ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ismgmid2 Unicode version

Theorem ismgmid2 12663
Description: Show that a given element is the identity element of a magma. (Contributed by Mario Carneiro, 27-Dec-2014.)
Hypotheses
Ref Expression
ismgmid.b  |-  B  =  ( Base `  G
)
ismgmid.o  |-  .0.  =  ( 0g `  G )
ismgmid.p  |-  .+  =  ( +g  `  G )
ismgmid2.u  |-  ( ph  ->  U  e.  B )
ismgmid2.l  |-  ( (
ph  /\  x  e.  B )  ->  ( U  .+  x )  =  x )
ismgmid2.r  |-  ( (
ph  /\  x  e.  B )  ->  (
x  .+  U )  =  x )
Assertion
Ref Expression
ismgmid2  |-  ( ph  ->  U  =  .0.  )
Distinct variable groups:    x,  .+    x,  .0.    x, B    x, G    x, U    ph, x

Proof of Theorem ismgmid2
Dummy variable  e is distinct from all other variables.
StepHypRef Expression
1 ismgmid2.u . . 3  |-  ( ph  ->  U  e.  B )
2 ismgmid2.l . . . . 5  |-  ( (
ph  /\  x  e.  B )  ->  ( U  .+  x )  =  x )
3 ismgmid2.r . . . . 5  |-  ( (
ph  /\  x  e.  B )  ->  (
x  .+  U )  =  x )
42, 3jca 306 . . . 4  |-  ( (
ph  /\  x  e.  B )  ->  (
( U  .+  x
)  =  x  /\  ( x  .+  U )  =  x ) )
54ralrimiva 2548 . . 3  |-  ( ph  ->  A. x  e.  B  ( ( U  .+  x )  =  x  /\  ( x  .+  U )  =  x ) )
6 ismgmid.b . . . 4  |-  B  =  ( Base `  G
)
7 ismgmid.o . . . 4  |-  .0.  =  ( 0g `  G )
8 ismgmid.p . . . 4  |-  .+  =  ( +g  `  G )
9 oveq1 5872 . . . . . . . 8  |-  ( e  =  U  ->  (
e  .+  x )  =  ( U  .+  x ) )
109eqeq1d 2184 . . . . . . 7  |-  ( e  =  U  ->  (
( e  .+  x
)  =  x  <->  ( U  .+  x )  =  x ) )
1110ovanraleqv 5889 . . . . . 6  |-  ( e  =  U  ->  ( A. x  e.  B  ( ( e  .+  x )  =  x  /\  ( x  .+  e )  =  x )  <->  A. x  e.  B  ( ( U  .+  x )  =  x  /\  ( x  .+  U )  =  x ) ) )
1211rspcev 2839 . . . . 5  |-  ( ( U  e.  B  /\  A. x  e.  B  ( ( U  .+  x
)  =  x  /\  ( x  .+  U )  =  x ) )  ->  E. e  e.  B  A. x  e.  B  ( ( e  .+  x )  =  x  /\  ( x  .+  e )  =  x ) )
131, 5, 12syl2anc 411 . . . 4  |-  ( ph  ->  E. e  e.  B  A. x  e.  B  ( ( e  .+  x )  =  x  /\  ( x  .+  e )  =  x ) )
146, 7, 8, 13ismgmid 12660 . . 3  |-  ( ph  ->  ( ( U  e.  B  /\  A. x  e.  B  ( ( U  .+  x )  =  x  /\  ( x 
.+  U )  =  x ) )  <->  .0.  =  U ) )
151, 5, 14mpbi2and 943 . 2  |-  ( ph  ->  .0.  =  U )
1615eqcomd 2181 1  |-  ( ph  ->  U  =  .0.  )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1353    e. wcel 2146   A.wral 2453   E.wrex 2454   ` cfv 5208  (class class class)co 5865   Basecbs 12427   +g cplusg 12491   0gc0g 12625
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1445  ax-7 1446  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-8 1502  ax-10 1503  ax-11 1504  ax-i12 1505  ax-bndl 1507  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532  ax-i5r 1533  ax-13 2148  ax-14 2149  ax-ext 2157  ax-sep 4116  ax-pow 4169  ax-pr 4203  ax-un 4427  ax-cnex 7877  ax-resscn 7878  ax-1re 7880  ax-addrcl 7883
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1459  df-sb 1761  df-eu 2027  df-mo 2028  df-clab 2162  df-cleq 2168  df-clel 2171  df-nfc 2306  df-ral 2458  df-rex 2459  df-reu 2460  df-rmo 2461  df-rab 2462  df-v 2737  df-sbc 2961  df-csb 3056  df-un 3131  df-in 3133  df-ss 3140  df-pw 3574  df-sn 3595  df-pr 3596  df-op 3598  df-uni 3806  df-int 3841  df-br 3999  df-opab 4060  df-mpt 4061  df-id 4287  df-xp 4626  df-rel 4627  df-cnv 4628  df-co 4629  df-dm 4630  df-rn 4631  df-res 4632  df-iota 5170  df-fun 5210  df-fn 5211  df-fv 5216  df-riota 5821  df-ov 5868  df-inn 8891  df-ndx 12430  df-slot 12431  df-base 12433  df-0g 12627
This theorem is referenced by:  lidrididd  12665  grpidd  12666  mhmid  12838
  Copyright terms: Public domain W3C validator