ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  divalgmod Unicode version

Theorem divalgmod 11897
Description: The result of the  mod operator satisfies the requirements for the remainder  R in the division algorithm for a positive divisor (compare divalg2 11896 and divalgb 11895). This demonstration theorem justifies the use of  mod to yield an explicit remainder from this point forward. (Contributed by Paul Chapman, 31-Mar-2011.) (Revised by AV, 21-Aug-2021.)
Assertion
Ref Expression
divalgmod  |-  ( ( N  e.  ZZ  /\  D  e.  NN )  ->  ( R  =  ( N  mod  D )  <-> 
( R  e.  NN0  /\  ( R  <  D  /\  D  ||  ( N  -  R ) ) ) ) )

Proof of Theorem divalgmod
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 zq 9597 . . . . . . . 8  |-  ( N  e.  ZZ  ->  N  e.  QQ )
21adantr 276 . . . . . . 7  |-  ( ( N  e.  ZZ  /\  D  e.  NN )  ->  N  e.  QQ )
3 nnq 9604 . . . . . . . 8  |-  ( D  e.  NN  ->  D  e.  QQ )
43adantl 277 . . . . . . 7  |-  ( ( N  e.  ZZ  /\  D  e.  NN )  ->  D  e.  QQ )
5 simpr 110 . . . . . . . 8  |-  ( ( N  e.  ZZ  /\  D  e.  NN )  ->  D  e.  NN )
65nngt0d 8934 . . . . . . 7  |-  ( ( N  e.  ZZ  /\  D  e.  NN )  ->  0  <  D )
72, 4, 6modqcld 10296 . . . . . 6  |-  ( ( N  e.  ZZ  /\  D  e.  NN )  ->  ( N  mod  D
)  e.  QQ )
8 snidg 3618 . . . . . 6  |-  ( ( N  mod  D )  e.  QQ  ->  ( N  mod  D )  e. 
{ ( N  mod  D ) } )
97, 8syl 14 . . . . 5  |-  ( ( N  e.  ZZ  /\  D  e.  NN )  ->  ( N  mod  D
)  e.  { ( N  mod  D ) } )
10 eleq1 2238 . . . . 5  |-  ( R  =  ( N  mod  D )  ->  ( R  e.  { ( N  mod  D ) }  <->  ( N  mod  D )  e.  {
( N  mod  D
) } ) )
119, 10syl5ibrcom 157 . . . 4  |-  ( ( N  e.  ZZ  /\  D  e.  NN )  ->  ( R  =  ( N  mod  D )  ->  R  e.  {
( N  mod  D
) } ) )
12 elsni 3607 . . . 4  |-  ( R  e.  { ( N  mod  D ) }  ->  R  =  ( N  mod  D ) )
1311, 12impbid1 142 . . 3  |-  ( ( N  e.  ZZ  /\  D  e.  NN )  ->  ( R  =  ( N  mod  D )  <-> 
R  e.  { ( N  mod  D ) } ) )
14 modqlt 10301 . . . . . . . . 9  |-  ( ( N  e.  QQ  /\  D  e.  QQ  /\  0  <  D )  ->  ( N  mod  D )  < 
D )
152, 4, 6, 14syl3anc 1238 . . . . . . . 8  |-  ( ( N  e.  ZZ  /\  D  e.  NN )  ->  ( N  mod  D
)  <  D )
16 znq 9595 . . . . . . . . . 10  |-  ( ( N  e.  ZZ  /\  D  e.  NN )  ->  ( N  /  D
)  e.  QQ )
1716flqcld 10245 . . . . . . . . 9  |-  ( ( N  e.  ZZ  /\  D  e.  NN )  ->  ( |_ `  ( N  /  D ) )  e.  ZZ )
18 nnz 9243 . . . . . . . . . 10  |-  ( D  e.  NN  ->  D  e.  ZZ )
1918adantl 277 . . . . . . . . 9  |-  ( ( N  e.  ZZ  /\  D  e.  NN )  ->  D  e.  ZZ )
20 zmodcl 10312 . . . . . . . . . . 11  |-  ( ( N  e.  ZZ  /\  D  e.  NN )  ->  ( N  mod  D
)  e.  NN0 )
2120nn0zd 9344 . . . . . . . . . 10  |-  ( ( N  e.  ZZ  /\  D  e.  NN )  ->  ( N  mod  D
)  e.  ZZ )
22 zsubcl 9265 . . . . . . . . . 10  |-  ( ( N  e.  ZZ  /\  ( N  mod  D )  e.  ZZ )  -> 
( N  -  ( N  mod  D ) )  e.  ZZ )
2321, 22syldan 282 . . . . . . . . 9  |-  ( ( N  e.  ZZ  /\  D  e.  NN )  ->  ( N  -  ( N  mod  D ) )  e.  ZZ )
24 nncn 8898 . . . . . . . . . . . 12  |-  ( D  e.  NN  ->  D  e.  CC )
2524adantl 277 . . . . . . . . . . 11  |-  ( ( N  e.  ZZ  /\  D  e.  NN )  ->  D  e.  CC )
2617zcnd 9347 . . . . . . . . . . 11  |-  ( ( N  e.  ZZ  /\  D  e.  NN )  ->  ( |_ `  ( N  /  D ) )  e.  CC )
2725, 26mulcomd 7953 . . . . . . . . . 10  |-  ( ( N  e.  ZZ  /\  D  e.  NN )  ->  ( D  x.  ( |_ `  ( N  /  D ) ) )  =  ( ( |_
`  ( N  /  D ) )  x.  D ) )
28 modqval 10292 . . . . . . . . . . . 12  |-  ( ( N  e.  QQ  /\  D  e.  QQ  /\  0  <  D )  ->  ( N  mod  D )  =  ( N  -  ( D  x.  ( |_ `  ( N  /  D
) ) ) ) )
292, 4, 6, 28syl3anc 1238 . . . . . . . . . . 11  |-  ( ( N  e.  ZZ  /\  D  e.  NN )  ->  ( N  mod  D
)  =  ( N  -  ( D  x.  ( |_ `  ( N  /  D ) ) ) ) )
3020nn0cnd 9202 . . . . . . . . . . . 12  |-  ( ( N  e.  ZZ  /\  D  e.  NN )  ->  ( N  mod  D
)  e.  CC )
31 zmulcl 9277 . . . . . . . . . . . . . 14  |-  ( ( D  e.  ZZ  /\  ( |_ `  ( N  /  D ) )  e.  ZZ )  -> 
( D  x.  ( |_ `  ( N  /  D ) ) )  e.  ZZ )
3218, 17, 31syl2an2 594 . . . . . . . . . . . . 13  |-  ( ( N  e.  ZZ  /\  D  e.  NN )  ->  ( D  x.  ( |_ `  ( N  /  D ) ) )  e.  ZZ )
3332zcnd 9347 . . . . . . . . . . . 12  |-  ( ( N  e.  ZZ  /\  D  e.  NN )  ->  ( D  x.  ( |_ `  ( N  /  D ) ) )  e.  CC )
34 zcn 9229 . . . . . . . . . . . . 13  |-  ( N  e.  ZZ  ->  N  e.  CC )
3534adantr 276 . . . . . . . . . . . 12  |-  ( ( N  e.  ZZ  /\  D  e.  NN )  ->  N  e.  CC )
3630, 33, 35subexsub 8303 . . . . . . . . . . 11  |-  ( ( N  e.  ZZ  /\  D  e.  NN )  ->  ( ( N  mod  D )  =  ( N  -  ( D  x.  ( |_ `  ( N  /  D ) ) ) )  <->  ( D  x.  ( |_ `  ( N  /  D ) ) )  =  ( N  -  ( N  mod  D ) ) ) )
3729, 36mpbid 147 . . . . . . . . . 10  |-  ( ( N  e.  ZZ  /\  D  e.  NN )  ->  ( D  x.  ( |_ `  ( N  /  D ) ) )  =  ( N  -  ( N  mod  D ) ) )
3827, 37eqtr3d 2210 . . . . . . . . 9  |-  ( ( N  e.  ZZ  /\  D  e.  NN )  ->  ( ( |_ `  ( N  /  D
) )  x.  D
)  =  ( N  -  ( N  mod  D ) ) )
39 dvds0lem 11774 . . . . . . . . 9  |-  ( ( ( ( |_ `  ( N  /  D
) )  e.  ZZ  /\  D  e.  ZZ  /\  ( N  -  ( N  mod  D ) )  e.  ZZ )  /\  ( ( |_ `  ( N  /  D
) )  x.  D
)  =  ( N  -  ( N  mod  D ) ) )  ->  D  ||  ( N  -  ( N  mod  D ) ) )
4017, 19, 23, 38, 39syl31anc 1241 . . . . . . . 8  |-  ( ( N  e.  ZZ  /\  D  e.  NN )  ->  D  ||  ( N  -  ( N  mod  D ) ) )
41 divalg2 11896 . . . . . . . . 9  |-  ( ( N  e.  ZZ  /\  D  e.  NN )  ->  E! z  e.  NN0  ( z  <  D  /\  D  ||  ( N  -  z ) ) )
42 breq1 4001 . . . . . . . . . . 11  |-  ( z  =  ( N  mod  D )  ->  ( z  <  D  <->  ( N  mod  D )  <  D ) )
43 oveq2 5873 . . . . . . . . . . . 12  |-  ( z  =  ( N  mod  D )  ->  ( N  -  z )  =  ( N  -  ( N  mod  D ) ) )
4443breq2d 4010 . . . . . . . . . . 11  |-  ( z  =  ( N  mod  D )  ->  ( D  ||  ( N  -  z
)  <->  D  ||  ( N  -  ( N  mod  D ) ) ) )
4542, 44anbi12d 473 . . . . . . . . . 10  |-  ( z  =  ( N  mod  D )  ->  ( (
z  <  D  /\  D  ||  ( N  -  z ) )  <->  ( ( N  mod  D )  < 
D  /\  D  ||  ( N  -  ( N  mod  D ) ) ) ) )
4645riota2 5843 . . . . . . . . 9  |-  ( ( ( N  mod  D
)  e.  NN0  /\  E! z  e.  NN0  ( z  <  D  /\  D  ||  ( N  -  z ) ) )  ->  ( (
( N  mod  D
)  <  D  /\  D  ||  ( N  -  ( N  mod  D ) ) )  <->  ( iota_ z  e.  NN0  ( z  <  D  /\  D  ||  ( N  -  z
) ) )  =  ( N  mod  D
) ) )
4720, 41, 46syl2anc 411 . . . . . . . 8  |-  ( ( N  e.  ZZ  /\  D  e.  NN )  ->  ( ( ( N  mod  D )  < 
D  /\  D  ||  ( N  -  ( N  mod  D ) ) )  <-> 
( iota_ z  e.  NN0  ( z  <  D  /\  D  ||  ( N  -  z ) ) )  =  ( N  mod  D ) ) )
4815, 40, 47mpbi2and 943 . . . . . . 7  |-  ( ( N  e.  ZZ  /\  D  e.  NN )  ->  ( iota_ z  e.  NN0  ( z  <  D  /\  D  ||  ( N  -  z ) ) )  =  ( N  mod  D ) )
4948eqcomd 2181 . . . . . 6  |-  ( ( N  e.  ZZ  /\  D  e.  NN )  ->  ( N  mod  D
)  =  ( iota_ z  e.  NN0  ( z  <  D  /\  D  ||  ( N  -  z
) ) ) )
5049sneqd 3602 . . . . 5  |-  ( ( N  e.  ZZ  /\  D  e.  NN )  ->  { ( N  mod  D ) }  =  {
( iota_ z  e.  NN0  ( z  <  D  /\  D  ||  ( N  -  z ) ) ) } )
51 snriota 5850 . . . . . 6  |-  ( E! z  e.  NN0  (
z  <  D  /\  D  ||  ( N  -  z ) )  ->  { z  e.  NN0  |  ( z  <  D  /\  D  ||  ( N  -  z ) ) }  =  { (
iota_ z  e.  NN0  ( z  <  D  /\  D  ||  ( N  -  z ) ) ) } )
5241, 51syl 14 . . . . 5  |-  ( ( N  e.  ZZ  /\  D  e.  NN )  ->  { z  e.  NN0  |  ( z  <  D  /\  D  ||  ( N  -  z ) ) }  =  { (
iota_ z  e.  NN0  ( z  <  D  /\  D  ||  ( N  -  z ) ) ) } )
5350, 52eqtr4d 2211 . . . 4  |-  ( ( N  e.  ZZ  /\  D  e.  NN )  ->  { ( N  mod  D ) }  =  {
z  e.  NN0  | 
( z  <  D  /\  D  ||  ( N  -  z ) ) } )
5453eleq2d 2245 . . 3  |-  ( ( N  e.  ZZ  /\  D  e.  NN )  ->  ( R  e.  {
( N  mod  D
) }  <->  R  e.  { z  e.  NN0  | 
( z  <  D  /\  D  ||  ( N  -  z ) ) } ) )
5513, 54bitrd 188 . 2  |-  ( ( N  e.  ZZ  /\  D  e.  NN )  ->  ( R  =  ( N  mod  D )  <-> 
R  e.  { z  e.  NN0  |  (
z  <  D  /\  D  ||  ( N  -  z ) ) } ) )
56 breq1 4001 . . . 4  |-  ( z  =  R  ->  (
z  <  D  <->  R  <  D ) )
57 oveq2 5873 . . . . 5  |-  ( z  =  R  ->  ( N  -  z )  =  ( N  -  R ) )
5857breq2d 4010 . . . 4  |-  ( z  =  R  ->  ( D  ||  ( N  -  z )  <->  D  ||  ( N  -  R )
) )
5956, 58anbi12d 473 . . 3  |-  ( z  =  R  ->  (
( z  <  D  /\  D  ||  ( N  -  z ) )  <-> 
( R  <  D  /\  D  ||  ( N  -  R ) ) ) )
6059elrab 2891 . 2  |-  ( R  e.  { z  e. 
NN0  |  ( z  <  D  /\  D  ||  ( N  -  z
) ) }  <->  ( R  e.  NN0  /\  ( R  <  D  /\  D  ||  ( N  -  R
) ) ) )
6155, 60bitrdi 196 1  |-  ( ( N  e.  ZZ  /\  D  e.  NN )  ->  ( R  =  ( N  mod  D )  <-> 
( R  e.  NN0  /\  ( R  <  D  /\  D  ||  ( N  -  R ) ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1353    e. wcel 2146   E!wreu 2455   {crab 2457   {csn 3589   class class class wbr 3998   ` cfv 5208   iota_crio 5820  (class class class)co 5865   CCcc 7784   0cc0 7786    x. cmul 7791    < clt 7966    - cmin 8102    / cdiv 8601   NNcn 8890   NN0cn0 9147   ZZcz 9224   QQcq 9590   |_cfl 10236    mod cmo 10290    || cdvds 11760
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1445  ax-7 1446  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-8 1502  ax-10 1503  ax-11 1504  ax-i12 1505  ax-bndl 1507  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532  ax-i5r 1533  ax-13 2148  ax-14 2149  ax-ext 2157  ax-coll 4113  ax-sep 4116  ax-nul 4124  ax-pow 4169  ax-pr 4203  ax-un 4427  ax-setind 4530  ax-iinf 4581  ax-cnex 7877  ax-resscn 7878  ax-1cn 7879  ax-1re 7880  ax-icn 7881  ax-addcl 7882  ax-addrcl 7883  ax-mulcl 7884  ax-mulrcl 7885  ax-addcom 7886  ax-mulcom 7887  ax-addass 7888  ax-mulass 7889  ax-distr 7890  ax-i2m1 7891  ax-0lt1 7892  ax-1rid 7893  ax-0id 7894  ax-rnegex 7895  ax-precex 7896  ax-cnre 7897  ax-pre-ltirr 7898  ax-pre-ltwlin 7899  ax-pre-lttrn 7900  ax-pre-apti 7901  ax-pre-ltadd 7902  ax-pre-mulgt0 7903  ax-pre-mulext 7904  ax-arch 7905
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1459  df-sb 1761  df-eu 2027  df-mo 2028  df-clab 2162  df-cleq 2168  df-clel 2171  df-nfc 2306  df-ne 2346  df-nel 2441  df-ral 2458  df-rex 2459  df-reu 2460  df-rmo 2461  df-rab 2462  df-v 2737  df-sbc 2961  df-csb 3056  df-dif 3129  df-un 3131  df-in 3133  df-ss 3140  df-nul 3421  df-if 3533  df-pw 3574  df-sn 3595  df-pr 3596  df-op 3598  df-uni 3806  df-int 3841  df-iun 3884  df-br 3999  df-opab 4060  df-mpt 4061  df-tr 4097  df-id 4287  df-po 4290  df-iso 4291  df-iord 4360  df-on 4362  df-ilim 4363  df-suc 4365  df-iom 4584  df-xp 4626  df-rel 4627  df-cnv 4628  df-co 4629  df-dm 4630  df-rn 4631  df-res 4632  df-ima 4633  df-iota 5170  df-fun 5210  df-fn 5211  df-f 5212  df-f1 5213  df-fo 5214  df-f1o 5215  df-fv 5216  df-riota 5821  df-ov 5868  df-oprab 5869  df-mpo 5870  df-1st 6131  df-2nd 6132  df-recs 6296  df-frec 6382  df-pnf 7968  df-mnf 7969  df-xr 7970  df-ltxr 7971  df-le 7972  df-sub 8104  df-neg 8105  df-reap 8506  df-ap 8513  df-div 8602  df-inn 8891  df-2 8949  df-n0 9148  df-z 9225  df-uz 9500  df-q 9591  df-rp 9623  df-fl 10238  df-mod 10291  df-seqfrec 10414  df-exp 10488  df-cj 10817  df-re 10818  df-im 10819  df-rsqrt 10973  df-abs 10974  df-dvds 11761
This theorem is referenced by:  divalgmodcl  11898
  Copyright terms: Public domain W3C validator