| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > iseqvalcbv | Unicode version | ||
| Description: Changing the bound
variables in an expression which appears in some
|
| Ref | Expression |
|---|---|
| iseqvalcbv |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq1 5974 |
. . . . . . . . . 10
| |
| 2 | 1 | fveq2d 5603 |
. . . . . . . . 9
|
| 3 | 2 | oveq2d 5983 |
. . . . . . . 8
|
| 4 | oveq1 5974 |
. . . . . . . 8
| |
| 5 | 3, 4 | cbvmpov 6048 |
. . . . . . 7
|
| 6 | 5 | oveqi 5980 |
. . . . . 6
|
| 7 | 6 | opeq2i 3837 |
. . . . 5
|
| 8 | 7 | a1i 9 |
. . . 4
|
| 9 | 8 | mpoeq3ia 6033 |
. . 3
|
| 10 | oveq1 5974 |
. . . . 5
| |
| 11 | oveq1 5974 |
. . . . 5
| |
| 12 | 10, 11 | opeq12d 3841 |
. . . 4
|
| 13 | oveq2 5975 |
. . . . 5
| |
| 14 | 13 | opeq2d 3840 |
. . . 4
|
| 15 | 12, 14 | cbvmpov 6048 |
. . 3
|
| 16 | 9, 15 | eqtr3i 2230 |
. 2
|
| 17 | freceq1 6501 |
. 2
| |
| 18 | 16, 17 | ax-mp 5 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-14 2181 ax-ext 2189 ax-sep 4178 ax-pow 4234 ax-pr 4269 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ral 2491 df-rex 2492 df-v 2778 df-un 3178 df-in 3180 df-ss 3187 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-br 4060 df-opab 4122 df-mpt 4123 df-res 4705 df-iota 5251 df-fv 5298 df-ov 5970 df-oprab 5971 df-mpo 5972 df-recs 6414 df-frec 6500 |
| This theorem is referenced by: seq3-1 10644 seqf 10646 seq3p1 10647 seqf2 10650 seq1cd 10651 seqp1cd 10652 |
| Copyright terms: Public domain | W3C validator |