ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  topgele Unicode version

Theorem topgele 14501
Description: The topologies over the same set have the greatest element (the discrete topology) and the least element (the indiscrete topology). (Contributed by FL, 18-Apr-2010.) (Revised by Mario Carneiro, 16-Sep-2015.)
Assertion
Ref Expression
topgele  |-  ( J  e.  (TopOn `  X
)  ->  ( { (/)
,  X }  C_  J  /\  J  C_  ~P X ) )

Proof of Theorem topgele
StepHypRef Expression
1 topontop 14486 . . . 4  |-  ( J  e.  (TopOn `  X
)  ->  J  e.  Top )
2 0opn 14478 . . . 4  |-  ( J  e.  Top  ->  (/)  e.  J
)
31, 2syl 14 . . 3  |-  ( J  e.  (TopOn `  X
)  ->  (/)  e.  J
)
4 toponmax 14497 . . 3  |-  ( J  e.  (TopOn `  X
)  ->  X  e.  J )
5 0ex 4171 . . . 4  |-  (/)  e.  _V
6 prssg 3790 . . . 4  |-  ( (
(/)  e.  _V  /\  X  e.  J )  ->  (
( (/)  e.  J  /\  X  e.  J )  <->  {
(/) ,  X }  C_  J ) )
75, 4, 6sylancr 414 . . 3  |-  ( J  e.  (TopOn `  X
)  ->  ( ( (/) 
e.  J  /\  X  e.  J )  <->  { (/) ,  X }  C_  J ) )
83, 4, 7mpbi2and 946 . 2  |-  ( J  e.  (TopOn `  X
)  ->  { (/) ,  X }  C_  J )
9 toponuni 14487 . . . 4  |-  ( J  e.  (TopOn `  X
)  ->  X  =  U. J )
10 eqimss2 3248 . . . 4  |-  ( X  =  U. J  ->  U. J  C_  X )
119, 10syl 14 . . 3  |-  ( J  e.  (TopOn `  X
)  ->  U. J  C_  X )
12 sspwuni 4012 . . 3  |-  ( J 
C_  ~P X  <->  U. J  C_  X )
1311, 12sylibr 134 . 2  |-  ( J  e.  (TopOn `  X
)  ->  J  C_  ~P X )
148, 13jca 306 1  |-  ( J  e.  (TopOn `  X
)  ->  ( { (/)
,  X }  C_  J  /\  J  C_  ~P X ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1373    e. wcel 2176   _Vcvv 2772    C_ wss 3166   (/)c0 3460   ~Pcpw 3616   {cpr 3634   U.cuni 3850   ` cfv 5271   Topctop 14469  TopOnctopon 14482
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-sep 4162  ax-nul 4170  ax-pow 4218  ax-pr 4253  ax-un 4480
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ral 2489  df-rex 2490  df-rab 2493  df-v 2774  df-sbc 2999  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3461  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-br 4045  df-opab 4106  df-mpt 4107  df-id 4340  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-iota 5232  df-fun 5273  df-fv 5279  df-top 14470  df-topon 14483
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator