ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  oddpwdclemxy Unicode version

Theorem oddpwdclemxy 12123
Description: Lemma for oddpwdc 12128. Another way of stating that decomposing a natural number into a power of two and an odd number is unique. (Contributed by Jim Kingdon, 16-Nov-2021.)
Assertion
Ref Expression
oddpwdclemxy  |-  ( ( ( ( X  e.  NN  /\  -.  2  ||  X )  /\  Y  e.  NN0 )  /\  A  =  ( ( 2 ^ Y )  x.  X ) )  -> 
( X  =  ( A  /  ( 2 ^ ( iota_ z  e. 
NN0  ( ( 2 ^ z )  ||  A  /\  -.  ( 2 ^ ( z  +  1 ) )  ||  A ) ) ) )  /\  Y  =  ( iota_ z  e.  NN0  ( ( 2 ^ z )  ||  A  /\  -.  ( 2 ^ ( z  +  1 ) )  ||  A
) ) ) )
Distinct variable groups:    z, A    z, Y
Allowed substitution hint:    X( z)

Proof of Theorem oddpwdclemxy
StepHypRef Expression
1 2nn 9039 . . . . . 6  |-  2  e.  NN
21a1i 9 . . . . 5  |-  ( ( ( ( X  e.  NN  /\  -.  2  ||  X )  /\  Y  e.  NN0 )  /\  A  =  ( ( 2 ^ Y )  x.  X ) )  -> 
2  e.  NN )
3 simplll 528 . . . . . . . . 9  |-  ( ( ( ( X  e.  NN  /\  -.  2  ||  X )  /\  Y  e.  NN0 )  /\  A  =  ( ( 2 ^ Y )  x.  X ) )  ->  X  e.  NN )
43nnzd 9333 . . . . . . . 8  |-  ( ( ( ( X  e.  NN  /\  -.  2  ||  X )  /\  Y  e.  NN0 )  /\  A  =  ( ( 2 ^ Y )  x.  X ) )  ->  X  e.  ZZ )
5 simplr 525 . . . . . . . . . 10  |-  ( ( ( ( X  e.  NN  /\  -.  2  ||  X )  /\  Y  e.  NN0 )  /\  A  =  ( ( 2 ^ Y )  x.  X ) )  ->  Y  e.  NN0 )
62, 5nnexpcld 10631 . . . . . . . . 9  |-  ( ( ( ( X  e.  NN  /\  -.  2  ||  X )  /\  Y  e.  NN0 )  /\  A  =  ( ( 2 ^ Y )  x.  X ) )  -> 
( 2 ^ Y
)  e.  NN )
76nnzd 9333 . . . . . . . 8  |-  ( ( ( ( X  e.  NN  /\  -.  2  ||  X )  /\  Y  e.  NN0 )  /\  A  =  ( ( 2 ^ Y )  x.  X ) )  -> 
( 2 ^ Y
)  e.  ZZ )
8 simpr 109 . . . . . . . . . 10  |-  ( ( ( ( X  e.  NN  /\  -.  2  ||  X )  /\  Y  e.  NN0 )  /\  A  =  ( ( 2 ^ Y )  x.  X ) )  ->  A  =  ( (
2 ^ Y )  x.  X ) )
96, 3nnmulcld 8927 . . . . . . . . . 10  |-  ( ( ( ( X  e.  NN  /\  -.  2  ||  X )  /\  Y  e.  NN0 )  /\  A  =  ( ( 2 ^ Y )  x.  X ) )  -> 
( ( 2 ^ Y )  x.  X
)  e.  NN )
108, 9eqeltrd 2247 . . . . . . . . 9  |-  ( ( ( ( X  e.  NN  /\  -.  2  ||  X )  /\  Y  e.  NN0 )  /\  A  =  ( ( 2 ^ Y )  x.  X ) )  ->  A  e.  NN )
1110nnzd 9333 . . . . . . . 8  |-  ( ( ( ( X  e.  NN  /\  -.  2  ||  X )  /\  Y  e.  NN0 )  /\  A  =  ( ( 2 ^ Y )  x.  X ) )  ->  A  e.  ZZ )
126nncnd 8892 . . . . . . . . . 10  |-  ( ( ( ( X  e.  NN  /\  -.  2  ||  X )  /\  Y  e.  NN0 )  /\  A  =  ( ( 2 ^ Y )  x.  X ) )  -> 
( 2 ^ Y
)  e.  CC )
133nncnd 8892 . . . . . . . . . 10  |-  ( ( ( ( X  e.  NN  /\  -.  2  ||  X )  /\  Y  e.  NN0 )  /\  A  =  ( ( 2 ^ Y )  x.  X ) )  ->  X  e.  CC )
1412, 13mulcomd 7941 . . . . . . . . 9  |-  ( ( ( ( X  e.  NN  /\  -.  2  ||  X )  /\  Y  e.  NN0 )  /\  A  =  ( ( 2 ^ Y )  x.  X ) )  -> 
( ( 2 ^ Y )  x.  X
)  =  ( X  x.  ( 2 ^ Y ) ) )
158, 14eqtr2d 2204 . . . . . . . 8  |-  ( ( ( ( X  e.  NN  /\  -.  2  ||  X )  /\  Y  e.  NN0 )  /\  A  =  ( ( 2 ^ Y )  x.  X ) )  -> 
( X  x.  (
2 ^ Y ) )  =  A )
16 dvds0lem 11763 . . . . . . . 8  |-  ( ( ( X  e.  ZZ  /\  ( 2 ^ Y
)  e.  ZZ  /\  A  e.  ZZ )  /\  ( X  x.  (
2 ^ Y ) )  =  A )  ->  ( 2 ^ Y )  ||  A
)
174, 7, 11, 15, 16syl31anc 1236 . . . . . . 7  |-  ( ( ( ( X  e.  NN  /\  -.  2  ||  X )  /\  Y  e.  NN0 )  /\  A  =  ( ( 2 ^ Y )  x.  X ) )  -> 
( 2 ^ Y
)  ||  A )
18 simpllr 529 . . . . . . . . 9  |-  ( ( ( ( X  e.  NN  /\  -.  2  ||  X )  /\  Y  e.  NN0 )  /\  A  =  ( ( 2 ^ Y )  x.  X ) )  ->  -.  2  ||  X )
198breq2d 4001 . . . . . . . . . 10  |-  ( ( ( ( X  e.  NN  /\  -.  2  ||  X )  /\  Y  e.  NN0 )  /\  A  =  ( ( 2 ^ Y )  x.  X ) )  -> 
( ( ( 2 ^ Y )  x.  2 )  ||  A  <->  ( ( 2 ^ Y
)  x.  2 ) 
||  ( ( 2 ^ Y )  x.  X ) ) )
202nnzd 9333 . . . . . . . . . . 11  |-  ( ( ( ( X  e.  NN  /\  -.  2  ||  X )  /\  Y  e.  NN0 )  /\  A  =  ( ( 2 ^ Y )  x.  X ) )  -> 
2  e.  ZZ )
216nnne0d 8923 . . . . . . . . . . 11  |-  ( ( ( ( X  e.  NN  /\  -.  2  ||  X )  /\  Y  e.  NN0 )  /\  A  =  ( ( 2 ^ Y )  x.  X ) )  -> 
( 2 ^ Y
)  =/=  0 )
22 dvdscmulr 11782 . . . . . . . . . . 11  |-  ( ( 2  e.  ZZ  /\  X  e.  ZZ  /\  (
( 2 ^ Y
)  e.  ZZ  /\  ( 2 ^ Y
)  =/=  0 ) )  ->  ( (
( 2 ^ Y
)  x.  2 ) 
||  ( ( 2 ^ Y )  x.  X )  <->  2  ||  X ) )
2320, 4, 7, 21, 22syl112anc 1237 . . . . . . . . . 10  |-  ( ( ( ( X  e.  NN  /\  -.  2  ||  X )  /\  Y  e.  NN0 )  /\  A  =  ( ( 2 ^ Y )  x.  X ) )  -> 
( ( ( 2 ^ Y )  x.  2 )  ||  (
( 2 ^ Y
)  x.  X )  <->  2  ||  X ) )
2419, 23bitrd 187 . . . . . . . . 9  |-  ( ( ( ( X  e.  NN  /\  -.  2  ||  X )  /\  Y  e.  NN0 )  /\  A  =  ( ( 2 ^ Y )  x.  X ) )  -> 
( ( ( 2 ^ Y )  x.  2 )  ||  A  <->  2 
||  X ) )
2518, 24mtbird 668 . . . . . . . 8  |-  ( ( ( ( X  e.  NN  /\  -.  2  ||  X )  /\  Y  e.  NN0 )  /\  A  =  ( ( 2 ^ Y )  x.  X ) )  ->  -.  ( ( 2 ^ Y )  x.  2 )  ||  A )
262nncnd 8892 . . . . . . . . . 10  |-  ( ( ( ( X  e.  NN  /\  -.  2  ||  X )  /\  Y  e.  NN0 )  /\  A  =  ( ( 2 ^ Y )  x.  X ) )  -> 
2  e.  CC )
2726, 5expp1d 10610 . . . . . . . . 9  |-  ( ( ( ( X  e.  NN  /\  -.  2  ||  X )  /\  Y  e.  NN0 )  /\  A  =  ( ( 2 ^ Y )  x.  X ) )  -> 
( 2 ^ ( Y  +  1 ) )  =  ( ( 2 ^ Y )  x.  2 ) )
2827breq1d 3999 . . . . . . . 8  |-  ( ( ( ( X  e.  NN  /\  -.  2  ||  X )  /\  Y  e.  NN0 )  /\  A  =  ( ( 2 ^ Y )  x.  X ) )  -> 
( ( 2 ^ ( Y  +  1 ) )  ||  A  <->  ( ( 2 ^ Y
)  x.  2 ) 
||  A ) )
2925, 28mtbird 668 . . . . . . 7  |-  ( ( ( ( X  e.  NN  /\  -.  2  ||  X )  /\  Y  e.  NN0 )  /\  A  =  ( ( 2 ^ Y )  x.  X ) )  ->  -.  ( 2 ^ ( Y  +  1 ) )  ||  A )
30 pw2dvdseu 12122 . . . . . . . . 9  |-  ( A  e.  NN  ->  E! z  e.  NN0  ( ( 2 ^ z ) 
||  A  /\  -.  ( 2 ^ (
z  +  1 ) )  ||  A ) )
3110, 30syl 14 . . . . . . . 8  |-  ( ( ( ( X  e.  NN  /\  -.  2  ||  X )  /\  Y  e.  NN0 )  /\  A  =  ( ( 2 ^ Y )  x.  X ) )  ->  E! z  e.  NN0  ( ( 2 ^ z )  ||  A  /\  -.  ( 2 ^ ( z  +  1 ) )  ||  A
) )
32 oveq2 5861 . . . . . . . . . . 11  |-  ( z  =  Y  ->  (
2 ^ z )  =  ( 2 ^ Y ) )
3332breq1d 3999 . . . . . . . . . 10  |-  ( z  =  Y  ->  (
( 2 ^ z
)  ||  A  <->  ( 2 ^ Y )  ||  A ) )
34 oveq1 5860 . . . . . . . . . . . . 13  |-  ( z  =  Y  ->  (
z  +  1 )  =  ( Y  + 
1 ) )
3534oveq2d 5869 . . . . . . . . . . . 12  |-  ( z  =  Y  ->  (
2 ^ ( z  +  1 ) )  =  ( 2 ^ ( Y  +  1 ) ) )
3635breq1d 3999 . . . . . . . . . . 11  |-  ( z  =  Y  ->  (
( 2 ^ (
z  +  1 ) )  ||  A  <->  ( 2 ^ ( Y  + 
1 ) )  ||  A ) )
3736notbid 662 . . . . . . . . . 10  |-  ( z  =  Y  ->  ( -.  ( 2 ^ (
z  +  1 ) )  ||  A  <->  -.  (
2 ^ ( Y  +  1 ) ) 
||  A ) )
3833, 37anbi12d 470 . . . . . . . . 9  |-  ( z  =  Y  ->  (
( ( 2 ^ z )  ||  A  /\  -.  ( 2 ^ ( z  +  1 ) )  ||  A
)  <->  ( ( 2 ^ Y )  ||  A  /\  -.  ( 2 ^ ( Y  + 
1 ) )  ||  A ) ) )
3938riota2 5831 . . . . . . . 8  |-  ( ( Y  e.  NN0  /\  E! z  e.  NN0  ( ( 2 ^ z )  ||  A  /\  -.  ( 2 ^ ( z  +  1 ) )  ||  A
) )  ->  (
( ( 2 ^ Y )  ||  A  /\  -.  ( 2 ^ ( Y  +  1 ) )  ||  A
)  <->  ( iota_ z  e. 
NN0  ( ( 2 ^ z )  ||  A  /\  -.  ( 2 ^ ( z  +  1 ) )  ||  A ) )  =  Y ) )
405, 31, 39syl2anc 409 . . . . . . 7  |-  ( ( ( ( X  e.  NN  /\  -.  2  ||  X )  /\  Y  e.  NN0 )  /\  A  =  ( ( 2 ^ Y )  x.  X ) )  -> 
( ( ( 2 ^ Y )  ||  A  /\  -.  ( 2 ^ ( Y  + 
1 ) )  ||  A )  <->  ( iota_ z  e.  NN0  ( (
2 ^ z ) 
||  A  /\  -.  ( 2 ^ (
z  +  1 ) )  ||  A ) )  =  Y ) )
4117, 29, 40mpbi2and 938 . . . . . 6  |-  ( ( ( ( X  e.  NN  /\  -.  2  ||  X )  /\  Y  e.  NN0 )  /\  A  =  ( ( 2 ^ Y )  x.  X ) )  -> 
( iota_ z  e.  NN0  ( ( 2 ^ z )  ||  A  /\  -.  ( 2 ^ ( z  +  1 ) )  ||  A
) )  =  Y )
4241, 5eqeltrd 2247 . . . . 5  |-  ( ( ( ( X  e.  NN  /\  -.  2  ||  X )  /\  Y  e.  NN0 )  /\  A  =  ( ( 2 ^ Y )  x.  X ) )  -> 
( iota_ z  e.  NN0  ( ( 2 ^ z )  ||  A  /\  -.  ( 2 ^ ( z  +  1 ) )  ||  A
) )  e.  NN0 )
432, 42nnexpcld 10631 . . . 4  |-  ( ( ( ( X  e.  NN  /\  -.  2  ||  X )  /\  Y  e.  NN0 )  /\  A  =  ( ( 2 ^ Y )  x.  X ) )  -> 
( 2 ^ ( iota_ z  e.  NN0  (
( 2 ^ z
)  ||  A  /\  -.  ( 2 ^ (
z  +  1 ) )  ||  A ) ) )  e.  NN )
4443nncnd 8892 . . 3  |-  ( ( ( ( X  e.  NN  /\  -.  2  ||  X )  /\  Y  e.  NN0 )  /\  A  =  ( ( 2 ^ Y )  x.  X ) )  -> 
( 2 ^ ( iota_ z  e.  NN0  (
( 2 ^ z
)  ||  A  /\  -.  ( 2 ^ (
z  +  1 ) )  ||  A ) ) )  e.  CC )
4543nnap0d 8924 . . 3  |-  ( ( ( ( X  e.  NN  /\  -.  2  ||  X )  /\  Y  e.  NN0 )  /\  A  =  ( ( 2 ^ Y )  x.  X ) )  -> 
( 2 ^ ( iota_ z  e.  NN0  (
( 2 ^ z
)  ||  A  /\  -.  ( 2 ^ (
z  +  1 ) )  ||  A ) ) ) #  0 )
4641eqcomd 2176 . . . . . 6  |-  ( ( ( ( X  e.  NN  /\  -.  2  ||  X )  /\  Y  e.  NN0 )  /\  A  =  ( ( 2 ^ Y )  x.  X ) )  ->  Y  =  ( iota_ z  e.  NN0  ( (
2 ^ z ) 
||  A  /\  -.  ( 2 ^ (
z  +  1 ) )  ||  A ) ) )
4746oveq2d 5869 . . . . 5  |-  ( ( ( ( X  e.  NN  /\  -.  2  ||  X )  /\  Y  e.  NN0 )  /\  A  =  ( ( 2 ^ Y )  x.  X ) )  -> 
( 2 ^ Y
)  =  ( 2 ^ ( iota_ z  e. 
NN0  ( ( 2 ^ z )  ||  A  /\  -.  ( 2 ^ ( z  +  1 ) )  ||  A ) ) ) )
4847oveq1d 5868 . . . 4  |-  ( ( ( ( X  e.  NN  /\  -.  2  ||  X )  /\  Y  e.  NN0 )  /\  A  =  ( ( 2 ^ Y )  x.  X ) )  -> 
( ( 2 ^ Y )  x.  X
)  =  ( ( 2 ^ ( iota_ z  e.  NN0  ( (
2 ^ z ) 
||  A  /\  -.  ( 2 ^ (
z  +  1 ) )  ||  A ) ) )  x.  X
) )
498, 48eqtr2d 2204 . . 3  |-  ( ( ( ( X  e.  NN  /\  -.  2  ||  X )  /\  Y  e.  NN0 )  /\  A  =  ( ( 2 ^ Y )  x.  X ) )  -> 
( ( 2 ^ ( iota_ z  e.  NN0  ( ( 2 ^ z )  ||  A  /\  -.  ( 2 ^ ( z  +  1 ) )  ||  A
) ) )  x.  X )  =  A )
5044, 13, 45, 49mvllmulapd 8759 . 2  |-  ( ( ( ( X  e.  NN  /\  -.  2  ||  X )  /\  Y  e.  NN0 )  /\  A  =  ( ( 2 ^ Y )  x.  X ) )  ->  X  =  ( A  /  ( 2 ^ ( iota_ z  e.  NN0  ( ( 2 ^ z )  ||  A  /\  -.  ( 2 ^ ( z  +  1 ) )  ||  A
) ) ) ) )
5150, 46jca 304 1  |-  ( ( ( ( X  e.  NN  /\  -.  2  ||  X )  /\  Y  e.  NN0 )  /\  A  =  ( ( 2 ^ Y )  x.  X ) )  -> 
( X  =  ( A  /  ( 2 ^ ( iota_ z  e. 
NN0  ( ( 2 ^ z )  ||  A  /\  -.  ( 2 ^ ( z  +  1 ) )  ||  A ) ) ) )  /\  Y  =  ( iota_ z  e.  NN0  ( ( 2 ^ z )  ||  A  /\  -.  ( 2 ^ ( z  +  1 ) )  ||  A
) ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1348    e. wcel 2141    =/= wne 2340   E!wreu 2450   class class class wbr 3989   iota_crio 5808  (class class class)co 5853   0cc0 7774   1c1 7775    + caddc 7777    x. cmul 7779    / cdiv 8589   NNcn 8878   2c2 8929   NN0cn0 9135   ZZcz 9212   ^cexp 10475    || cdvds 11749
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4104  ax-sep 4107  ax-nul 4115  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-iinf 4572  ax-cnex 7865  ax-resscn 7866  ax-1cn 7867  ax-1re 7868  ax-icn 7869  ax-addcl 7870  ax-addrcl 7871  ax-mulcl 7872  ax-mulrcl 7873  ax-addcom 7874  ax-mulcom 7875  ax-addass 7876  ax-mulass 7877  ax-distr 7878  ax-i2m1 7879  ax-0lt1 7880  ax-1rid 7881  ax-0id 7882  ax-rnegex 7883  ax-precex 7884  ax-cnre 7885  ax-pre-ltirr 7886  ax-pre-ltwlin 7887  ax-pre-lttrn 7888  ax-pre-apti 7889  ax-pre-ltadd 7890  ax-pre-mulgt0 7891  ax-pre-mulext 7892  ax-arch 7893
This theorem depends on definitions:  df-bi 116  df-dc 830  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-nel 2436  df-ral 2453  df-rex 2454  df-reu 2455  df-rmo 2456  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-if 3527  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-iun 3875  df-br 3990  df-opab 4051  df-mpt 4052  df-tr 4088  df-id 4278  df-po 4281  df-iso 4282  df-iord 4351  df-on 4353  df-ilim 4354  df-suc 4356  df-iom 4575  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-fv 5206  df-riota 5809  df-ov 5856  df-oprab 5857  df-mpo 5858  df-1st 6119  df-2nd 6120  df-recs 6284  df-frec 6370  df-pnf 7956  df-mnf 7957  df-xr 7958  df-ltxr 7959  df-le 7960  df-sub 8092  df-neg 8093  df-reap 8494  df-ap 8501  df-div 8590  df-inn 8879  df-2 8937  df-n0 9136  df-z 9213  df-uz 9488  df-q 9579  df-rp 9611  df-fz 9966  df-fl 10226  df-mod 10279  df-seqfrec 10402  df-exp 10476  df-dvds 11750
This theorem is referenced by:  oddpwdclemdc  12127
  Copyright terms: Public domain W3C validator