ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  oddpwdclemxy Unicode version

Theorem oddpwdclemxy 12337
Description: Lemma for oddpwdc 12342. Another way of stating that decomposing a natural number into a power of two and an odd number is unique. (Contributed by Jim Kingdon, 16-Nov-2021.)
Assertion
Ref Expression
oddpwdclemxy  |-  ( ( ( ( X  e.  NN  /\  -.  2  ||  X )  /\  Y  e.  NN0 )  /\  A  =  ( ( 2 ^ Y )  x.  X ) )  -> 
( X  =  ( A  /  ( 2 ^ ( iota_ z  e. 
NN0  ( ( 2 ^ z )  ||  A  /\  -.  ( 2 ^ ( z  +  1 ) )  ||  A ) ) ) )  /\  Y  =  ( iota_ z  e.  NN0  ( ( 2 ^ z )  ||  A  /\  -.  ( 2 ^ ( z  +  1 ) )  ||  A
) ) ) )
Distinct variable groups:    z, A    z, Y
Allowed substitution hint:    X( z)

Proof of Theorem oddpwdclemxy
StepHypRef Expression
1 2nn 9152 . . . . . 6  |-  2  e.  NN
21a1i 9 . . . . 5  |-  ( ( ( ( X  e.  NN  /\  -.  2  ||  X )  /\  Y  e.  NN0 )  /\  A  =  ( ( 2 ^ Y )  x.  X ) )  -> 
2  e.  NN )
3 simplll 533 . . . . . . . . 9  |-  ( ( ( ( X  e.  NN  /\  -.  2  ||  X )  /\  Y  e.  NN0 )  /\  A  =  ( ( 2 ^ Y )  x.  X ) )  ->  X  e.  NN )
43nnzd 9447 . . . . . . . 8  |-  ( ( ( ( X  e.  NN  /\  -.  2  ||  X )  /\  Y  e.  NN0 )  /\  A  =  ( ( 2 ^ Y )  x.  X ) )  ->  X  e.  ZZ )
5 simplr 528 . . . . . . . . . 10  |-  ( ( ( ( X  e.  NN  /\  -.  2  ||  X )  /\  Y  e.  NN0 )  /\  A  =  ( ( 2 ^ Y )  x.  X ) )  ->  Y  e.  NN0 )
62, 5nnexpcld 10787 . . . . . . . . 9  |-  ( ( ( ( X  e.  NN  /\  -.  2  ||  X )  /\  Y  e.  NN0 )  /\  A  =  ( ( 2 ^ Y )  x.  X ) )  -> 
( 2 ^ Y
)  e.  NN )
76nnzd 9447 . . . . . . . 8  |-  ( ( ( ( X  e.  NN  /\  -.  2  ||  X )  /\  Y  e.  NN0 )  /\  A  =  ( ( 2 ^ Y )  x.  X ) )  -> 
( 2 ^ Y
)  e.  ZZ )
8 simpr 110 . . . . . . . . . 10  |-  ( ( ( ( X  e.  NN  /\  -.  2  ||  X )  /\  Y  e.  NN0 )  /\  A  =  ( ( 2 ^ Y )  x.  X ) )  ->  A  =  ( (
2 ^ Y )  x.  X ) )
96, 3nnmulcld 9039 . . . . . . . . . 10  |-  ( ( ( ( X  e.  NN  /\  -.  2  ||  X )  /\  Y  e.  NN0 )  /\  A  =  ( ( 2 ^ Y )  x.  X ) )  -> 
( ( 2 ^ Y )  x.  X
)  e.  NN )
108, 9eqeltrd 2273 . . . . . . . . 9  |-  ( ( ( ( X  e.  NN  /\  -.  2  ||  X )  /\  Y  e.  NN0 )  /\  A  =  ( ( 2 ^ Y )  x.  X ) )  ->  A  e.  NN )
1110nnzd 9447 . . . . . . . 8  |-  ( ( ( ( X  e.  NN  /\  -.  2  ||  X )  /\  Y  e.  NN0 )  /\  A  =  ( ( 2 ^ Y )  x.  X ) )  ->  A  e.  ZZ )
126nncnd 9004 . . . . . . . . . 10  |-  ( ( ( ( X  e.  NN  /\  -.  2  ||  X )  /\  Y  e.  NN0 )  /\  A  =  ( ( 2 ^ Y )  x.  X ) )  -> 
( 2 ^ Y
)  e.  CC )
133nncnd 9004 . . . . . . . . . 10  |-  ( ( ( ( X  e.  NN  /\  -.  2  ||  X )  /\  Y  e.  NN0 )  /\  A  =  ( ( 2 ^ Y )  x.  X ) )  ->  X  e.  CC )
1412, 13mulcomd 8048 . . . . . . . . 9  |-  ( ( ( ( X  e.  NN  /\  -.  2  ||  X )  /\  Y  e.  NN0 )  /\  A  =  ( ( 2 ^ Y )  x.  X ) )  -> 
( ( 2 ^ Y )  x.  X
)  =  ( X  x.  ( 2 ^ Y ) ) )
158, 14eqtr2d 2230 . . . . . . . 8  |-  ( ( ( ( X  e.  NN  /\  -.  2  ||  X )  /\  Y  e.  NN0 )  /\  A  =  ( ( 2 ^ Y )  x.  X ) )  -> 
( X  x.  (
2 ^ Y ) )  =  A )
16 dvds0lem 11966 . . . . . . . 8  |-  ( ( ( X  e.  ZZ  /\  ( 2 ^ Y
)  e.  ZZ  /\  A  e.  ZZ )  /\  ( X  x.  (
2 ^ Y ) )  =  A )  ->  ( 2 ^ Y )  ||  A
)
174, 7, 11, 15, 16syl31anc 1252 . . . . . . 7  |-  ( ( ( ( X  e.  NN  /\  -.  2  ||  X )  /\  Y  e.  NN0 )  /\  A  =  ( ( 2 ^ Y )  x.  X ) )  -> 
( 2 ^ Y
)  ||  A )
18 simpllr 534 . . . . . . . . 9  |-  ( ( ( ( X  e.  NN  /\  -.  2  ||  X )  /\  Y  e.  NN0 )  /\  A  =  ( ( 2 ^ Y )  x.  X ) )  ->  -.  2  ||  X )
198breq2d 4045 . . . . . . . . . 10  |-  ( ( ( ( X  e.  NN  /\  -.  2  ||  X )  /\  Y  e.  NN0 )  /\  A  =  ( ( 2 ^ Y )  x.  X ) )  -> 
( ( ( 2 ^ Y )  x.  2 )  ||  A  <->  ( ( 2 ^ Y
)  x.  2 ) 
||  ( ( 2 ^ Y )  x.  X ) ) )
202nnzd 9447 . . . . . . . . . . 11  |-  ( ( ( ( X  e.  NN  /\  -.  2  ||  X )  /\  Y  e.  NN0 )  /\  A  =  ( ( 2 ^ Y )  x.  X ) )  -> 
2  e.  ZZ )
216nnne0d 9035 . . . . . . . . . . 11  |-  ( ( ( ( X  e.  NN  /\  -.  2  ||  X )  /\  Y  e.  NN0 )  /\  A  =  ( ( 2 ^ Y )  x.  X ) )  -> 
( 2 ^ Y
)  =/=  0 )
22 dvdscmulr 11985 . . . . . . . . . . 11  |-  ( ( 2  e.  ZZ  /\  X  e.  ZZ  /\  (
( 2 ^ Y
)  e.  ZZ  /\  ( 2 ^ Y
)  =/=  0 ) )  ->  ( (
( 2 ^ Y
)  x.  2 ) 
||  ( ( 2 ^ Y )  x.  X )  <->  2  ||  X ) )
2320, 4, 7, 21, 22syl112anc 1253 . . . . . . . . . 10  |-  ( ( ( ( X  e.  NN  /\  -.  2  ||  X )  /\  Y  e.  NN0 )  /\  A  =  ( ( 2 ^ Y )  x.  X ) )  -> 
( ( ( 2 ^ Y )  x.  2 )  ||  (
( 2 ^ Y
)  x.  X )  <->  2  ||  X ) )
2419, 23bitrd 188 . . . . . . . . 9  |-  ( ( ( ( X  e.  NN  /\  -.  2  ||  X )  /\  Y  e.  NN0 )  /\  A  =  ( ( 2 ^ Y )  x.  X ) )  -> 
( ( ( 2 ^ Y )  x.  2 )  ||  A  <->  2 
||  X ) )
2518, 24mtbird 674 . . . . . . . 8  |-  ( ( ( ( X  e.  NN  /\  -.  2  ||  X )  /\  Y  e.  NN0 )  /\  A  =  ( ( 2 ^ Y )  x.  X ) )  ->  -.  ( ( 2 ^ Y )  x.  2 )  ||  A )
262nncnd 9004 . . . . . . . . . 10  |-  ( ( ( ( X  e.  NN  /\  -.  2  ||  X )  /\  Y  e.  NN0 )  /\  A  =  ( ( 2 ^ Y )  x.  X ) )  -> 
2  e.  CC )
2726, 5expp1d 10766 . . . . . . . . 9  |-  ( ( ( ( X  e.  NN  /\  -.  2  ||  X )  /\  Y  e.  NN0 )  /\  A  =  ( ( 2 ^ Y )  x.  X ) )  -> 
( 2 ^ ( Y  +  1 ) )  =  ( ( 2 ^ Y )  x.  2 ) )
2827breq1d 4043 . . . . . . . 8  |-  ( ( ( ( X  e.  NN  /\  -.  2  ||  X )  /\  Y  e.  NN0 )  /\  A  =  ( ( 2 ^ Y )  x.  X ) )  -> 
( ( 2 ^ ( Y  +  1 ) )  ||  A  <->  ( ( 2 ^ Y
)  x.  2 ) 
||  A ) )
2925, 28mtbird 674 . . . . . . 7  |-  ( ( ( ( X  e.  NN  /\  -.  2  ||  X )  /\  Y  e.  NN0 )  /\  A  =  ( ( 2 ^ Y )  x.  X ) )  ->  -.  ( 2 ^ ( Y  +  1 ) )  ||  A )
30 pw2dvdseu 12336 . . . . . . . . 9  |-  ( A  e.  NN  ->  E! z  e.  NN0  ( ( 2 ^ z ) 
||  A  /\  -.  ( 2 ^ (
z  +  1 ) )  ||  A ) )
3110, 30syl 14 . . . . . . . 8  |-  ( ( ( ( X  e.  NN  /\  -.  2  ||  X )  /\  Y  e.  NN0 )  /\  A  =  ( ( 2 ^ Y )  x.  X ) )  ->  E! z  e.  NN0  ( ( 2 ^ z )  ||  A  /\  -.  ( 2 ^ ( z  +  1 ) )  ||  A
) )
32 oveq2 5930 . . . . . . . . . . 11  |-  ( z  =  Y  ->  (
2 ^ z )  =  ( 2 ^ Y ) )
3332breq1d 4043 . . . . . . . . . 10  |-  ( z  =  Y  ->  (
( 2 ^ z
)  ||  A  <->  ( 2 ^ Y )  ||  A ) )
34 oveq1 5929 . . . . . . . . . . . . 13  |-  ( z  =  Y  ->  (
z  +  1 )  =  ( Y  + 
1 ) )
3534oveq2d 5938 . . . . . . . . . . . 12  |-  ( z  =  Y  ->  (
2 ^ ( z  +  1 ) )  =  ( 2 ^ ( Y  +  1 ) ) )
3635breq1d 4043 . . . . . . . . . . 11  |-  ( z  =  Y  ->  (
( 2 ^ (
z  +  1 ) )  ||  A  <->  ( 2 ^ ( Y  + 
1 ) )  ||  A ) )
3736notbid 668 . . . . . . . . . 10  |-  ( z  =  Y  ->  ( -.  ( 2 ^ (
z  +  1 ) )  ||  A  <->  -.  (
2 ^ ( Y  +  1 ) ) 
||  A ) )
3833, 37anbi12d 473 . . . . . . . . 9  |-  ( z  =  Y  ->  (
( ( 2 ^ z )  ||  A  /\  -.  ( 2 ^ ( z  +  1 ) )  ||  A
)  <->  ( ( 2 ^ Y )  ||  A  /\  -.  ( 2 ^ ( Y  + 
1 ) )  ||  A ) ) )
3938riota2 5900 . . . . . . . 8  |-  ( ( Y  e.  NN0  /\  E! z  e.  NN0  ( ( 2 ^ z )  ||  A  /\  -.  ( 2 ^ ( z  +  1 ) )  ||  A
) )  ->  (
( ( 2 ^ Y )  ||  A  /\  -.  ( 2 ^ ( Y  +  1 ) )  ||  A
)  <->  ( iota_ z  e. 
NN0  ( ( 2 ^ z )  ||  A  /\  -.  ( 2 ^ ( z  +  1 ) )  ||  A ) )  =  Y ) )
405, 31, 39syl2anc 411 . . . . . . 7  |-  ( ( ( ( X  e.  NN  /\  -.  2  ||  X )  /\  Y  e.  NN0 )  /\  A  =  ( ( 2 ^ Y )  x.  X ) )  -> 
( ( ( 2 ^ Y )  ||  A  /\  -.  ( 2 ^ ( Y  + 
1 ) )  ||  A )  <->  ( iota_ z  e.  NN0  ( (
2 ^ z ) 
||  A  /\  -.  ( 2 ^ (
z  +  1 ) )  ||  A ) )  =  Y ) )
4117, 29, 40mpbi2and 945 . . . . . 6  |-  ( ( ( ( X  e.  NN  /\  -.  2  ||  X )  /\  Y  e.  NN0 )  /\  A  =  ( ( 2 ^ Y )  x.  X ) )  -> 
( iota_ z  e.  NN0  ( ( 2 ^ z )  ||  A  /\  -.  ( 2 ^ ( z  +  1 ) )  ||  A
) )  =  Y )
4241, 5eqeltrd 2273 . . . . 5  |-  ( ( ( ( X  e.  NN  /\  -.  2  ||  X )  /\  Y  e.  NN0 )  /\  A  =  ( ( 2 ^ Y )  x.  X ) )  -> 
( iota_ z  e.  NN0  ( ( 2 ^ z )  ||  A  /\  -.  ( 2 ^ ( z  +  1 ) )  ||  A
) )  e.  NN0 )
432, 42nnexpcld 10787 . . . 4  |-  ( ( ( ( X  e.  NN  /\  -.  2  ||  X )  /\  Y  e.  NN0 )  /\  A  =  ( ( 2 ^ Y )  x.  X ) )  -> 
( 2 ^ ( iota_ z  e.  NN0  (
( 2 ^ z
)  ||  A  /\  -.  ( 2 ^ (
z  +  1 ) )  ||  A ) ) )  e.  NN )
4443nncnd 9004 . . 3  |-  ( ( ( ( X  e.  NN  /\  -.  2  ||  X )  /\  Y  e.  NN0 )  /\  A  =  ( ( 2 ^ Y )  x.  X ) )  -> 
( 2 ^ ( iota_ z  e.  NN0  (
( 2 ^ z
)  ||  A  /\  -.  ( 2 ^ (
z  +  1 ) )  ||  A ) ) )  e.  CC )
4543nnap0d 9036 . . 3  |-  ( ( ( ( X  e.  NN  /\  -.  2  ||  X )  /\  Y  e.  NN0 )  /\  A  =  ( ( 2 ^ Y )  x.  X ) )  -> 
( 2 ^ ( iota_ z  e.  NN0  (
( 2 ^ z
)  ||  A  /\  -.  ( 2 ^ (
z  +  1 ) )  ||  A ) ) ) #  0 )
4641eqcomd 2202 . . . . . 6  |-  ( ( ( ( X  e.  NN  /\  -.  2  ||  X )  /\  Y  e.  NN0 )  /\  A  =  ( ( 2 ^ Y )  x.  X ) )  ->  Y  =  ( iota_ z  e.  NN0  ( (
2 ^ z ) 
||  A  /\  -.  ( 2 ^ (
z  +  1 ) )  ||  A ) ) )
4746oveq2d 5938 . . . . 5  |-  ( ( ( ( X  e.  NN  /\  -.  2  ||  X )  /\  Y  e.  NN0 )  /\  A  =  ( ( 2 ^ Y )  x.  X ) )  -> 
( 2 ^ Y
)  =  ( 2 ^ ( iota_ z  e. 
NN0  ( ( 2 ^ z )  ||  A  /\  -.  ( 2 ^ ( z  +  1 ) )  ||  A ) ) ) )
4847oveq1d 5937 . . . 4  |-  ( ( ( ( X  e.  NN  /\  -.  2  ||  X )  /\  Y  e.  NN0 )  /\  A  =  ( ( 2 ^ Y )  x.  X ) )  -> 
( ( 2 ^ Y )  x.  X
)  =  ( ( 2 ^ ( iota_ z  e.  NN0  ( (
2 ^ z ) 
||  A  /\  -.  ( 2 ^ (
z  +  1 ) )  ||  A ) ) )  x.  X
) )
498, 48eqtr2d 2230 . . 3  |-  ( ( ( ( X  e.  NN  /\  -.  2  ||  X )  /\  Y  e.  NN0 )  /\  A  =  ( ( 2 ^ Y )  x.  X ) )  -> 
( ( 2 ^ ( iota_ z  e.  NN0  ( ( 2 ^ z )  ||  A  /\  -.  ( 2 ^ ( z  +  1 ) )  ||  A
) ) )  x.  X )  =  A )
5044, 13, 45, 49mvllmulapd 8869 . 2  |-  ( ( ( ( X  e.  NN  /\  -.  2  ||  X )  /\  Y  e.  NN0 )  /\  A  =  ( ( 2 ^ Y )  x.  X ) )  ->  X  =  ( A  /  ( 2 ^ ( iota_ z  e.  NN0  ( ( 2 ^ z )  ||  A  /\  -.  ( 2 ^ ( z  +  1 ) )  ||  A
) ) ) ) )
5150, 46jca 306 1  |-  ( ( ( ( X  e.  NN  /\  -.  2  ||  X )  /\  Y  e.  NN0 )  /\  A  =  ( ( 2 ^ Y )  x.  X ) )  -> 
( X  =  ( A  /  ( 2 ^ ( iota_ z  e. 
NN0  ( ( 2 ^ z )  ||  A  /\  -.  ( 2 ^ ( z  +  1 ) )  ||  A ) ) ) )  /\  Y  =  ( iota_ z  e.  NN0  ( ( 2 ^ z )  ||  A  /\  -.  ( 2 ^ ( z  +  1 ) )  ||  A
) ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1364    e. wcel 2167    =/= wne 2367   E!wreu 2477   class class class wbr 4033   iota_crio 5876  (class class class)co 5922   0cc0 7879   1c1 7880    + caddc 7882    x. cmul 7884    / cdiv 8699   NNcn 8990   2c2 9041   NN0cn0 9249   ZZcz 9326   ^cexp 10630    || cdvds 11952
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-nul 4159  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-iinf 4624  ax-cnex 7970  ax-resscn 7971  ax-1cn 7972  ax-1re 7973  ax-icn 7974  ax-addcl 7975  ax-addrcl 7976  ax-mulcl 7977  ax-mulrcl 7978  ax-addcom 7979  ax-mulcom 7980  ax-addass 7981  ax-mulass 7982  ax-distr 7983  ax-i2m1 7984  ax-0lt1 7985  ax-1rid 7986  ax-0id 7987  ax-rnegex 7988  ax-precex 7989  ax-cnre 7990  ax-pre-ltirr 7991  ax-pre-ltwlin 7992  ax-pre-lttrn 7993  ax-pre-apti 7994  ax-pre-ltadd 7995  ax-pre-mulgt0 7996  ax-pre-mulext 7997  ax-arch 7998
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-if 3562  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-tr 4132  df-id 4328  df-po 4331  df-iso 4332  df-iord 4401  df-on 4403  df-ilim 4404  df-suc 4406  df-iom 4627  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-1st 6198  df-2nd 6199  df-recs 6363  df-frec 6449  df-pnf 8063  df-mnf 8064  df-xr 8065  df-ltxr 8066  df-le 8067  df-sub 8199  df-neg 8200  df-reap 8602  df-ap 8609  df-div 8700  df-inn 8991  df-2 9049  df-n0 9250  df-z 9327  df-uz 9602  df-q 9694  df-rp 9729  df-fz 10084  df-fl 10360  df-mod 10415  df-seqfrec 10540  df-exp 10631  df-dvds 11953
This theorem is referenced by:  oddpwdclemdc  12341
  Copyright terms: Public domain W3C validator