ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  topgele Unicode version

Theorem topgele 13614
Description: The topologies over the same set have the greatest element (the discrete topology) and the least element (the indiscrete topology). (Contributed by FL, 18-Apr-2010.) (Revised by Mario Carneiro, 16-Sep-2015.)
Assertion
Ref Expression
topgele  |-  ( J  e.  (TopOn `  X
)  ->  ( { (/)
,  X }  C_  J  /\  J  C_  ~P X ) )

Proof of Theorem topgele
StepHypRef Expression
1 topontop 13599 . . . 4  |-  ( J  e.  (TopOn `  X
)  ->  J  e.  Top )
2 0opn 13591 . . . 4  |-  ( J  e.  Top  ->  (/)  e.  J
)
31, 2syl 14 . . 3  |-  ( J  e.  (TopOn `  X
)  ->  (/)  e.  J
)
4 toponmax 13610 . . 3  |-  ( J  e.  (TopOn `  X
)  ->  X  e.  J )
5 0ex 4132 . . . 4  |-  (/)  e.  _V
6 prssg 3751 . . . 4  |-  ( (
(/)  e.  _V  /\  X  e.  J )  ->  (
( (/)  e.  J  /\  X  e.  J )  <->  {
(/) ,  X }  C_  J ) )
75, 4, 6sylancr 414 . . 3  |-  ( J  e.  (TopOn `  X
)  ->  ( ( (/) 
e.  J  /\  X  e.  J )  <->  { (/) ,  X }  C_  J ) )
83, 4, 7mpbi2and 943 . 2  |-  ( J  e.  (TopOn `  X
)  ->  { (/) ,  X }  C_  J )
9 toponuni 13600 . . . 4  |-  ( J  e.  (TopOn `  X
)  ->  X  =  U. J )
10 eqimss2 3212 . . . 4  |-  ( X  =  U. J  ->  U. J  C_  X )
119, 10syl 14 . . 3  |-  ( J  e.  (TopOn `  X
)  ->  U. J  C_  X )
12 sspwuni 3973 . . 3  |-  ( J 
C_  ~P X  <->  U. J  C_  X )
1311, 12sylibr 134 . 2  |-  ( J  e.  (TopOn `  X
)  ->  J  C_  ~P X )
148, 13jca 306 1  |-  ( J  e.  (TopOn `  X
)  ->  ( { (/)
,  X }  C_  J  /\  J  C_  ~P X ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1353    e. wcel 2148   _Vcvv 2739    C_ wss 3131   (/)c0 3424   ~Pcpw 3577   {cpr 3595   U.cuni 3811   ` cfv 5218   Topctop 13582  TopOnctopon 13595
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-nul 4131  ax-pow 4176  ax-pr 4211  ax-un 4435
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-rab 2464  df-v 2741  df-sbc 2965  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-nul 3425  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-br 4006  df-opab 4067  df-mpt 4068  df-id 4295  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-iota 5180  df-fun 5220  df-fv 5226  df-top 13583  df-topon 13596
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator