Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > topgele | Unicode version |
Description: The topologies over the same set have the greatest element (the discrete topology) and the least element (the indiscrete topology). (Contributed by FL, 18-Apr-2010.) (Revised by Mario Carneiro, 16-Sep-2015.) |
Ref | Expression |
---|---|
topgele | TopOn |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | topontop 12806 | . . . 4 TopOn | |
2 | 0opn 12798 | . . . 4 | |
3 | 1, 2 | syl 14 | . . 3 TopOn |
4 | toponmax 12817 | . . 3 TopOn | |
5 | 0ex 4116 | . . . 4 | |
6 | prssg 3737 | . . . 4 | |
7 | 5, 4, 6 | sylancr 412 | . . 3 TopOn |
8 | 3, 4, 7 | mpbi2and 938 | . 2 TopOn |
9 | toponuni 12807 | . . . 4 TopOn | |
10 | eqimss2 3202 | . . . 4 | |
11 | 9, 10 | syl 14 | . . 3 TopOn |
12 | sspwuni 3957 | . . 3 | |
13 | 11, 12 | sylibr 133 | . 2 TopOn |
14 | 8, 13 | jca 304 | 1 TopOn |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wceq 1348 wcel 2141 cvv 2730 wss 3121 c0 3414 cpw 3566 cpr 3584 cuni 3796 cfv 5198 ctop 12789 TopOnctopon 12802 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-nul 4115 ax-pow 4160 ax-pr 4194 ax-un 4418 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-rab 2457 df-v 2732 df-sbc 2956 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-nul 3415 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-br 3990 df-opab 4051 df-mpt 4052 df-id 4278 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-iota 5160 df-fun 5200 df-fv 5206 df-top 12790 df-topon 12803 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |