ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  oprab2co Unicode version

Theorem oprab2co 6186
Description: Composition of operator abstractions. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by David Abernethy, 23-Apr-2013.)
Hypotheses
Ref Expression
oprab2co.1  |-  ( ( x  e.  A  /\  y  e.  B )  ->  C  e.  R )
oprab2co.2  |-  ( ( x  e.  A  /\  y  e.  B )  ->  D  e.  S )
oprab2co.3  |-  F  =  ( x  e.  A ,  y  e.  B  |-> 
<. C ,  D >. )
oprab2co.4  |-  G  =  ( x  e.  A ,  y  e.  B  |->  ( C M D ) )
Assertion
Ref Expression
oprab2co  |-  ( M  Fn  ( R  X.  S )  ->  G  =  ( M  o.  F ) )
Distinct variable groups:    x, y, A   
x, B, y    x, M, y    x, R, y   
x, S, y
Allowed substitution hints:    C( x, y)    D( x, y)    F( x, y)    G( x, y)

Proof of Theorem oprab2co
StepHypRef Expression
1 oprab2co.1 . . 3  |-  ( ( x  e.  A  /\  y  e.  B )  ->  C  e.  R )
2 oprab2co.2 . . 3  |-  ( ( x  e.  A  /\  y  e.  B )  ->  D  e.  S )
3 opelxpi 4636 . . 3  |-  ( ( C  e.  R  /\  D  e.  S )  -> 
<. C ,  D >.  e.  ( R  X.  S
) )
41, 2, 3syl2anc 409 . 2  |-  ( ( x  e.  A  /\  y  e.  B )  -> 
<. C ,  D >.  e.  ( R  X.  S
) )
5 oprab2co.3 . 2  |-  F  =  ( x  e.  A ,  y  e.  B  |-> 
<. C ,  D >. )
6 oprab2co.4 . . 3  |-  G  =  ( x  e.  A ,  y  e.  B  |->  ( C M D ) )
7 df-ov 5845 . . . . 5  |-  ( C M D )  =  ( M `  <. C ,  D >. )
87a1i 9 . . . 4  |-  ( ( x  e.  A  /\  y  e.  B )  ->  ( C M D )  =  ( M `
 <. C ,  D >. ) )
98mpoeq3ia 5907 . . 3  |-  ( x  e.  A ,  y  e.  B  |->  ( C M D ) )  =  ( x  e.  A ,  y  e.  B  |->  ( M `  <. C ,  D >. ) )
106, 9eqtri 2186 . 2  |-  G  =  ( x  e.  A ,  y  e.  B  |->  ( M `  <. C ,  D >. )
)
114, 5, 10oprabco 6185 1  |-  ( M  Fn  ( R  X.  S )  ->  G  =  ( M  o.  F ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1343    e. wcel 2136   <.cop 3579    X. cxp 4602    o. ccom 4608    Fn wfn 5183   ` cfv 5188  (class class class)co 5842    e. cmpo 5844
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187  ax-un 4411
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-id 4271  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-fv 5196  df-ov 5845  df-oprab 5846  df-mpo 5847  df-1st 6108  df-2nd 6109
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator