Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ismgmid2 | Unicode version |
Description: Show that a given element is the identity element of a magma. (Contributed by Mario Carneiro, 27-Dec-2014.) |
Ref | Expression |
---|---|
ismgmid.b | |
ismgmid.o | |
ismgmid.p | |
ismgmid2.u | |
ismgmid2.l | |
ismgmid2.r |
Ref | Expression |
---|---|
ismgmid2 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ismgmid2.u | . . 3 | |
2 | ismgmid2.l | . . . . 5 | |
3 | ismgmid2.r | . . . . 5 | |
4 | 2, 3 | jca 306 | . . . 4 |
5 | 4 | ralrimiva 2548 | . . 3 |
6 | ismgmid.b | . . . 4 | |
7 | ismgmid.o | . . . 4 | |
8 | ismgmid.p | . . . 4 | |
9 | oveq1 5872 | . . . . . . . 8 | |
10 | 9 | eqeq1d 2184 | . . . . . . 7 |
11 | 10 | ovanraleqv 5889 | . . . . . 6 |
12 | 11 | rspcev 2839 | . . . . 5 |
13 | 1, 5, 12 | syl2anc 411 | . . . 4 |
14 | 6, 7, 8, 13 | ismgmid 12660 | . . 3 |
15 | 1, 5, 14 | mpbi2and 943 | . 2 |
16 | 15 | eqcomd 2181 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 104 wceq 1353 wcel 2146 wral 2453 wrex 2454 cfv 5208 (class class class)co 5865 cbs 12427 cplusg 12491 c0g 12625 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-13 2148 ax-14 2149 ax-ext 2157 ax-sep 4116 ax-pow 4169 ax-pr 4203 ax-un 4427 ax-cnex 7877 ax-resscn 7878 ax-1re 7880 ax-addrcl 7883 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1459 df-sb 1761 df-eu 2027 df-mo 2028 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-ral 2458 df-rex 2459 df-reu 2460 df-rmo 2461 df-rab 2462 df-v 2737 df-sbc 2961 df-csb 3056 df-un 3131 df-in 3133 df-ss 3140 df-pw 3574 df-sn 3595 df-pr 3596 df-op 3598 df-uni 3806 df-int 3841 df-br 3999 df-opab 4060 df-mpt 4061 df-id 4287 df-xp 4626 df-rel 4627 df-cnv 4628 df-co 4629 df-dm 4630 df-rn 4631 df-res 4632 df-iota 5170 df-fun 5210 df-fn 5211 df-fv 5216 df-riota 5821 df-ov 5868 df-inn 8891 df-ndx 12430 df-slot 12431 df-base 12433 df-0g 12627 |
This theorem is referenced by: lidrididd 12665 grpidd 12666 mhmid 12838 |
Copyright terms: Public domain | W3C validator |