ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  topgele Unicode version

Theorem topgele 14703
Description: The topologies over the same set have the greatest element (the discrete topology) and the least element (the indiscrete topology). (Contributed by FL, 18-Apr-2010.) (Revised by Mario Carneiro, 16-Sep-2015.)
Assertion
Ref Expression
topgele  |-  ( J  e.  (TopOn `  X
)  ->  ( { (/)
,  X }  C_  J  /\  J  C_  ~P X ) )

Proof of Theorem topgele
StepHypRef Expression
1 topontop 14688 . . . 4  |-  ( J  e.  (TopOn `  X
)  ->  J  e.  Top )
2 0opn 14680 . . . 4  |-  ( J  e.  Top  ->  (/)  e.  J
)
31, 2syl 14 . . 3  |-  ( J  e.  (TopOn `  X
)  ->  (/)  e.  J
)
4 toponmax 14699 . . 3  |-  ( J  e.  (TopOn `  X
)  ->  X  e.  J )
5 0ex 4211 . . . 4  |-  (/)  e.  _V
6 prssg 3825 . . . 4  |-  ( (
(/)  e.  _V  /\  X  e.  J )  ->  (
( (/)  e.  J  /\  X  e.  J )  <->  {
(/) ,  X }  C_  J ) )
75, 4, 6sylancr 414 . . 3  |-  ( J  e.  (TopOn `  X
)  ->  ( ( (/) 
e.  J  /\  X  e.  J )  <->  { (/) ,  X }  C_  J ) )
83, 4, 7mpbi2and 949 . 2  |-  ( J  e.  (TopOn `  X
)  ->  { (/) ,  X }  C_  J )
9 toponuni 14689 . . . 4  |-  ( J  e.  (TopOn `  X
)  ->  X  =  U. J )
10 eqimss2 3279 . . . 4  |-  ( X  =  U. J  ->  U. J  C_  X )
119, 10syl 14 . . 3  |-  ( J  e.  (TopOn `  X
)  ->  U. J  C_  X )
12 sspwuni 4050 . . 3  |-  ( J 
C_  ~P X  <->  U. J  C_  X )
1311, 12sylibr 134 . 2  |-  ( J  e.  (TopOn `  X
)  ->  J  C_  ~P X )
148, 13jca 306 1  |-  ( J  e.  (TopOn `  X
)  ->  ( { (/)
,  X }  C_  J  /\  J  C_  ~P X ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1395    e. wcel 2200   _Vcvv 2799    C_ wss 3197   (/)c0 3491   ~Pcpw 3649   {cpr 3667   U.cuni 3888   ` cfv 5318   Topctop 14671  TopOnctopon 14684
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-nul 4210  ax-pow 4258  ax-pr 4293  ax-un 4524
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-rab 2517  df-v 2801  df-sbc 3029  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-br 4084  df-opab 4146  df-mpt 4147  df-id 4384  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-iota 5278  df-fun 5320  df-fv 5326  df-top 14672  df-topon 14685
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator