ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  divalgmod Unicode version

Theorem divalgmod 11849
Description: The result of the  mod operator satisfies the requirements for the remainder  R in the division algorithm for a positive divisor (compare divalg2 11848 and divalgb 11847). This demonstration theorem justifies the use of  mod to yield an explicit remainder from this point forward. (Contributed by Paul Chapman, 31-Mar-2011.) (Revised by AV, 21-Aug-2021.)
Assertion
Ref Expression
divalgmod  |-  ( ( N  e.  ZZ  /\  D  e.  NN )  ->  ( R  =  ( N  mod  D )  <-> 
( R  e.  NN0  /\  ( R  <  D  /\  D  ||  ( N  -  R ) ) ) ) )

Proof of Theorem divalgmod
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 zq 9555 . . . . . . . 8  |-  ( N  e.  ZZ  ->  N  e.  QQ )
21adantr 274 . . . . . . 7  |-  ( ( N  e.  ZZ  /\  D  e.  NN )  ->  N  e.  QQ )
3 nnq 9562 . . . . . . . 8  |-  ( D  e.  NN  ->  D  e.  QQ )
43adantl 275 . . . . . . 7  |-  ( ( N  e.  ZZ  /\  D  e.  NN )  ->  D  e.  QQ )
5 simpr 109 . . . . . . . 8  |-  ( ( N  e.  ZZ  /\  D  e.  NN )  ->  D  e.  NN )
65nngt0d 8892 . . . . . . 7  |-  ( ( N  e.  ZZ  /\  D  e.  NN )  ->  0  <  D )
72, 4, 6modqcld 10253 . . . . . 6  |-  ( ( N  e.  ZZ  /\  D  e.  NN )  ->  ( N  mod  D
)  e.  QQ )
8 snidg 3599 . . . . . 6  |-  ( ( N  mod  D )  e.  QQ  ->  ( N  mod  D )  e. 
{ ( N  mod  D ) } )
97, 8syl 14 . . . . 5  |-  ( ( N  e.  ZZ  /\  D  e.  NN )  ->  ( N  mod  D
)  e.  { ( N  mod  D ) } )
10 eleq1 2227 . . . . 5  |-  ( R  =  ( N  mod  D )  ->  ( R  e.  { ( N  mod  D ) }  <->  ( N  mod  D )  e.  {
( N  mod  D
) } ) )
119, 10syl5ibrcom 156 . . . 4  |-  ( ( N  e.  ZZ  /\  D  e.  NN )  ->  ( R  =  ( N  mod  D )  ->  R  e.  {
( N  mod  D
) } ) )
12 elsni 3588 . . . 4  |-  ( R  e.  { ( N  mod  D ) }  ->  R  =  ( N  mod  D ) )
1311, 12impbid1 141 . . 3  |-  ( ( N  e.  ZZ  /\  D  e.  NN )  ->  ( R  =  ( N  mod  D )  <-> 
R  e.  { ( N  mod  D ) } ) )
14 modqlt 10258 . . . . . . . . 9  |-  ( ( N  e.  QQ  /\  D  e.  QQ  /\  0  <  D )  ->  ( N  mod  D )  < 
D )
152, 4, 6, 14syl3anc 1227 . . . . . . . 8  |-  ( ( N  e.  ZZ  /\  D  e.  NN )  ->  ( N  mod  D
)  <  D )
16 znq 9553 . . . . . . . . . 10  |-  ( ( N  e.  ZZ  /\  D  e.  NN )  ->  ( N  /  D
)  e.  QQ )
1716flqcld 10202 . . . . . . . . 9  |-  ( ( N  e.  ZZ  /\  D  e.  NN )  ->  ( |_ `  ( N  /  D ) )  e.  ZZ )
18 nnz 9201 . . . . . . . . . 10  |-  ( D  e.  NN  ->  D  e.  ZZ )
1918adantl 275 . . . . . . . . 9  |-  ( ( N  e.  ZZ  /\  D  e.  NN )  ->  D  e.  ZZ )
20 zmodcl 10269 . . . . . . . . . . 11  |-  ( ( N  e.  ZZ  /\  D  e.  NN )  ->  ( N  mod  D
)  e.  NN0 )
2120nn0zd 9302 . . . . . . . . . 10  |-  ( ( N  e.  ZZ  /\  D  e.  NN )  ->  ( N  mod  D
)  e.  ZZ )
22 zsubcl 9223 . . . . . . . . . 10  |-  ( ( N  e.  ZZ  /\  ( N  mod  D )  e.  ZZ )  -> 
( N  -  ( N  mod  D ) )  e.  ZZ )
2321, 22syldan 280 . . . . . . . . 9  |-  ( ( N  e.  ZZ  /\  D  e.  NN )  ->  ( N  -  ( N  mod  D ) )  e.  ZZ )
24 nncn 8856 . . . . . . . . . . . 12  |-  ( D  e.  NN  ->  D  e.  CC )
2524adantl 275 . . . . . . . . . . 11  |-  ( ( N  e.  ZZ  /\  D  e.  NN )  ->  D  e.  CC )
2617zcnd 9305 . . . . . . . . . . 11  |-  ( ( N  e.  ZZ  /\  D  e.  NN )  ->  ( |_ `  ( N  /  D ) )  e.  CC )
2725, 26mulcomd 7911 . . . . . . . . . 10  |-  ( ( N  e.  ZZ  /\  D  e.  NN )  ->  ( D  x.  ( |_ `  ( N  /  D ) ) )  =  ( ( |_
`  ( N  /  D ) )  x.  D ) )
28 modqval 10249 . . . . . . . . . . . 12  |-  ( ( N  e.  QQ  /\  D  e.  QQ  /\  0  <  D )  ->  ( N  mod  D )  =  ( N  -  ( D  x.  ( |_ `  ( N  /  D
) ) ) ) )
292, 4, 6, 28syl3anc 1227 . . . . . . . . . . 11  |-  ( ( N  e.  ZZ  /\  D  e.  NN )  ->  ( N  mod  D
)  =  ( N  -  ( D  x.  ( |_ `  ( N  /  D ) ) ) ) )
3020nn0cnd 9160 . . . . . . . . . . . 12  |-  ( ( N  e.  ZZ  /\  D  e.  NN )  ->  ( N  mod  D
)  e.  CC )
31 zmulcl 9235 . . . . . . . . . . . . . 14  |-  ( ( D  e.  ZZ  /\  ( |_ `  ( N  /  D ) )  e.  ZZ )  -> 
( D  x.  ( |_ `  ( N  /  D ) ) )  e.  ZZ )
3218, 17, 31syl2an2 584 . . . . . . . . . . . . 13  |-  ( ( N  e.  ZZ  /\  D  e.  NN )  ->  ( D  x.  ( |_ `  ( N  /  D ) ) )  e.  ZZ )
3332zcnd 9305 . . . . . . . . . . . 12  |-  ( ( N  e.  ZZ  /\  D  e.  NN )  ->  ( D  x.  ( |_ `  ( N  /  D ) ) )  e.  CC )
34 zcn 9187 . . . . . . . . . . . . 13  |-  ( N  e.  ZZ  ->  N  e.  CC )
3534adantr 274 . . . . . . . . . . . 12  |-  ( ( N  e.  ZZ  /\  D  e.  NN )  ->  N  e.  CC )
3630, 33, 35subexsub 8261 . . . . . . . . . . 11  |-  ( ( N  e.  ZZ  /\  D  e.  NN )  ->  ( ( N  mod  D )  =  ( N  -  ( D  x.  ( |_ `  ( N  /  D ) ) ) )  <->  ( D  x.  ( |_ `  ( N  /  D ) ) )  =  ( N  -  ( N  mod  D ) ) ) )
3729, 36mpbid 146 . . . . . . . . . 10  |-  ( ( N  e.  ZZ  /\  D  e.  NN )  ->  ( D  x.  ( |_ `  ( N  /  D ) ) )  =  ( N  -  ( N  mod  D ) ) )
3827, 37eqtr3d 2199 . . . . . . . . 9  |-  ( ( N  e.  ZZ  /\  D  e.  NN )  ->  ( ( |_ `  ( N  /  D
) )  x.  D
)  =  ( N  -  ( N  mod  D ) ) )
39 dvds0lem 11727 . . . . . . . . 9  |-  ( ( ( ( |_ `  ( N  /  D
) )  e.  ZZ  /\  D  e.  ZZ  /\  ( N  -  ( N  mod  D ) )  e.  ZZ )  /\  ( ( |_ `  ( N  /  D
) )  x.  D
)  =  ( N  -  ( N  mod  D ) ) )  ->  D  ||  ( N  -  ( N  mod  D ) ) )
4017, 19, 23, 38, 39syl31anc 1230 . . . . . . . 8  |-  ( ( N  e.  ZZ  /\  D  e.  NN )  ->  D  ||  ( N  -  ( N  mod  D ) ) )
41 divalg2 11848 . . . . . . . . 9  |-  ( ( N  e.  ZZ  /\  D  e.  NN )  ->  E! z  e.  NN0  ( z  <  D  /\  D  ||  ( N  -  z ) ) )
42 breq1 3979 . . . . . . . . . . 11  |-  ( z  =  ( N  mod  D )  ->  ( z  <  D  <->  ( N  mod  D )  <  D ) )
43 oveq2 5844 . . . . . . . . . . . 12  |-  ( z  =  ( N  mod  D )  ->  ( N  -  z )  =  ( N  -  ( N  mod  D ) ) )
4443breq2d 3988 . . . . . . . . . . 11  |-  ( z  =  ( N  mod  D )  ->  ( D  ||  ( N  -  z
)  <->  D  ||  ( N  -  ( N  mod  D ) ) ) )
4542, 44anbi12d 465 . . . . . . . . . 10  |-  ( z  =  ( N  mod  D )  ->  ( (
z  <  D  /\  D  ||  ( N  -  z ) )  <->  ( ( N  mod  D )  < 
D  /\  D  ||  ( N  -  ( N  mod  D ) ) ) ) )
4645riota2 5814 . . . . . . . . 9  |-  ( ( ( N  mod  D
)  e.  NN0  /\  E! z  e.  NN0  ( z  <  D  /\  D  ||  ( N  -  z ) ) )  ->  ( (
( N  mod  D
)  <  D  /\  D  ||  ( N  -  ( N  mod  D ) ) )  <->  ( iota_ z  e.  NN0  ( z  <  D  /\  D  ||  ( N  -  z
) ) )  =  ( N  mod  D
) ) )
4720, 41, 46syl2anc 409 . . . . . . . 8  |-  ( ( N  e.  ZZ  /\  D  e.  NN )  ->  ( ( ( N  mod  D )  < 
D  /\  D  ||  ( N  -  ( N  mod  D ) ) )  <-> 
( iota_ z  e.  NN0  ( z  <  D  /\  D  ||  ( N  -  z ) ) )  =  ( N  mod  D ) ) )
4815, 40, 47mpbi2and 932 . . . . . . 7  |-  ( ( N  e.  ZZ  /\  D  e.  NN )  ->  ( iota_ z  e.  NN0  ( z  <  D  /\  D  ||  ( N  -  z ) ) )  =  ( N  mod  D ) )
4948eqcomd 2170 . . . . . 6  |-  ( ( N  e.  ZZ  /\  D  e.  NN )  ->  ( N  mod  D
)  =  ( iota_ z  e.  NN0  ( z  <  D  /\  D  ||  ( N  -  z
) ) ) )
5049sneqd 3583 . . . . 5  |-  ( ( N  e.  ZZ  /\  D  e.  NN )  ->  { ( N  mod  D ) }  =  {
( iota_ z  e.  NN0  ( z  <  D  /\  D  ||  ( N  -  z ) ) ) } )
51 snriota 5821 . . . . . 6  |-  ( E! z  e.  NN0  (
z  <  D  /\  D  ||  ( N  -  z ) )  ->  { z  e.  NN0  |  ( z  <  D  /\  D  ||  ( N  -  z ) ) }  =  { (
iota_ z  e.  NN0  ( z  <  D  /\  D  ||  ( N  -  z ) ) ) } )
5241, 51syl 14 . . . . 5  |-  ( ( N  e.  ZZ  /\  D  e.  NN )  ->  { z  e.  NN0  |  ( z  <  D  /\  D  ||  ( N  -  z ) ) }  =  { (
iota_ z  e.  NN0  ( z  <  D  /\  D  ||  ( N  -  z ) ) ) } )
5350, 52eqtr4d 2200 . . . 4  |-  ( ( N  e.  ZZ  /\  D  e.  NN )  ->  { ( N  mod  D ) }  =  {
z  e.  NN0  | 
( z  <  D  /\  D  ||  ( N  -  z ) ) } )
5453eleq2d 2234 . . 3  |-  ( ( N  e.  ZZ  /\  D  e.  NN )  ->  ( R  e.  {
( N  mod  D
) }  <->  R  e.  { z  e.  NN0  | 
( z  <  D  /\  D  ||  ( N  -  z ) ) } ) )
5513, 54bitrd 187 . 2  |-  ( ( N  e.  ZZ  /\  D  e.  NN )  ->  ( R  =  ( N  mod  D )  <-> 
R  e.  { z  e.  NN0  |  (
z  <  D  /\  D  ||  ( N  -  z ) ) } ) )
56 breq1 3979 . . . 4  |-  ( z  =  R  ->  (
z  <  D  <->  R  <  D ) )
57 oveq2 5844 . . . . 5  |-  ( z  =  R  ->  ( N  -  z )  =  ( N  -  R ) )
5857breq2d 3988 . . . 4  |-  ( z  =  R  ->  ( D  ||  ( N  -  z )  <->  D  ||  ( N  -  R )
) )
5956, 58anbi12d 465 . . 3  |-  ( z  =  R  ->  (
( z  <  D  /\  D  ||  ( N  -  z ) )  <-> 
( R  <  D  /\  D  ||  ( N  -  R ) ) ) )
6059elrab 2877 . 2  |-  ( R  e.  { z  e. 
NN0  |  ( z  <  D  /\  D  ||  ( N  -  z
) ) }  <->  ( R  e.  NN0  /\  ( R  <  D  /\  D  ||  ( N  -  R
) ) ) )
6155, 60bitrdi 195 1  |-  ( ( N  e.  ZZ  /\  D  e.  NN )  ->  ( R  =  ( N  mod  D )  <-> 
( R  e.  NN0  /\  ( R  <  D  /\  D  ||  ( N  -  R ) ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1342    e. wcel 2135   E!wreu 2444   {crab 2446   {csn 3570   class class class wbr 3976   ` cfv 5182   iota_crio 5791  (class class class)co 5836   CCcc 7742   0cc0 7744    x. cmul 7749    < clt 7924    - cmin 8060    / cdiv 8559   NNcn 8848   NN0cn0 9105   ZZcz 9182   QQcq 9548   |_cfl 10193    mod cmo 10247    || cdvds 11713
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1434  ax-7 1435  ax-gen 1436  ax-ie1 1480  ax-ie2 1481  ax-8 1491  ax-10 1492  ax-11 1493  ax-i12 1494  ax-bndl 1496  ax-4 1497  ax-17 1513  ax-i9 1517  ax-ial 1521  ax-i5r 1522  ax-13 2137  ax-14 2138  ax-ext 2146  ax-coll 4091  ax-sep 4094  ax-nul 4102  ax-pow 4147  ax-pr 4181  ax-un 4405  ax-setind 4508  ax-iinf 4559  ax-cnex 7835  ax-resscn 7836  ax-1cn 7837  ax-1re 7838  ax-icn 7839  ax-addcl 7840  ax-addrcl 7841  ax-mulcl 7842  ax-mulrcl 7843  ax-addcom 7844  ax-mulcom 7845  ax-addass 7846  ax-mulass 7847  ax-distr 7848  ax-i2m1 7849  ax-0lt1 7850  ax-1rid 7851  ax-0id 7852  ax-rnegex 7853  ax-precex 7854  ax-cnre 7855  ax-pre-ltirr 7856  ax-pre-ltwlin 7857  ax-pre-lttrn 7858  ax-pre-apti 7859  ax-pre-ltadd 7860  ax-pre-mulgt0 7861  ax-pre-mulext 7862  ax-arch 7863
This theorem depends on definitions:  df-bi 116  df-dc 825  df-3or 968  df-3an 969  df-tru 1345  df-fal 1348  df-nf 1448  df-sb 1750  df-eu 2016  df-mo 2017  df-clab 2151  df-cleq 2157  df-clel 2160  df-nfc 2295  df-ne 2335  df-nel 2430  df-ral 2447  df-rex 2448  df-reu 2449  df-rmo 2450  df-rab 2451  df-v 2723  df-sbc 2947  df-csb 3041  df-dif 3113  df-un 3115  df-in 3117  df-ss 3124  df-nul 3405  df-if 3516  df-pw 3555  df-sn 3576  df-pr 3577  df-op 3579  df-uni 3784  df-int 3819  df-iun 3862  df-br 3977  df-opab 4038  df-mpt 4039  df-tr 4075  df-id 4265  df-po 4268  df-iso 4269  df-iord 4338  df-on 4340  df-ilim 4341  df-suc 4343  df-iom 4562  df-xp 4604  df-rel 4605  df-cnv 4606  df-co 4607  df-dm 4608  df-rn 4609  df-res 4610  df-ima 4611  df-iota 5147  df-fun 5184  df-fn 5185  df-f 5186  df-f1 5187  df-fo 5188  df-f1o 5189  df-fv 5190  df-riota 5792  df-ov 5839  df-oprab 5840  df-mpo 5841  df-1st 6100  df-2nd 6101  df-recs 6264  df-frec 6350  df-pnf 7926  df-mnf 7927  df-xr 7928  df-ltxr 7929  df-le 7930  df-sub 8062  df-neg 8063  df-reap 8464  df-ap 8471  df-div 8560  df-inn 8849  df-2 8907  df-n0 9106  df-z 9183  df-uz 9458  df-q 9549  df-rp 9581  df-fl 10195  df-mod 10248  df-seqfrec 10371  df-exp 10445  df-cj 10770  df-re 10771  df-im 10772  df-rsqrt 10926  df-abs 10927  df-dvds 11714
This theorem is referenced by:  divalgmodcl  11850
  Copyright terms: Public domain W3C validator