ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  topgele Unicode version

Theorem topgele 14208
Description: The topologies over the same set have the greatest element (the discrete topology) and the least element (the indiscrete topology). (Contributed by FL, 18-Apr-2010.) (Revised by Mario Carneiro, 16-Sep-2015.)
Assertion
Ref Expression
topgele  |-  ( J  e.  (TopOn `  X
)  ->  ( { (/)
,  X }  C_  J  /\  J  C_  ~P X ) )

Proof of Theorem topgele
StepHypRef Expression
1 topontop 14193 . . . 4  |-  ( J  e.  (TopOn `  X
)  ->  J  e.  Top )
2 0opn 14185 . . . 4  |-  ( J  e.  Top  ->  (/)  e.  J
)
31, 2syl 14 . . 3  |-  ( J  e.  (TopOn `  X
)  ->  (/)  e.  J
)
4 toponmax 14204 . . 3  |-  ( J  e.  (TopOn `  X
)  ->  X  e.  J )
5 0ex 4157 . . . 4  |-  (/)  e.  _V
6 prssg 3776 . . . 4  |-  ( (
(/)  e.  _V  /\  X  e.  J )  ->  (
( (/)  e.  J  /\  X  e.  J )  <->  {
(/) ,  X }  C_  J ) )
75, 4, 6sylancr 414 . . 3  |-  ( J  e.  (TopOn `  X
)  ->  ( ( (/) 
e.  J  /\  X  e.  J )  <->  { (/) ,  X }  C_  J ) )
83, 4, 7mpbi2and 945 . 2  |-  ( J  e.  (TopOn `  X
)  ->  { (/) ,  X }  C_  J )
9 toponuni 14194 . . . 4  |-  ( J  e.  (TopOn `  X
)  ->  X  =  U. J )
10 eqimss2 3235 . . . 4  |-  ( X  =  U. J  ->  U. J  C_  X )
119, 10syl 14 . . 3  |-  ( J  e.  (TopOn `  X
)  ->  U. J  C_  X )
12 sspwuni 3998 . . 3  |-  ( J 
C_  ~P X  <->  U. J  C_  X )
1311, 12sylibr 134 . 2  |-  ( J  e.  (TopOn `  X
)  ->  J  C_  ~P X )
148, 13jca 306 1  |-  ( J  e.  (TopOn `  X
)  ->  ( { (/)
,  X }  C_  J  /\  J  C_  ~P X ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1364    e. wcel 2164   _Vcvv 2760    C_ wss 3154   (/)c0 3447   ~Pcpw 3602   {cpr 3620   U.cuni 3836   ` cfv 5255   Topctop 14176  TopOnctopon 14189
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4148  ax-nul 4156  ax-pow 4204  ax-pr 4239  ax-un 4465
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-rab 2481  df-v 2762  df-sbc 2987  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3448  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-br 4031  df-opab 4092  df-mpt 4093  df-id 4325  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-iota 5216  df-fun 5257  df-fv 5263  df-top 14177  df-topon 14190
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator