2 ^ Y )  x.  X ) )  -> 
( 2 ^ ( iota_ z  e.  NN0  (
( 2 ^ z
)  ||  A  /\  -.  ( 2 ^ (
z  +  1 ) )  ||  A ) ) ) #  0 )
4641eqcomd 2199 . . . . . 6  |-  ( ( ( ( X  e.  NN  /\  -.  2  ||  X )  /\  Y  e.  NN0 )  /\  A  =  ( ( 2 ^ Y )  x.  X ) )  ->  Y  =  ( iota_ z  e.  NN0  ( (
2 ^ z ) 
||  A  /\  -.  ( 2 ^ (
z  +  1 ) )  ||  A ) ) )
4746oveq2d 5935 . . . . 5  |-  ( ( ( ( X  e.  NN  /\  -.  2  ||  X )  /\  Y  e.  NN0 )  /\  A  =  ( ( 2 ^ Y )  x.  X ) )  -> 
( 2 ^ Y
)  =  ( 2 ^ ( iota_ z  e. 
NN0  ( ( 2 ^ z )  ||  A  /\  -.  ( 2 ^ ( z  +  1 ) )  ||  A ) ) ) )
4847oveq1d 5934 . . . 4  |-  ( ( ( ( X  e.  NN  /\  -.  2  ||  X )  /\  Y  e.  NN0 )  /\  A  =  ( ( 2 ^ Y )  x.  X ) )  -> 
( ( 2 ^ Y )  x.  X
)  =  ( ( 2 ^ ( iota_ z  e.  NN0  ( (
2 ^ z ) 
||  A  /\  -.  ( 2 ^ (
z  +  1 ) )  ||  A ) ) )  x.  X
) )
498, 48eqtr2d 2227 . . 3  |-  ( ( ( ( X  e.  NN  /\  -.  2  ||  X )  /\  Y  e.  NN0 )  /\  A  =  ( ( 2 ^ Y )  x.  X ) )  -> 
( ( 2 ^ ( iota_ z  e.  NN0  ( ( 2 ^ z )  ||  A  /\  -.  ( 2 ^ ( z  +  1 ) )  ||  A
) ) )  x.  X )  =  A )
5044, 13, 45, 49mvllmulapd 8863 . 2  |-  ( ( ( ( X  e.  NN  /\  -.  2  ||  X )  /\  Y  e.  NN0 )  /\  A  =  ( ( 2 ^ Y )  x.  X ) )  ->  X  =  ( A  /  ( 2 ^ ( iota_ z  e.  NN0  ( ( 2 ^ z )  ||  A  /\  -.  ( 2 ^ ( z  +  1 ) )  ||  A
) ) ) ) )
5150, 46jca 306 1  |-  ( ( ( ( X  e.  NN  /\  -.  2  ||  X )  /\  Y  e.  NN0 )  /\  A  =  ( ( 2 ^ Y )  x.  X ) )  -> 
( X  =  ( A  /  ( 2 ^ ( iota_ z  e. 
NN0  ( ( 2 ^ z )  ||  A  /\  -.  ( 2 ^ ( z  +  1 ) )  ||  A ) ) ) )  /\  Y  =  ( iota_ z  e.  NN0  ( ( 2 ^ z )  ||  A  /\  -.  ( 2 ^ ( z  +  1 ) )  ||  A
) ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1364    e. wcel 2164    =/= wne 2364   E!wreu 2474   class class class wbr 4030   iota_crio 5873  (class class class)co 5919   0cc0 7874   1c1 7875    + caddc 7877    x. cmul 7879    / cdiv 8693   NNcn 8984   2c2 9035   NN0cn0 9243   ZZcz 9320   ^cexp 10612    || cdvds 11933
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4145  ax-sep 4148  ax-nul 4156  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-setind 4570  ax-iinf 4621  ax-cnex 7965  ax-resscn 7966  ax-1cn 7967  ax-1re 7968  ax-icn 7969  ax-addcl 7970  ax-addrcl 7971  ax-mulcl 7972  ax-mulrcl 7973  ax-addcom 7974  ax-mulcom 7975  ax-addass 7976  ax-mulass 7977  ax-distr 7978  ax-i2m1 7979  ax-0lt1 7980  ax-1rid 7981  ax-0id 7982  ax-rnegex 7983  ax-precex 7984  ax-cnre 7985  ax-pre-ltirr 7986  ax-pre-ltwlin 7987  ax-pre-lttrn 7988  ax-pre-apti 7989  ax-pre-ltadd 7990  ax-pre-mulgt0 7991  ax-pre-mulext 7992  ax-arch 7993
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2987  df-csb 3082  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3448  df-if 3559  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-int 3872  df-iun 3915  df-br 4031  df-opab 4092  df-mpt 4093  df-tr 4129  df-id 4325  df-po 4328  df-iso 4329  df-iord 4398  df-on 4400  df-ilim 4401  df-suc 4403  df-iom 4624  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-riota 5874  df-ov 5922  df-oprab 5923  df-mpo 5924  df-1st 6195  df-2nd 6196  df-recs 6360  df-frec 6446  df-pnf 8058  df-mnf 8059  df-xr 8060  df-ltxr 8061  df-le 8062  df-sub 8194  df-neg 8195  df-reap 8596  df-ap 8603  df-div 8694  df-inn 8985  df-2 9043  df-n0 9244  df-z 9321  df-uz 9596  df-q 9688  df-rp 9723  df-fz 10078  df-fl 10342  df-mod 10397  df-seqfrec 10522  df-exp 10613  df-dvds 11934
This theorem is referenced by:  oddpwdclemdc  12314
  Copyright terms: Public domain W3C validator