ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  divalgmod Unicode version

Theorem divalgmod 12313
Description: The result of the  mod operator satisfies the requirements for the remainder  R in the division algorithm for a positive divisor (compare divalg2 12312 and divalgb 12311). This demonstration theorem justifies the use of  mod to yield an explicit remainder from this point forward. (Contributed by Paul Chapman, 31-Mar-2011.) (Revised by AV, 21-Aug-2021.)
Assertion
Ref Expression
divalgmod  |-  ( ( N  e.  ZZ  /\  D  e.  NN )  ->  ( R  =  ( N  mod  D )  <-> 
( R  e.  NN0  /\  ( R  <  D  /\  D  ||  ( N  -  R ) ) ) ) )

Proof of Theorem divalgmod
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 zq 9767 . . . . . . . 8  |-  ( N  e.  ZZ  ->  N  e.  QQ )
21adantr 276 . . . . . . 7  |-  ( ( N  e.  ZZ  /\  D  e.  NN )  ->  N  e.  QQ )
3 nnq 9774 . . . . . . . 8  |-  ( D  e.  NN  ->  D  e.  QQ )
43adantl 277 . . . . . . 7  |-  ( ( N  e.  ZZ  /\  D  e.  NN )  ->  D  e.  QQ )
5 simpr 110 . . . . . . . 8  |-  ( ( N  e.  ZZ  /\  D  e.  NN )  ->  D  e.  NN )
65nngt0d 9100 . . . . . . 7  |-  ( ( N  e.  ZZ  /\  D  e.  NN )  ->  0  <  D )
72, 4, 6modqcld 10495 . . . . . 6  |-  ( ( N  e.  ZZ  /\  D  e.  NN )  ->  ( N  mod  D
)  e.  QQ )
8 snidg 3667 . . . . . 6  |-  ( ( N  mod  D )  e.  QQ  ->  ( N  mod  D )  e. 
{ ( N  mod  D ) } )
97, 8syl 14 . . . . 5  |-  ( ( N  e.  ZZ  /\  D  e.  NN )  ->  ( N  mod  D
)  e.  { ( N  mod  D ) } )
10 eleq1 2269 . . . . 5  |-  ( R  =  ( N  mod  D )  ->  ( R  e.  { ( N  mod  D ) }  <->  ( N  mod  D )  e.  {
( N  mod  D
) } ) )
119, 10syl5ibrcom 157 . . . 4  |-  ( ( N  e.  ZZ  /\  D  e.  NN )  ->  ( R  =  ( N  mod  D )  ->  R  e.  {
( N  mod  D
) } ) )
12 elsni 3656 . . . 4  |-  ( R  e.  { ( N  mod  D ) }  ->  R  =  ( N  mod  D ) )
1311, 12impbid1 142 . . 3  |-  ( ( N  e.  ZZ  /\  D  e.  NN )  ->  ( R  =  ( N  mod  D )  <-> 
R  e.  { ( N  mod  D ) } ) )
14 modqlt 10500 . . . . . . . . 9  |-  ( ( N  e.  QQ  /\  D  e.  QQ  /\  0  <  D )  ->  ( N  mod  D )  < 
D )
152, 4, 6, 14syl3anc 1250 . . . . . . . 8  |-  ( ( N  e.  ZZ  /\  D  e.  NN )  ->  ( N  mod  D
)  <  D )
16 znq 9765 . . . . . . . . . 10  |-  ( ( N  e.  ZZ  /\  D  e.  NN )  ->  ( N  /  D
)  e.  QQ )
1716flqcld 10442 . . . . . . . . 9  |-  ( ( N  e.  ZZ  /\  D  e.  NN )  ->  ( |_ `  ( N  /  D ) )  e.  ZZ )
18 nnz 9411 . . . . . . . . . 10  |-  ( D  e.  NN  ->  D  e.  ZZ )
1918adantl 277 . . . . . . . . 9  |-  ( ( N  e.  ZZ  /\  D  e.  NN )  ->  D  e.  ZZ )
20 zmodcl 10511 . . . . . . . . . . 11  |-  ( ( N  e.  ZZ  /\  D  e.  NN )  ->  ( N  mod  D
)  e.  NN0 )
2120nn0zd 9513 . . . . . . . . . 10  |-  ( ( N  e.  ZZ  /\  D  e.  NN )  ->  ( N  mod  D
)  e.  ZZ )
22 zsubcl 9433 . . . . . . . . . 10  |-  ( ( N  e.  ZZ  /\  ( N  mod  D )  e.  ZZ )  -> 
( N  -  ( N  mod  D ) )  e.  ZZ )
2321, 22syldan 282 . . . . . . . . 9  |-  ( ( N  e.  ZZ  /\  D  e.  NN )  ->  ( N  -  ( N  mod  D ) )  e.  ZZ )
24 nncn 9064 . . . . . . . . . . . 12  |-  ( D  e.  NN  ->  D  e.  CC )
2524adantl 277 . . . . . . . . . . 11  |-  ( ( N  e.  ZZ  /\  D  e.  NN )  ->  D  e.  CC )
2617zcnd 9516 . . . . . . . . . . 11  |-  ( ( N  e.  ZZ  /\  D  e.  NN )  ->  ( |_ `  ( N  /  D ) )  e.  CC )
2725, 26mulcomd 8114 . . . . . . . . . 10  |-  ( ( N  e.  ZZ  /\  D  e.  NN )  ->  ( D  x.  ( |_ `  ( N  /  D ) ) )  =  ( ( |_
`  ( N  /  D ) )  x.  D ) )
28 modqval 10491 . . . . . . . . . . . 12  |-  ( ( N  e.  QQ  /\  D  e.  QQ  /\  0  <  D )  ->  ( N  mod  D )  =  ( N  -  ( D  x.  ( |_ `  ( N  /  D
) ) ) ) )
292, 4, 6, 28syl3anc 1250 . . . . . . . . . . 11  |-  ( ( N  e.  ZZ  /\  D  e.  NN )  ->  ( N  mod  D
)  =  ( N  -  ( D  x.  ( |_ `  ( N  /  D ) ) ) ) )
3020nn0cnd 9370 . . . . . . . . . . . 12  |-  ( ( N  e.  ZZ  /\  D  e.  NN )  ->  ( N  mod  D
)  e.  CC )
31 zmulcl 9446 . . . . . . . . . . . . . 14  |-  ( ( D  e.  ZZ  /\  ( |_ `  ( N  /  D ) )  e.  ZZ )  -> 
( D  x.  ( |_ `  ( N  /  D ) ) )  e.  ZZ )
3218, 17, 31syl2an2 594 . . . . . . . . . . . . 13  |-  ( ( N  e.  ZZ  /\  D  e.  NN )  ->  ( D  x.  ( |_ `  ( N  /  D ) ) )  e.  ZZ )
3332zcnd 9516 . . . . . . . . . . . 12  |-  ( ( N  e.  ZZ  /\  D  e.  NN )  ->  ( D  x.  ( |_ `  ( N  /  D ) ) )  e.  CC )
34 zcn 9397 . . . . . . . . . . . . 13  |-  ( N  e.  ZZ  ->  N  e.  CC )
3534adantr 276 . . . . . . . . . . . 12  |-  ( ( N  e.  ZZ  /\  D  e.  NN )  ->  N  e.  CC )
3630, 33, 35subexsub 8464 . . . . . . . . . . 11  |-  ( ( N  e.  ZZ  /\  D  e.  NN )  ->  ( ( N  mod  D )  =  ( N  -  ( D  x.  ( |_ `  ( N  /  D ) ) ) )  <->  ( D  x.  ( |_ `  ( N  /  D ) ) )  =  ( N  -  ( N  mod  D ) ) ) )
3729, 36mpbid 147 . . . . . . . . . 10  |-  ( ( N  e.  ZZ  /\  D  e.  NN )  ->  ( D  x.  ( |_ `  ( N  /  D ) ) )  =  ( N  -  ( N  mod  D ) ) )
3827, 37eqtr3d 2241 . . . . . . . . 9  |-  ( ( N  e.  ZZ  /\  D  e.  NN )  ->  ( ( |_ `  ( N  /  D
) )  x.  D
)  =  ( N  -  ( N  mod  D ) ) )
39 dvds0lem 12187 . . . . . . . . 9  |-  ( ( ( ( |_ `  ( N  /  D
) )  e.  ZZ  /\  D  e.  ZZ  /\  ( N  -  ( N  mod  D ) )  e.  ZZ )  /\  ( ( |_ `  ( N  /  D
) )  x.  D
)  =  ( N  -  ( N  mod  D ) ) )  ->  D  ||  ( N  -  ( N  mod  D ) ) )
4017, 19, 23, 38, 39syl31anc 1253 . . . . . . . 8  |-  ( ( N  e.  ZZ  /\  D  e.  NN )  ->  D  ||  ( N  -  ( N  mod  D ) ) )
41 divalg2 12312 . . . . . . . . 9  |-  ( ( N  e.  ZZ  /\  D  e.  NN )  ->  E! z  e.  NN0  ( z  <  D  /\  D  ||  ( N  -  z ) ) )
42 breq1 4054 . . . . . . . . . . 11  |-  ( z  =  ( N  mod  D )  ->  ( z  <  D  <->  ( N  mod  D )  <  D ) )
43 oveq2 5965 . . . . . . . . . . . 12  |-  ( z  =  ( N  mod  D )  ->  ( N  -  z )  =  ( N  -  ( N  mod  D ) ) )
4443breq2d 4063 . . . . . . . . . . 11  |-  ( z  =  ( N  mod  D )  ->  ( D  ||  ( N  -  z
)  <->  D  ||  ( N  -  ( N  mod  D ) ) ) )
4542, 44anbi12d 473 . . . . . . . . . 10  |-  ( z  =  ( N  mod  D )  ->  ( (
z  <  D  /\  D  ||  ( N  -  z ) )  <->  ( ( N  mod  D )  < 
D  /\  D  ||  ( N  -  ( N  mod  D ) ) ) ) )
4645riota2 5935 . . . . . . . . 9  |-  ( ( ( N  mod  D
)  e.  NN0  /\  E! z  e.  NN0  ( z  <  D  /\  D  ||  ( N  -  z ) ) )  ->  ( (
( N  mod  D
)  <  D  /\  D  ||  ( N  -  ( N  mod  D ) ) )  <->  ( iota_ z  e.  NN0  ( z  <  D  /\  D  ||  ( N  -  z
) ) )  =  ( N  mod  D
) ) )
4720, 41, 46syl2anc 411 . . . . . . . 8  |-  ( ( N  e.  ZZ  /\  D  e.  NN )  ->  ( ( ( N  mod  D )  < 
D  /\  D  ||  ( N  -  ( N  mod  D ) ) )  <-> 
( iota_ z  e.  NN0  ( z  <  D  /\  D  ||  ( N  -  z ) ) )  =  ( N  mod  D ) ) )
4815, 40, 47mpbi2and 946 . . . . . . 7  |-  ( ( N  e.  ZZ  /\  D  e.  NN )  ->  ( iota_ z  e.  NN0  ( z  <  D  /\  D  ||  ( N  -  z ) ) )  =  ( N  mod  D ) )
4948eqcomd 2212 . . . . . 6  |-  ( ( N  e.  ZZ  /\  D  e.  NN )  ->  ( N  mod  D
)  =  ( iota_ z  e.  NN0  ( z  <  D  /\  D  ||  ( N  -  z
) ) ) )
5049sneqd 3651 . . . . 5  |-  ( ( N  e.  ZZ  /\  D  e.  NN )  ->  { ( N  mod  D ) }  =  {
( iota_ z  e.  NN0  ( z  <  D  /\  D  ||  ( N  -  z ) ) ) } )
51 snriota 5942 . . . . . 6  |-  ( E! z  e.  NN0  (
z  <  D  /\  D  ||  ( N  -  z ) )  ->  { z  e.  NN0  |  ( z  <  D  /\  D  ||  ( N  -  z ) ) }  =  { (
iota_ z  e.  NN0  ( z  <  D  /\  D  ||  ( N  -  z ) ) ) } )
5241, 51syl 14 . . . . 5  |-  ( ( N  e.  ZZ  /\  D  e.  NN )  ->  { z  e.  NN0  |  ( z  <  D  /\  D  ||  ( N  -  z ) ) }  =  { (
iota_ z  e.  NN0  ( z  <  D  /\  D  ||  ( N  -  z ) ) ) } )
5350, 52eqtr4d 2242 . . . 4  |-  ( ( N  e.  ZZ  /\  D  e.  NN )  ->  { ( N  mod  D ) }  =  {
z  e.  NN0  | 
( z  <  D  /\  D  ||  ( N  -  z ) ) } )
5453eleq2d 2276 . . 3  |-  ( ( N  e.  ZZ  /\  D  e.  NN )  ->  ( R  e.  {
( N  mod  D
) }  <->  R  e.  { z  e.  NN0  | 
( z  <  D  /\  D  ||  ( N  -  z ) ) } ) )
5513, 54bitrd 188 . 2  |-  ( ( N  e.  ZZ  /\  D  e.  NN )  ->  ( R  =  ( N  mod  D )  <-> 
R  e.  { z  e.  NN0  |  (
z  <  D  /\  D  ||  ( N  -  z ) ) } ) )
56 breq1 4054 . . . 4  |-  ( z  =  R  ->  (
z  <  D  <->  R  <  D ) )
57 oveq2 5965 . . . . 5  |-  ( z  =  R  ->  ( N  -  z )  =  ( N  -  R ) )
5857breq2d 4063 . . . 4  |-  ( z  =  R  ->  ( D  ||  ( N  -  z )  <->  D  ||  ( N  -  R )
) )
5956, 58anbi12d 473 . . 3  |-  ( z  =  R  ->  (
( z  <  D  /\  D  ||  ( N  -  z ) )  <-> 
( R  <  D  /\  D  ||  ( N  -  R ) ) ) )
6059elrab 2933 . 2  |-  ( R  e.  { z  e. 
NN0  |  ( z  <  D  /\  D  ||  ( N  -  z
) ) }  <->  ( R  e.  NN0  /\  ( R  <  D  /\  D  ||  ( N  -  R
) ) ) )
6155, 60bitrdi 196 1  |-  ( ( N  e.  ZZ  /\  D  e.  NN )  ->  ( R  =  ( N  mod  D )  <-> 
( R  e.  NN0  /\  ( R  <  D  /\  D  ||  ( N  -  R ) ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1373    e. wcel 2177   E!wreu 2487   {crab 2489   {csn 3638   class class class wbr 4051   ` cfv 5280   iota_crio 5911  (class class class)co 5957   CCcc 7943   0cc0 7945    x. cmul 7950    < clt 8127    - cmin 8263    / cdiv 8765   NNcn 9056   NN0cn0 9315   ZZcz 9392   QQcq 9760   |_cfl 10433    mod cmo 10489    || cdvds 12173
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-coll 4167  ax-sep 4170  ax-nul 4178  ax-pow 4226  ax-pr 4261  ax-un 4488  ax-setind 4593  ax-iinf 4644  ax-cnex 8036  ax-resscn 8037  ax-1cn 8038  ax-1re 8039  ax-icn 8040  ax-addcl 8041  ax-addrcl 8042  ax-mulcl 8043  ax-mulrcl 8044  ax-addcom 8045  ax-mulcom 8046  ax-addass 8047  ax-mulass 8048  ax-distr 8049  ax-i2m1 8050  ax-0lt1 8051  ax-1rid 8052  ax-0id 8053  ax-rnegex 8054  ax-precex 8055  ax-cnre 8056  ax-pre-ltirr 8057  ax-pre-ltwlin 8058  ax-pre-lttrn 8059  ax-pre-apti 8060  ax-pre-ltadd 8061  ax-pre-mulgt0 8062  ax-pre-mulext 8063  ax-arch 8064
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-nel 2473  df-ral 2490  df-rex 2491  df-reu 2492  df-rmo 2493  df-rab 2494  df-v 2775  df-sbc 3003  df-csb 3098  df-dif 3172  df-un 3174  df-in 3176  df-ss 3183  df-nul 3465  df-if 3576  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-uni 3857  df-int 3892  df-iun 3935  df-br 4052  df-opab 4114  df-mpt 4115  df-tr 4151  df-id 4348  df-po 4351  df-iso 4352  df-iord 4421  df-on 4423  df-ilim 4424  df-suc 4426  df-iom 4647  df-xp 4689  df-rel 4690  df-cnv 4691  df-co 4692  df-dm 4693  df-rn 4694  df-res 4695  df-ima 4696  df-iota 5241  df-fun 5282  df-fn 5283  df-f 5284  df-f1 5285  df-fo 5286  df-f1o 5287  df-fv 5288  df-riota 5912  df-ov 5960  df-oprab 5961  df-mpo 5962  df-1st 6239  df-2nd 6240  df-recs 6404  df-frec 6490  df-pnf 8129  df-mnf 8130  df-xr 8131  df-ltxr 8132  df-le 8133  df-sub 8265  df-neg 8266  df-reap 8668  df-ap 8675  df-div 8766  df-inn 9057  df-2 9115  df-n0 9316  df-z 9393  df-uz 9669  df-q 9761  df-rp 9796  df-fl 10435  df-mod 10490  df-seqfrec 10615  df-exp 10706  df-cj 11228  df-re 11229  df-im 11230  df-rsqrt 11384  df-abs 11385  df-dvds 12174
This theorem is referenced by:  divalgmodcl  12314
  Copyright terms: Public domain W3C validator