| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > oddpwdclemxy | Unicode version | ||
| Description: Lemma for oddpwdc 12611. Another way of stating that decomposing a natural number into a power of two and an odd number is unique. (Contributed by Jim Kingdon, 16-Nov-2021.) |
| Ref | Expression |
|---|---|
| oddpwdclemxy |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2nn 9233 |
. . . . . 6
| |
| 2 | 1 | a1i 9 |
. . . . 5
|
| 3 | simplll 533 |
. . . . . . . . 9
| |
| 4 | 3 | nnzd 9529 |
. . . . . . . 8
|
| 5 | simplr 528 |
. . . . . . . . . 10
| |
| 6 | 2, 5 | nnexpcld 10877 |
. . . . . . . . 9
|
| 7 | 6 | nnzd 9529 |
. . . . . . . 8
|
| 8 | simpr 110 |
. . . . . . . . . 10
| |
| 9 | 6, 3 | nnmulcld 9120 |
. . . . . . . . . 10
|
| 10 | 8, 9 | eqeltrd 2284 |
. . . . . . . . 9
|
| 11 | 10 | nnzd 9529 |
. . . . . . . 8
|
| 12 | 6 | nncnd 9085 |
. . . . . . . . . 10
|
| 13 | 3 | nncnd 9085 |
. . . . . . . . . 10
|
| 14 | 12, 13 | mulcomd 8129 |
. . . . . . . . 9
|
| 15 | 8, 14 | eqtr2d 2241 |
. . . . . . . 8
|
| 16 | dvds0lem 12227 |
. . . . . . . 8
| |
| 17 | 4, 7, 11, 15, 16 | syl31anc 1253 |
. . . . . . 7
|
| 18 | simpllr 534 |
. . . . . . . . 9
| |
| 19 | 8 | breq2d 4071 |
. . . . . . . . . 10
|
| 20 | 2 | nnzd 9529 |
. . . . . . . . . . 11
|
| 21 | 6 | nnne0d 9116 |
. . . . . . . . . . 11
|
| 22 | dvdscmulr 12246 |
. . . . . . . . . . 11
| |
| 23 | 20, 4, 7, 21, 22 | syl112anc 1254 |
. . . . . . . . . 10
|
| 24 | 19, 23 | bitrd 188 |
. . . . . . . . 9
|
| 25 | 18, 24 | mtbird 675 |
. . . . . . . 8
|
| 26 | 2 | nncnd 9085 |
. . . . . . . . . 10
|
| 27 | 26, 5 | expp1d 10856 |
. . . . . . . . 9
|
| 28 | 27 | breq1d 4069 |
. . . . . . . 8
|
| 29 | 25, 28 | mtbird 675 |
. . . . . . 7
|
| 30 | pw2dvdseu 12605 |
. . . . . . . . 9
| |
| 31 | 10, 30 | syl 14 |
. . . . . . . 8
|
| 32 | oveq2 5975 |
. . . . . . . . . . 11
| |
| 33 | 32 | breq1d 4069 |
. . . . . . . . . 10
|
| 34 | oveq1 5974 |
. . . . . . . . . . . . 13
| |
| 35 | 34 | oveq2d 5983 |
. . . . . . . . . . . 12
|
| 36 | 35 | breq1d 4069 |
. . . . . . . . . . 11
|
| 37 | 36 | notbid 669 |
. . . . . . . . . 10
|
| 38 | 33, 37 | anbi12d 473 |
. . . . . . . . 9
|
| 39 | 38 | riota2 5945 |
. . . . . . . 8
|
| 40 | 5, 31, 39 | syl2anc 411 |
. . . . . . 7
|
| 41 | 17, 29, 40 | mpbi2and 946 |
. . . . . 6
|
| 42 | 41, 5 | eqeltrd 2284 |
. . . . 5
|
| 43 | 2, 42 | nnexpcld 10877 |
. . . 4
|
| 44 | 43 | nncnd 9085 |
. . 3
|
| 45 | 43 | nnap0d 9117 |
. . 3
|
| 46 | 41 | eqcomd 2213 |
. . . . . 6
|
| 47 | 46 | oveq2d 5983 |
. . . . 5
|
| 48 | 47 | oveq1d 5982 |
. . . 4
|
| 49 | 8, 48 | eqtr2d 2241 |
. . 3
|
| 50 | 44, 13, 45, 49 | mvllmulapd 8950 |
. 2
|
| 51 | 50, 46 | jca 306 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-coll 4175 ax-sep 4178 ax-nul 4186 ax-pow 4234 ax-pr 4269 ax-un 4498 ax-setind 4603 ax-iinf 4654 ax-cnex 8051 ax-resscn 8052 ax-1cn 8053 ax-1re 8054 ax-icn 8055 ax-addcl 8056 ax-addrcl 8057 ax-mulcl 8058 ax-mulrcl 8059 ax-addcom 8060 ax-mulcom 8061 ax-addass 8062 ax-mulass 8063 ax-distr 8064 ax-i2m1 8065 ax-0lt1 8066 ax-1rid 8067 ax-0id 8068 ax-rnegex 8069 ax-precex 8070 ax-cnre 8071 ax-pre-ltirr 8072 ax-pre-ltwlin 8073 ax-pre-lttrn 8074 ax-pre-apti 8075 ax-pre-ltadd 8076 ax-pre-mulgt0 8077 ax-pre-mulext 8078 ax-arch 8079 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ne 2379 df-nel 2474 df-ral 2491 df-rex 2492 df-reu 2493 df-rmo 2494 df-rab 2495 df-v 2778 df-sbc 3006 df-csb 3102 df-dif 3176 df-un 3178 df-in 3180 df-ss 3187 df-nul 3469 df-if 3580 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-int 3900 df-iun 3943 df-br 4060 df-opab 4122 df-mpt 4123 df-tr 4159 df-id 4358 df-po 4361 df-iso 4362 df-iord 4431 df-on 4433 df-ilim 4434 df-suc 4436 df-iom 4657 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-rn 4704 df-res 4705 df-ima 4706 df-iota 5251 df-fun 5292 df-fn 5293 df-f 5294 df-f1 5295 df-fo 5296 df-f1o 5297 df-fv 5298 df-riota 5922 df-ov 5970 df-oprab 5971 df-mpo 5972 df-1st 6249 df-2nd 6250 df-recs 6414 df-frec 6500 df-pnf 8144 df-mnf 8145 df-xr 8146 df-ltxr 8147 df-le 8148 df-sub 8280 df-neg 8281 df-reap 8683 df-ap 8690 df-div 8781 df-inn 9072 df-2 9130 df-n0 9331 df-z 9408 df-uz 9684 df-q 9776 df-rp 9811 df-fz 10166 df-fl 10450 df-mod 10505 df-seqfrec 10630 df-exp 10721 df-dvds 12214 |
| This theorem is referenced by: oddpwdclemdc 12610 |
| Copyright terms: Public domain | W3C validator |