ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ismgmid2 Unicode version

Theorem ismgmid2 12963
Description: Show that a given element is the identity element of a magma. (Contributed by Mario Carneiro, 27-Dec-2014.)
Hypotheses
Ref Expression
ismgmid.b  |-  B  =  ( Base `  G
)
ismgmid.o  |-  .0.  =  ( 0g `  G )
ismgmid.p  |-  .+  =  ( +g  `  G )
ismgmid2.u  |-  ( ph  ->  U  e.  B )
ismgmid2.l  |-  ( (
ph  /\  x  e.  B )  ->  ( U  .+  x )  =  x )
ismgmid2.r  |-  ( (
ph  /\  x  e.  B )  ->  (
x  .+  U )  =  x )
Assertion
Ref Expression
ismgmid2  |-  ( ph  ->  U  =  .0.  )
Distinct variable groups:    x,  .+    x,  .0.    x, B    x, G    x, U    ph, x

Proof of Theorem ismgmid2
Dummy variable  e is distinct from all other variables.
StepHypRef Expression
1 ismgmid2.u . . 3  |-  ( ph  ->  U  e.  B )
2 ismgmid2.l . . . . 5  |-  ( (
ph  /\  x  e.  B )  ->  ( U  .+  x )  =  x )
3 ismgmid2.r . . . . 5  |-  ( (
ph  /\  x  e.  B )  ->  (
x  .+  U )  =  x )
42, 3jca 306 . . . 4  |-  ( (
ph  /\  x  e.  B )  ->  (
( U  .+  x
)  =  x  /\  ( x  .+  U )  =  x ) )
54ralrimiva 2567 . . 3  |-  ( ph  ->  A. x  e.  B  ( ( U  .+  x )  =  x  /\  ( x  .+  U )  =  x ) )
6 ismgmid.b . . . 4  |-  B  =  ( Base `  G
)
7 ismgmid.o . . . 4  |-  .0.  =  ( 0g `  G )
8 ismgmid.p . . . 4  |-  .+  =  ( +g  `  G )
9 oveq1 5925 . . . . . . . 8  |-  ( e  =  U  ->  (
e  .+  x )  =  ( U  .+  x ) )
109eqeq1d 2202 . . . . . . 7  |-  ( e  =  U  ->  (
( e  .+  x
)  =  x  <->  ( U  .+  x )  =  x ) )
1110ovanraleqv 5942 . . . . . 6  |-  ( e  =  U  ->  ( A. x  e.  B  ( ( e  .+  x )  =  x  /\  ( x  .+  e )  =  x )  <->  A. x  e.  B  ( ( U  .+  x )  =  x  /\  ( x  .+  U )  =  x ) ) )
1211rspcev 2864 . . . . 5  |-  ( ( U  e.  B  /\  A. x  e.  B  ( ( U  .+  x
)  =  x  /\  ( x  .+  U )  =  x ) )  ->  E. e  e.  B  A. x  e.  B  ( ( e  .+  x )  =  x  /\  ( x  .+  e )  =  x ) )
131, 5, 12syl2anc 411 . . . 4  |-  ( ph  ->  E. e  e.  B  A. x  e.  B  ( ( e  .+  x )  =  x  /\  ( x  .+  e )  =  x ) )
146, 7, 8, 13ismgmid 12960 . . 3  |-  ( ph  ->  ( ( U  e.  B  /\  A. x  e.  B  ( ( U  .+  x )  =  x  /\  ( x 
.+  U )  =  x ) )  <->  .0.  =  U ) )
151, 5, 14mpbi2and 945 . 2  |-  ( ph  ->  .0.  =  U )
1615eqcomd 2199 1  |-  ( ph  ->  U  =  .0.  )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1364    e. wcel 2164   A.wral 2472   E.wrex 2473   ` cfv 5254  (class class class)co 5918   Basecbs 12618   +g cplusg 12695   0gc0g 12867
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-cnex 7963  ax-resscn 7964  ax-1re 7966  ax-addrcl 7969
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-br 4030  df-opab 4091  df-mpt 4092  df-id 4324  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-iota 5215  df-fun 5256  df-fn 5257  df-fv 5262  df-riota 5873  df-ov 5921  df-inn 8983  df-ndx 12621  df-slot 12622  df-base 12624  df-0g 12869
This theorem is referenced by:  lidrididd  12965  grpidd  12966  mhmid  13185  ringidss  13525
  Copyright terms: Public domain W3C validator