Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ismgmid2 | Unicode version |
Description: Show that a given element is the identity element of a magma. (Contributed by Mario Carneiro, 27-Dec-2014.) |
Ref | Expression |
---|---|
ismgmid.b | |
ismgmid.o | |
ismgmid.p | |
ismgmid2.u | |
ismgmid2.l | |
ismgmid2.r |
Ref | Expression |
---|---|
ismgmid2 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ismgmid2.u | . . 3 | |
2 | ismgmid2.l | . . . . 5 | |
3 | ismgmid2.r | . . . . 5 | |
4 | 2, 3 | jca 304 | . . . 4 |
5 | 4 | ralrimiva 2539 | . . 3 |
6 | ismgmid.b | . . . 4 | |
7 | ismgmid.o | . . . 4 | |
8 | ismgmid.p | . . . 4 | |
9 | oveq1 5849 | . . . . . . . 8 | |
10 | 9 | eqeq1d 2174 | . . . . . . 7 |
11 | 10 | ovanraleqv 5866 | . . . . . 6 |
12 | 11 | rspcev 2830 | . . . . 5 |
13 | 1, 5, 12 | syl2anc 409 | . . . 4 |
14 | 6, 7, 8, 13 | ismgmid 12608 | . . 3 |
15 | 1, 5, 14 | mpbi2and 933 | . 2 |
16 | 15 | eqcomd 2171 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wceq 1343 wcel 2136 wral 2444 wrex 2445 cfv 5188 (class class class)co 5842 cbs 12394 cplusg 12457 c0g 12573 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-cnex 7844 ax-resscn 7845 ax-1re 7847 ax-addrcl 7850 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-reu 2451 df-rmo 2452 df-rab 2453 df-v 2728 df-sbc 2952 df-csb 3046 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-int 3825 df-br 3983 df-opab 4044 df-mpt 4045 df-id 4271 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-iota 5153 df-fun 5190 df-fn 5191 df-fv 5196 df-riota 5798 df-ov 5845 df-inn 8858 df-ndx 12397 df-slot 12398 df-base 12400 df-0g 12575 |
This theorem is referenced by: lidrididd 12613 grpidd 12614 |
Copyright terms: Public domain | W3C validator |