ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dfioo2 Unicode version

Theorem dfioo2 9931
Description: Alternate definition of the set of open intervals of extended reals. (Contributed by NM, 1-Mar-2007.) (Revised by Mario Carneiro, 1-Sep-2015.)
Assertion
Ref Expression
dfioo2  |-  (,)  =  ( x  e.  RR* ,  y  e.  RR*  |->  { w  e.  RR  |  ( x  <  w  /\  w  <  y ) } )
Distinct variable group:    x, w, y

Proof of Theorem dfioo2
StepHypRef Expression
1 ioof 9928 . . 3  |-  (,) :
( RR*  X.  RR* ) --> ~P RR
2 ffn 5347 . . 3  |-  ( (,)
: ( RR*  X.  RR* )
--> ~P RR  ->  (,)  Fn  ( RR*  X.  RR* )
)
3 fnovim 5961 . . 3  |-  ( (,) 
Fn  ( RR*  X.  RR* )  ->  (,)  =  (
x  e.  RR* ,  y  e.  RR*  |->  ( x (,) y ) ) )
41, 2, 3mp2b 8 . 2  |-  (,)  =  ( x  e.  RR* ,  y  e.  RR*  |->  ( x (,) y ) )
5 iooval2 9872 . . 3  |-  ( ( x  e.  RR*  /\  y  e.  RR* )  ->  (
x (,) y )  =  { w  e.  RR  |  ( x  <  w  /\  w  <  y ) } )
65mpoeq3ia 5918 . 2  |-  ( x  e.  RR* ,  y  e. 
RR*  |->  ( x (,) y ) )  =  ( x  e.  RR* ,  y  e.  RR*  |->  { w  e.  RR  |  ( x  <  w  /\  w  <  y ) } )
74, 6eqtri 2191 1  |-  (,)  =  ( x  e.  RR* ,  y  e.  RR*  |->  { w  e.  RR  |  ( x  <  w  /\  w  <  y ) } )
Colors of variables: wff set class
Syntax hints:    /\ wa 103    = wceq 1348   {crab 2452   ~Pcpw 3566   class class class wbr 3989    X. cxp 4609    Fn wfn 5193   -->wf 5194  (class class class)co 5853    e. cmpo 5855   RRcr 7773   RR*cxr 7953    < clt 7954   (,)cioo 9845
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-cnex 7865  ax-resscn 7866  ax-pre-ltirr 7886  ax-pre-ltwlin 7887  ax-pre-lttrn 7888
This theorem depends on definitions:  df-bi 116  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-nel 2436  df-ral 2453  df-rex 2454  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-iun 3875  df-br 3990  df-opab 4051  df-mpt 4052  df-id 4278  df-po 4281  df-iso 4282  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-fv 5206  df-ov 5856  df-oprab 5857  df-mpo 5858  df-1st 6119  df-2nd 6120  df-pnf 7956  df-mnf 7957  df-xr 7958  df-ltxr 7959  df-le 7960  df-ioo 9849
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator