ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dfioo2 Unicode version

Theorem dfioo2 10178
Description: Alternate definition of the set of open intervals of extended reals. (Contributed by NM, 1-Mar-2007.) (Revised by Mario Carneiro, 1-Sep-2015.)
Assertion
Ref Expression
dfioo2  |-  (,)  =  ( x  e.  RR* ,  y  e.  RR*  |->  { w  e.  RR  |  ( x  <  w  /\  w  <  y ) } )
Distinct variable group:    x, w, y

Proof of Theorem dfioo2
StepHypRef Expression
1 ioof 10175 . . 3  |-  (,) :
( RR*  X.  RR* ) --> ~P RR
2 ffn 5473 . . 3  |-  ( (,)
: ( RR*  X.  RR* )
--> ~P RR  ->  (,)  Fn  ( RR*  X.  RR* )
)
3 fnovim 6119 . . 3  |-  ( (,) 
Fn  ( RR*  X.  RR* )  ->  (,)  =  (
x  e.  RR* ,  y  e.  RR*  |->  ( x (,) y ) ) )
41, 2, 3mp2b 8 . 2  |-  (,)  =  ( x  e.  RR* ,  y  e.  RR*  |->  ( x (,) y ) )
5 iooval2 10119 . . 3  |-  ( ( x  e.  RR*  /\  y  e.  RR* )  ->  (
x (,) y )  =  { w  e.  RR  |  ( x  <  w  /\  w  <  y ) } )
65mpoeq3ia 6075 . 2  |-  ( x  e.  RR* ,  y  e. 
RR*  |->  ( x (,) y ) )  =  ( x  e.  RR* ,  y  e.  RR*  |->  { w  e.  RR  |  ( x  <  w  /\  w  <  y ) } )
74, 6eqtri 2250 1  |-  (,)  =  ( x  e.  RR* ,  y  e.  RR*  |->  { w  e.  RR  |  ( x  <  w  /\  w  <  y ) } )
Colors of variables: wff set class
Syntax hints:    /\ wa 104    = wceq 1395   {crab 2512   ~Pcpw 3649   class class class wbr 4083    X. cxp 4717    Fn wfn 5313   -->wf 5314  (class class class)co 6007    e. cmpo 6009   RRcr 8006   RR*cxr 8188    < clt 8189   (,)cioo 10092
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-cnex 8098  ax-resscn 8099  ax-pre-ltirr 8119  ax-pre-ltwlin 8120  ax-pre-lttrn 8121
This theorem depends on definitions:  df-bi 117  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-id 4384  df-po 4387  df-iso 4388  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-fv 5326  df-ov 6010  df-oprab 6011  df-mpo 6012  df-1st 6292  df-2nd 6293  df-pnf 8191  df-mnf 8192  df-xr 8193  df-ltxr 8194  df-le 8195  df-ioo 10096
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator