ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  oddpwdclemxy Unicode version

Theorem oddpwdclemxy 12078
Description: Lemma for oddpwdc 12083. Another way of stating that decomposing a natural number into a power of two and an odd number is unique. (Contributed by Jim Kingdon, 16-Nov-2021.)
Assertion
Ref Expression
oddpwdclemxy  |-  ( ( ( ( X  e.  NN  /\  -.  2  ||  X )  /\  Y  e.  NN0 )  /\  A  =  ( ( 2 ^ Y )  x.  X ) )  -> 
( X  =  ( A  /  ( 2 ^ ( iota_ z  e. 
NN0  ( ( 2 ^ z )  ||  A  /\  -.  ( 2 ^ ( z  +  1 ) )  ||  A ) ) ) )  /\  Y  =  ( iota_ z  e.  NN0  ( ( 2 ^ z )  ||  A  /\  -.  ( 2 ^ ( z  +  1 ) )  ||  A
) ) ) )
Distinct variable groups:    z, A    z, Y
Allowed substitution hint:    X( z)

Proof of Theorem oddpwdclemxy
StepHypRef Expression
1 2nn 9009 . . . . . 6  |-  2  e.  NN
21a1i 9 . . . . 5  |-  ( ( ( ( X  e.  NN  /\  -.  2  ||  X )  /\  Y  e.  NN0 )  /\  A  =  ( ( 2 ^ Y )  x.  X ) )  -> 
2  e.  NN )
3 simplll 523 . . . . . . . . 9  |-  ( ( ( ( X  e.  NN  /\  -.  2  ||  X )  /\  Y  e.  NN0 )  /\  A  =  ( ( 2 ^ Y )  x.  X ) )  ->  X  e.  NN )
43nnzd 9303 . . . . . . . 8  |-  ( ( ( ( X  e.  NN  /\  -.  2  ||  X )  /\  Y  e.  NN0 )  /\  A  =  ( ( 2 ^ Y )  x.  X ) )  ->  X  e.  ZZ )
5 simplr 520 . . . . . . . . . 10  |-  ( ( ( ( X  e.  NN  /\  -.  2  ||  X )  /\  Y  e.  NN0 )  /\  A  =  ( ( 2 ^ Y )  x.  X ) )  ->  Y  e.  NN0 )
62, 5nnexpcld 10599 . . . . . . . . 9  |-  ( ( ( ( X  e.  NN  /\  -.  2  ||  X )  /\  Y  e.  NN0 )  /\  A  =  ( ( 2 ^ Y )  x.  X ) )  -> 
( 2 ^ Y
)  e.  NN )
76nnzd 9303 . . . . . . . 8  |-  ( ( ( ( X  e.  NN  /\  -.  2  ||  X )  /\  Y  e.  NN0 )  /\  A  =  ( ( 2 ^ Y )  x.  X ) )  -> 
( 2 ^ Y
)  e.  ZZ )
8 simpr 109 . . . . . . . . . 10  |-  ( ( ( ( X  e.  NN  /\  -.  2  ||  X )  /\  Y  e.  NN0 )  /\  A  =  ( ( 2 ^ Y )  x.  X ) )  ->  A  =  ( (
2 ^ Y )  x.  X ) )
96, 3nnmulcld 8897 . . . . . . . . . 10  |-  ( ( ( ( X  e.  NN  /\  -.  2  ||  X )  /\  Y  e.  NN0 )  /\  A  =  ( ( 2 ^ Y )  x.  X ) )  -> 
( ( 2 ^ Y )  x.  X
)  e.  NN )
108, 9eqeltrd 2241 . . . . . . . . 9  |-  ( ( ( ( X  e.  NN  /\  -.  2  ||  X )  /\  Y  e.  NN0 )  /\  A  =  ( ( 2 ^ Y )  x.  X ) )  ->  A  e.  NN )
1110nnzd 9303 . . . . . . . 8  |-  ( ( ( ( X  e.  NN  /\  -.  2  ||  X )  /\  Y  e.  NN0 )  /\  A  =  ( ( 2 ^ Y )  x.  X ) )  ->  A  e.  ZZ )
126nncnd 8862 . . . . . . . . . 10  |-  ( ( ( ( X  e.  NN  /\  -.  2  ||  X )  /\  Y  e.  NN0 )  /\  A  =  ( ( 2 ^ Y )  x.  X ) )  -> 
( 2 ^ Y
)  e.  CC )
133nncnd 8862 . . . . . . . . . 10  |-  ( ( ( ( X  e.  NN  /\  -.  2  ||  X )  /\  Y  e.  NN0 )  /\  A  =  ( ( 2 ^ Y )  x.  X ) )  ->  X  e.  CC )
1412, 13mulcomd 7911 . . . . . . . . 9  |-  ( ( ( ( X  e.  NN  /\  -.  2  ||  X )  /\  Y  e.  NN0 )  /\  A  =  ( ( 2 ^ Y )  x.  X ) )  -> 
( ( 2 ^ Y )  x.  X
)  =  ( X  x.  ( 2 ^ Y ) ) )
158, 14eqtr2d 2198 . . . . . . . 8  |-  ( ( ( ( X  e.  NN  /\  -.  2  ||  X )  /\  Y  e.  NN0 )  /\  A  =  ( ( 2 ^ Y )  x.  X ) )  -> 
( X  x.  (
2 ^ Y ) )  =  A )
16 dvds0lem 11727 . . . . . . . 8  |-  ( ( ( X  e.  ZZ  /\  ( 2 ^ Y
)  e.  ZZ  /\  A  e.  ZZ )  /\  ( X  x.  (
2 ^ Y ) )  =  A )  ->  ( 2 ^ Y )  ||  A
)
174, 7, 11, 15, 16syl31anc 1230 . . . . . . 7  |-  ( ( ( ( X  e.  NN  /\  -.  2  ||  X )  /\  Y  e.  NN0 )  /\  A  =  ( ( 2 ^ Y )  x.  X ) )  -> 
( 2 ^ Y
)  ||  A )
18 simpllr 524 . . . . . . . . 9  |-  ( ( ( ( X  e.  NN  /\  -.  2  ||  X )  /\  Y  e.  NN0 )  /\  A  =  ( ( 2 ^ Y )  x.  X ) )  ->  -.  2  ||  X )
198breq2d 3988 . . . . . . . . . 10  |-  ( ( ( ( X  e.  NN  /\  -.  2  ||  X )  /\  Y  e.  NN0 )  /\  A  =  ( ( 2 ^ Y )  x.  X ) )  -> 
( ( ( 2 ^ Y )  x.  2 )  ||  A  <->  ( ( 2 ^ Y
)  x.  2 ) 
||  ( ( 2 ^ Y )  x.  X ) ) )
202nnzd 9303 . . . . . . . . . . 11  |-  ( ( ( ( X  e.  NN  /\  -.  2  ||  X )  /\  Y  e.  NN0 )  /\  A  =  ( ( 2 ^ Y )  x.  X ) )  -> 
2  e.  ZZ )
216nnne0d 8893 . . . . . . . . . . 11  |-  ( ( ( ( X  e.  NN  /\  -.  2  ||  X )  /\  Y  e.  NN0 )  /\  A  =  ( ( 2 ^ Y )  x.  X ) )  -> 
( 2 ^ Y
)  =/=  0 )
22 dvdscmulr 11746 . . . . . . . . . . 11  |-  ( ( 2  e.  ZZ  /\  X  e.  ZZ  /\  (
( 2 ^ Y
)  e.  ZZ  /\  ( 2 ^ Y
)  =/=  0 ) )  ->  ( (
( 2 ^ Y
)  x.  2 ) 
||  ( ( 2 ^ Y )  x.  X )  <->  2  ||  X ) )
2320, 4, 7, 21, 22syl112anc 1231 . . . . . . . . . 10  |-  ( ( ( ( X  e.  NN  /\  -.  2  ||  X )  /\  Y  e.  NN0 )  /\  A  =  ( ( 2 ^ Y )  x.  X ) )  -> 
( ( ( 2 ^ Y )  x.  2 )  ||  (
( 2 ^ Y
)  x.  X )  <->  2  ||  X ) )
2419, 23bitrd 187 . . . . . . . . 9  |-  ( ( ( ( X  e.  NN  /\  -.  2  ||  X )  /\  Y  e.  NN0 )  /\  A  =  ( ( 2 ^ Y )  x.  X ) )  -> 
( ( ( 2 ^ Y )  x.  2 )  ||  A  <->  2 
||  X ) )
2518, 24mtbird 663 . . . . . . . 8  |-  ( ( ( ( X  e.  NN  /\  -.  2  ||  X )  /\  Y  e.  NN0 )  /\  A  =  ( ( 2 ^ Y )  x.  X ) )  ->  -.  ( ( 2 ^ Y )  x.  2 )  ||  A )
262nncnd 8862 . . . . . . . . . 10  |-  ( ( ( ( X  e.  NN  /\  -.  2  ||  X )  /\  Y  e.  NN0 )  /\  A  =  ( ( 2 ^ Y )  x.  X ) )  -> 
2  e.  CC )
2726, 5expp1d 10578 . . . . . . . . 9  |-  ( ( ( ( X  e.  NN  /\  -.  2  ||  X )  /\  Y  e.  NN0 )  /\  A  =  ( ( 2 ^ Y )  x.  X ) )  -> 
( 2 ^ ( Y  +  1 ) )  =  ( ( 2 ^ Y )  x.  2 ) )
2827breq1d 3986 . . . . . . . 8  |-  ( ( ( ( X  e.  NN  /\  -.  2  ||  X )  /\  Y  e.  NN0 )  /\  A  =  ( ( 2 ^ Y )  x.  X ) )  -> 
( ( 2 ^ ( Y  +  1 ) )  ||  A  <->  ( ( 2 ^ Y
)  x.  2 ) 
||  A ) )
2925, 28mtbird 663 . . . . . . 7  |-  ( ( ( ( X  e.  NN  /\  -.  2  ||  X )  /\  Y  e.  NN0 )  /\  A  =  ( ( 2 ^ Y )  x.  X ) )  ->  -.  ( 2 ^ ( Y  +  1 ) )  ||  A )
30 pw2dvdseu 12077 . . . . . . . . 9  |-  ( A  e.  NN  ->  E! z  e.  NN0  ( ( 2 ^ z ) 
||  A  /\  -.  ( 2 ^ (
z  +  1 ) )  ||  A ) )
3110, 30syl 14 . . . . . . . 8  |-  ( ( ( ( X  e.  NN  /\  -.  2  ||  X )  /\  Y  e.  NN0 )  /\  A  =  ( ( 2 ^ Y )  x.  X ) )  ->  E! z  e.  NN0  ( ( 2 ^ z )  ||  A  /\  -.  ( 2 ^ ( z  +  1 ) )  ||  A
) )
32 oveq2 5844 . . . . . . . . . . 11  |-  ( z  =  Y  ->  (
2 ^ z )  =  ( 2 ^ Y ) )
3332breq1d 3986 . . . . . . . . . 10  |-  ( z  =  Y  ->  (
( 2 ^ z
)  ||  A  <->  ( 2 ^ Y )  ||  A ) )
34 oveq1 5843 . . . . . . . . . . . . 13  |-  ( z  =  Y  ->  (
z  +  1 )  =  ( Y  + 
1 ) )
3534oveq2d 5852 . . . . . . . . . . . 12  |-  ( z  =  Y  ->  (
2 ^ ( z  +  1 ) )  =  ( 2 ^ ( Y  +  1 ) ) )
3635breq1d 3986 . . . . . . . . . . 11  |-  ( z  =  Y  ->  (
( 2 ^ (
z  +  1 ) )  ||  A  <->  ( 2 ^ ( Y  + 
1 ) )  ||  A ) )
3736notbid 657 . . . . . . . . . 10  |-  ( z  =  Y  ->  ( -.  ( 2 ^ (
z  +  1 ) )  ||  A  <->  -.  (
2 ^ ( Y  +  1 ) ) 
||  A ) )
3833, 37anbi12d 465 . . . . . . . . 9  |-  ( z  =  Y  ->  (
( ( 2 ^ z )  ||  A  /\  -.  ( 2 ^ ( z  +  1 ) )  ||  A
)  <->  ( ( 2 ^ Y )  ||  A  /\  -.  ( 2 ^ ( Y  + 
1 ) )  ||  A ) ) )
3938riota2 5814 . . . . . . . 8  |-  ( ( Y  e.  NN0  /\  E! z  e.  NN0  ( ( 2 ^ z )  ||  A  /\  -.  ( 2 ^ ( z  +  1 ) )  ||  A
) )  ->  (
( ( 2 ^ Y )  ||  A  /\  -.  ( 2 ^ ( Y  +  1 ) )  ||  A
)  <->  ( iota_ z  e. 
NN0  ( ( 2 ^ z )  ||  A  /\  -.  ( 2 ^ ( z  +  1 ) )  ||  A ) )  =  Y ) )
405, 31, 39syl2anc 409 . . . . . . 7  |-  ( ( ( ( X  e.  NN  /\  -.  2  ||  X )  /\  Y  e.  NN0 )  /\  A  =  ( ( 2 ^ Y )  x.  X ) )  -> 
( ( ( 2 ^ Y )  ||  A  /\  -.  ( 2 ^ ( Y  + 
1 ) )  ||  A )  <->  ( iota_ z  e.  NN0  ( (
2 ^ z ) 
||  A  /\  -.  ( 2 ^ (
z  +  1 ) )  ||  A ) )  =  Y ) )
4117, 29, 40mpbi2and 932 . . . . . 6  |-  ( ( ( ( X  e.  NN  /\  -.  2  ||  X )  /\  Y  e.  NN0 )  /\  A  =  ( ( 2 ^ Y )  x.  X ) )  -> 
( iota_ z  e.  NN0  ( ( 2 ^ z )  ||  A  /\  -.  ( 2 ^ ( z  +  1 ) )  ||  A
) )  =  Y )
4241, 5eqeltrd 2241 . . . . 5  |-  ( ( ( ( X  e.  NN  /\  -.  2  ||  X )  /\  Y  e.  NN0 )  /\  A  =  ( ( 2 ^ Y )  x.  X ) )  -> 
( iota_ z  e.  NN0  ( ( 2 ^ z )  ||  A  /\  -.  ( 2 ^ ( z  +  1 ) )  ||  A
) )  e.  NN0 )
432, 42nnexpcld 10599 . . . 4  |-  ( ( ( ( X  e.  NN  /\  -.  2  ||  X )  /\  Y  e.  NN0 )  /\  A  =  ( ( 2 ^ Y )  x.  X ) )  -> 
( 2 ^ ( iota_ z  e.  NN0  (
( 2 ^ z
)  ||  A  /\  -.  ( 2 ^ (
z  +  1 ) )  ||  A ) ) )  e.  NN )
4443nncnd 8862 . . 3  |-  ( ( ( ( X  e.  NN  /\  -.  2  ||  X )  /\  Y  e.  NN0 )  /\  A  =  ( ( 2 ^ Y )  x.  X ) )  -> 
( 2 ^ ( iota_ z  e.  NN0  (
( 2 ^ z
)  ||  A  /\  -.  ( 2 ^ (
z  +  1 ) )  ||  A ) ) )  e.  CC )
4543nnap0d 8894 . . 3  |-  ( ( ( ( X  e.  NN  /\  -.  2  ||  X )  /\  Y  e.  NN0 )  /\  A  =  ( ( 2 ^ Y )  x.  X ) )  -> 
( 2 ^ ( iota_ z  e.  NN0  (
( 2 ^ z
)  ||  A  /\  -.  ( 2 ^ (
z  +  1 ) )  ||  A ) ) ) #  0 )
4641eqcomd 2170 . . . . . 6  |-  ( ( ( ( X  e.  NN  /\  -.  2  ||  X )  /\  Y  e.  NN0 )  /\  A  =  ( ( 2 ^ Y )  x.  X ) )  ->  Y  =  ( iota_ z  e.  NN0  ( (
2 ^ z ) 
||  A  /\  -.  ( 2 ^ (
z  +  1 ) )  ||  A ) ) )
4746oveq2d 5852 . . . . 5  |-  ( ( ( ( X  e.  NN  /\  -.  2  ||  X )  /\  Y  e.  NN0 )  /\  A  =  ( ( 2 ^ Y )  x.  X ) )  -> 
( 2 ^ Y
)  =  ( 2 ^ ( iota_ z  e. 
NN0  ( ( 2 ^ z )  ||  A  /\  -.  ( 2 ^ ( z  +  1 ) )  ||  A ) ) ) )
4847oveq1d 5851 . . . 4  |-  ( ( ( ( X  e.  NN  /\  -.  2  ||  X )  /\  Y  e.  NN0 )  /\  A  =  ( ( 2 ^ Y )  x.  X ) )  -> 
( ( 2 ^ Y )  x.  X
)  =  ( ( 2 ^ ( iota_ z  e.  NN0  ( (
2 ^ z ) 
||  A  /\  -.  ( 2 ^ (
z  +  1 ) )  ||  A ) ) )  x.  X
) )
498, 48eqtr2d 2198 . . 3  |-  ( ( ( ( X  e.  NN  /\  -.  2  ||  X )  /\  Y  e.  NN0 )  /\  A  =  ( ( 2 ^ Y )  x.  X ) )  -> 
( ( 2 ^ ( iota_ z  e.  NN0  ( ( 2 ^ z )  ||  A  /\  -.  ( 2 ^ ( z  +  1 ) )  ||  A
) ) )  x.  X )  =  A )
5044, 13, 45, 49mvllmulapd 8729 . 2  |-  ( ( ( ( X  e.  NN  /\  -.  2  ||  X )  /\  Y  e.  NN0 )  /\  A  =  ( ( 2 ^ Y )  x.  X ) )  ->  X  =  ( A  /  ( 2 ^ ( iota_ z  e.  NN0  ( ( 2 ^ z )  ||  A  /\  -.  ( 2 ^ ( z  +  1 ) )  ||  A
) ) ) ) )
5150, 46jca 304 1  |-  ( ( ( ( X  e.  NN  /\  -.  2  ||  X )  /\  Y  e.  NN0 )  /\  A  =  ( ( 2 ^ Y )  x.  X ) )  -> 
( X  =  ( A  /  ( 2 ^ ( iota_ z  e. 
NN0  ( ( 2 ^ z )  ||  A  /\  -.  ( 2 ^ ( z  +  1 ) )  ||  A ) ) ) )  /\  Y  =  ( iota_ z  e.  NN0  ( ( 2 ^ z )  ||  A  /\  -.  ( 2 ^ ( z  +  1 ) )  ||  A
) ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1342    e. wcel 2135    =/= wne 2334   E!wreu 2444   class class class wbr 3976   iota_crio 5791  (class class class)co 5836   0cc0 7744   1c1 7745    + caddc 7747    x. cmul 7749    / cdiv 8559   NNcn 8848   2c2 8899   NN0cn0 9105   ZZcz 9182   ^cexp 10444    || cdvds 11713
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1434  ax-7 1435  ax-gen 1436  ax-ie1 1480  ax-ie2 1481  ax-8 1491  ax-10 1492  ax-11 1493  ax-i12 1494  ax-bndl 1496  ax-4 1497  ax-17 1513  ax-i9 1517  ax-ial 1521  ax-i5r 1522  ax-13 2137  ax-14 2138  ax-ext 2146  ax-coll 4091  ax-sep 4094  ax-nul 4102  ax-pow 4147  ax-pr 4181  ax-un 4405  ax-setind 4508  ax-iinf 4559  ax-cnex 7835  ax-resscn 7836  ax-1cn 7837  ax-1re 7838  ax-icn 7839  ax-addcl 7840  ax-addrcl 7841  ax-mulcl 7842  ax-mulrcl 7843  ax-addcom 7844  ax-mulcom 7845  ax-addass 7846  ax-mulass 7847  ax-distr 7848  ax-i2m1 7849  ax-0lt1 7850  ax-1rid 7851  ax-0id 7852  ax-rnegex 7853  ax-precex 7854  ax-cnre 7855  ax-pre-ltirr 7856  ax-pre-ltwlin 7857  ax-pre-lttrn 7858  ax-pre-apti 7859  ax-pre-ltadd 7860  ax-pre-mulgt0 7861  ax-pre-mulext 7862  ax-arch 7863
This theorem depends on definitions:  df-bi 116  df-dc 825  df-3or 968  df-3an 969  df-tru 1345  df-fal 1348  df-nf 1448  df-sb 1750  df-eu 2016  df-mo 2017  df-clab 2151  df-cleq 2157  df-clel 2160  df-nfc 2295  df-ne 2335  df-nel 2430  df-ral 2447  df-rex 2448  df-reu 2449  df-rmo 2450  df-rab 2451  df-v 2723  df-sbc 2947  df-csb 3041  df-dif 3113  df-un 3115  df-in 3117  df-ss 3124  df-nul 3405  df-if 3516  df-pw 3555  df-sn 3576  df-pr 3577  df-op 3579  df-uni 3784  df-int 3819  df-iun 3862  df-br 3977  df-opab 4038  df-mpt 4039  df-tr 4075  df-id 4265  df-po 4268  df-iso 4269  df-iord 4338  df-on 4340  df-ilim 4341  df-suc 4343  df-iom 4562  df-xp 4604  df-rel 4605  df-cnv 4606  df-co 4607  df-dm 4608  df-rn 4609  df-res 4610  df-ima 4611  df-iota 5147  df-fun 5184  df-fn 5185  df-f 5186  df-f1 5187  df-fo 5188  df-f1o 5189  df-fv 5190  df-riota 5792  df-ov 5839  df-oprab 5840  df-mpo 5841  df-1st 6100  df-2nd 6101  df-recs 6264  df-frec 6350  df-pnf 7926  df-mnf 7927  df-xr 7928  df-ltxr 7929  df-le 7930  df-sub 8062  df-neg 8063  df-reap 8464  df-ap 8471  df-div 8560  df-inn 8849  df-2 8907  df-n0 9106  df-z 9183  df-uz 9458  df-q 9549  df-rp 9581  df-fz 9936  df-fl 10195  df-mod 10248  df-seqfrec 10371  df-exp 10445  df-dvds 11714
This theorem is referenced by:  oddpwdclemdc  12082
  Copyright terms: Public domain W3C validator