ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  divcnap Unicode version

Theorem divcnap 14885
Description: Complex number division is a continuous function, when the second argument is apart from zero. (Contributed by Mario Carneiro, 12-Aug-2014.) (Revised by Jim Kingdon, 25-Oct-2023.)
Hypotheses
Ref Expression
addcncntop.j  |-  J  =  ( MetOpen `  ( abs  o. 
-  ) )
divcnap.k  |-  K  =  ( Jt  { x  e.  CC  |  x #  0 }
)
Assertion
Ref Expression
divcnap  |-  ( y  e.  CC ,  z  e.  { x  e.  CC  |  x #  0 }  |->  ( y  / 
z ) )  e.  ( ( J  tX  K )  Cn  J
)
Distinct variable groups:    x, y, z, J    x, K, y, z

Proof of Theorem divcnap
Dummy variables  a  b  u  w  q are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 breq1 4037 . . . . 5  |-  ( x  =  z  ->  (
x #  0  <->  z #  0
) )
21elrab 2920 . . . 4  |-  ( z  e.  { x  e.  CC  |  x #  0 }  <->  ( z  e.  CC  /\  z #  0 ) )
3 divrecap 8732 . . . . 5  |-  ( ( y  e.  CC  /\  z  e.  CC  /\  z #  0 )  ->  (
y  /  z )  =  ( y  x.  ( 1  /  z
) ) )
433expb 1206 . . . 4  |-  ( ( y  e.  CC  /\  ( z  e.  CC  /\  z #  0 ) )  ->  ( y  / 
z )  =  ( y  x.  ( 1  /  z ) ) )
52, 4sylan2b 287 . . 3  |-  ( ( y  e.  CC  /\  z  e.  { x  e.  CC  |  x #  0 } )  ->  (
y  /  z )  =  ( y  x.  ( 1  /  z
) ) )
65mpoeq3ia 5991 . 2  |-  ( y  e.  CC ,  z  e.  { x  e.  CC  |  x #  0 }  |->  ( y  / 
z ) )  =  ( y  e.  CC ,  z  e.  { x  e.  CC  |  x #  0 }  |->  ( y  x.  ( 1  /  z
) ) )
7 addcncntop.j . . . . . 6  |-  J  =  ( MetOpen `  ( abs  o. 
-  ) )
87cntoptopon 14852 . . . . 5  |-  J  e.  (TopOn `  CC )
98a1i 9 . . . 4  |-  ( T. 
->  J  e.  (TopOn `  CC ) )
10 divcnap.k . . . . 5  |-  K  =  ( Jt  { x  e.  CC  |  x #  0 }
)
11 ssrab2 3269 . . . . . 6  |-  { x  e.  CC  |  x #  0 }  C_  CC
12 resttopon 14491 . . . . . 6  |-  ( ( J  e.  (TopOn `  CC )  /\  { x  e.  CC  |  x #  0 }  C_  CC )  ->  ( Jt  { x  e.  CC  |  x #  0 }
)  e.  (TopOn `  { x  e.  CC  |  x #  0 }
) )
139, 11, 12sylancl 413 . . . . 5  |-  ( T. 
->  ( Jt  { x  e.  CC  |  x #  0 }
)  e.  (TopOn `  { x  e.  CC  |  x #  0 }
) )
1410, 13eqeltrid 2283 . . . 4  |-  ( T. 
->  K  e.  (TopOn `  { x  e.  CC  |  x #  0 }
) )
159, 14cnmpt1st 14608 . . . 4  |-  ( T. 
->  ( y  e.  CC ,  z  e.  { x  e.  CC  |  x #  0 }  |->  y )  e.  ( ( J  tX  K )  Cn  J
) )
169, 14cnmpt2nd 14609 . . . . 5  |-  ( T. 
->  ( y  e.  CC ,  z  e.  { x  e.  CC  |  x #  0 }  |->  z )  e.  ( ( J  tX  K )  Cn  K
) )
17 eqid 2196 . . . . . . . 8  |-  ( q  e.  { x  e.  CC  |  x #  0 }  |->  ( 1  / 
q ) )  =  ( q  e.  {
x  e.  CC  |  x #  0 }  |->  ( 1  /  q ) )
18 breq1 4037 . . . . . . . . . 10  |-  ( x  =  q  ->  (
x #  0  <->  q #  0
) )
1918elrab 2920 . . . . . . . . 9  |-  ( q  e.  { x  e.  CC  |  x #  0 }  <->  ( q  e.  CC  /\  q #  0 ) )
20 recclap 8723 . . . . . . . . 9  |-  ( ( q  e.  CC  /\  q #  0 )  ->  (
1  /  q )  e.  CC )
2119, 20sylbi 121 . . . . . . . 8  |-  ( q  e.  { x  e.  CC  |  x #  0 }  ->  ( 1  /  q )  e.  CC )
2217, 21fmpti 5717 . . . . . . 7  |-  ( q  e.  { x  e.  CC  |  x #  0 }  |->  ( 1  / 
q ) ) : { x  e.  CC  |  x #  0 } --> CC
23 breq1 4037 . . . . . . . . . . 11  |-  ( x  =  a  ->  (
x #  0  <->  a #  0
) )
2423elrab 2920 . . . . . . . . . 10  |-  ( a  e.  { x  e.  CC  |  x #  0 }  <->  ( a  e.  CC  /\  a #  0 ) )
25 eqid 2196 . . . . . . . . . . . 12  |-  (inf ( { 1 ,  ( ( abs `  a
)  x.  b ) } ,  RR ,  <  )  x.  ( ( abs `  a )  /  2 ) )  =  (inf ( { 1 ,  ( ( abs `  a )  x.  b ) } ,  RR ,  <  )  x.  ( ( abs `  a )  /  2
) )
2625reccn2ap 11495 . . . . . . . . . . 11  |-  ( ( a  e.  CC  /\  a #  0  /\  b  e.  RR+ )  ->  E. u  e.  RR+  A. w  e. 
{ x  e.  CC  |  x #  0 } 
( ( abs `  (
w  -  a ) )  <  u  -> 
( abs `  (
( 1  /  w
)  -  ( 1  /  a ) ) )  <  b ) )
27263expa 1205 . . . . . . . . . 10  |-  ( ( ( a  e.  CC  /\  a #  0 )  /\  b  e.  RR+ )  ->  E. u  e.  RR+  A. w  e.  { x  e.  CC  |  x #  0 } 
( ( abs `  (
w  -  a ) )  <  u  -> 
( abs `  (
( 1  /  w
)  -  ( 1  /  a ) ) )  <  b ) )
2824, 27sylanb 284 . . . . . . . . 9  |-  ( ( a  e.  { x  e.  CC  |  x #  0 }  /\  b  e.  RR+ )  ->  E. u  e.  RR+  A. w  e. 
{ x  e.  CC  |  x #  0 } 
( ( abs `  (
w  -  a ) )  <  u  -> 
( abs `  (
( 1  /  w
)  -  ( 1  /  a ) ) )  <  b ) )
29 ovres 6067 . . . . . . . . . . . . . . 15  |-  ( ( a  e.  { x  e.  CC  |  x #  0 }  /\  w  e. 
{ x  e.  CC  |  x #  0 }
)  ->  ( a
( ( abs  o.  -  )  |`  ( { x  e.  CC  |  x #  0 }  X.  {
x  e.  CC  |  x #  0 } ) ) w )  =  ( a ( abs  o.  -  ) w ) )
30 elrabi 2917 . . . . . . . . . . . . . . . 16  |-  ( a  e.  { x  e.  CC  |  x #  0 }  ->  a  e.  CC )
31 elrabi 2917 . . . . . . . . . . . . . . . 16  |-  ( w  e.  { x  e.  CC  |  x #  0 }  ->  w  e.  CC )
32 eqid 2196 . . . . . . . . . . . . . . . . . 18  |-  ( abs 
o.  -  )  =  ( abs  o.  -  )
3332cnmetdval 14849 . . . . . . . . . . . . . . . . 17  |-  ( ( a  e.  CC  /\  w  e.  CC )  ->  ( a ( abs 
o.  -  ) w
)  =  ( abs `  ( a  -  w
) ) )
34 abssub 11283 . . . . . . . . . . . . . . . . 17  |-  ( ( a  e.  CC  /\  w  e.  CC )  ->  ( abs `  (
a  -  w ) )  =  ( abs `  ( w  -  a
) ) )
3533, 34eqtrd 2229 . . . . . . . . . . . . . . . 16  |-  ( ( a  e.  CC  /\  w  e.  CC )  ->  ( a ( abs 
o.  -  ) w
)  =  ( abs `  ( w  -  a
) ) )
3630, 31, 35syl2an 289 . . . . . . . . . . . . . . 15  |-  ( ( a  e.  { x  e.  CC  |  x #  0 }  /\  w  e. 
{ x  e.  CC  |  x #  0 }
)  ->  ( a
( abs  o.  -  )
w )  =  ( abs `  ( w  -  a ) ) )
3729, 36eqtrd 2229 . . . . . . . . . . . . . 14  |-  ( ( a  e.  { x  e.  CC  |  x #  0 }  /\  w  e. 
{ x  e.  CC  |  x #  0 }
)  ->  ( a
( ( abs  o.  -  )  |`  ( { x  e.  CC  |  x #  0 }  X.  {
x  e.  CC  |  x #  0 } ) ) w )  =  ( abs `  ( w  -  a ) ) )
3837breq1d 4044 . . . . . . . . . . . . 13  |-  ( ( a  e.  { x  e.  CC  |  x #  0 }  /\  w  e. 
{ x  e.  CC  |  x #  0 }
)  ->  ( (
a ( ( abs 
o.  -  )  |`  ( { x  e.  CC  |  x #  0 }  X.  { x  e.  CC  |  x #  0 }
) ) w )  <  u  <->  ( abs `  ( w  -  a
) )  <  u
) )
3924simprbi 275 . . . . . . . . . . . . . . . . . 18  |-  ( a  e.  { x  e.  CC  |  x #  0 }  ->  a #  0
)
4030, 39recclapd 8825 . . . . . . . . . . . . . . . . 17  |-  ( a  e.  { x  e.  CC  |  x #  0 }  ->  ( 1  /  a )  e.  CC )
41 oveq2 5933 . . . . . . . . . . . . . . . . . 18  |-  ( q  =  a  ->  (
1  /  q )  =  ( 1  / 
a ) )
4241, 17fvmptg 5640 . . . . . . . . . . . . . . . . 17  |-  ( ( a  e.  { x  e.  CC  |  x #  0 }  /\  ( 1  /  a )  e.  CC )  ->  (
( q  e.  {
x  e.  CC  |  x #  0 }  |->  ( 1  /  q ) ) `
 a )  =  ( 1  /  a
) )
4340, 42mpdan 421 . . . . . . . . . . . . . . . 16  |-  ( a  e.  { x  e.  CC  |  x #  0 }  ->  ( (
q  e.  { x  e.  CC  |  x #  0 }  |->  ( 1  / 
q ) ) `  a )  =  ( 1  /  a ) )
44 breq1 4037 . . . . . . . . . . . . . . . . . . . 20  |-  ( x  =  w  ->  (
x #  0  <->  w #  0
) )
4544elrab 2920 . . . . . . . . . . . . . . . . . . 19  |-  ( w  e.  { x  e.  CC  |  x #  0 }  <->  ( w  e.  CC  /\  w #  0 ) )
4645simprbi 275 . . . . . . . . . . . . . . . . . 18  |-  ( w  e.  { x  e.  CC  |  x #  0 }  ->  w #  0
)
4731, 46recclapd 8825 . . . . . . . . . . . . . . . . 17  |-  ( w  e.  { x  e.  CC  |  x #  0 }  ->  ( 1  /  w )  e.  CC )
48 oveq2 5933 . . . . . . . . . . . . . . . . . 18  |-  ( q  =  w  ->  (
1  /  q )  =  ( 1  /  w ) )
4948, 17fvmptg 5640 . . . . . . . . . . . . . . . . 17  |-  ( ( w  e.  { x  e.  CC  |  x #  0 }  /\  ( 1  /  w )  e.  CC )  ->  (
( q  e.  {
x  e.  CC  |  x #  0 }  |->  ( 1  /  q ) ) `
 w )  =  ( 1  /  w
) )
5047, 49mpdan 421 . . . . . . . . . . . . . . . 16  |-  ( w  e.  { x  e.  CC  |  x #  0 }  ->  ( (
q  e.  { x  e.  CC  |  x #  0 }  |->  ( 1  / 
q ) ) `  w )  =  ( 1  /  w ) )
5143, 50oveqan12d 5944 . . . . . . . . . . . . . . 15  |-  ( ( a  e.  { x  e.  CC  |  x #  0 }  /\  w  e. 
{ x  e.  CC  |  x #  0 }
)  ->  ( (
( q  e.  {
x  e.  CC  |  x #  0 }  |->  ( 1  /  q ) ) `
 a ) ( abs  o.  -  )
( ( q  e. 
{ x  e.  CC  |  x #  0 }  |->  ( 1  /  q
) ) `  w
) )  =  ( ( 1  /  a
) ( abs  o.  -  ) ( 1  /  w ) ) )
5232cnmetdval 14849 . . . . . . . . . . . . . . . . 17  |-  ( ( ( 1  /  a
)  e.  CC  /\  ( 1  /  w
)  e.  CC )  ->  ( ( 1  /  a ) ( abs  o.  -  )
( 1  /  w
) )  =  ( abs `  ( ( 1  /  a )  -  ( 1  /  w ) ) ) )
53 abssub 11283 . . . . . . . . . . . . . . . . 17  |-  ( ( ( 1  /  a
)  e.  CC  /\  ( 1  /  w
)  e.  CC )  ->  ( abs `  (
( 1  /  a
)  -  ( 1  /  w ) ) )  =  ( abs `  ( ( 1  /  w )  -  (
1  /  a ) ) ) )
5452, 53eqtrd 2229 . . . . . . . . . . . . . . . 16  |-  ( ( ( 1  /  a
)  e.  CC  /\  ( 1  /  w
)  e.  CC )  ->  ( ( 1  /  a ) ( abs  o.  -  )
( 1  /  w
) )  =  ( abs `  ( ( 1  /  w )  -  ( 1  / 
a ) ) ) )
5540, 47, 54syl2an 289 . . . . . . . . . . . . . . 15  |-  ( ( a  e.  { x  e.  CC  |  x #  0 }  /\  w  e. 
{ x  e.  CC  |  x #  0 }
)  ->  ( (
1  /  a ) ( abs  o.  -  ) ( 1  /  w ) )  =  ( abs `  (
( 1  /  w
)  -  ( 1  /  a ) ) ) )
5651, 55eqtrd 2229 . . . . . . . . . . . . . 14  |-  ( ( a  e.  { x  e.  CC  |  x #  0 }  /\  w  e. 
{ x  e.  CC  |  x #  0 }
)  ->  ( (
( q  e.  {
x  e.  CC  |  x #  0 }  |->  ( 1  /  q ) ) `
 a ) ( abs  o.  -  )
( ( q  e. 
{ x  e.  CC  |  x #  0 }  |->  ( 1  /  q
) ) `  w
) )  =  ( abs `  ( ( 1  /  w )  -  ( 1  / 
a ) ) ) )
5756breq1d 4044 . . . . . . . . . . . . 13  |-  ( ( a  e.  { x  e.  CC  |  x #  0 }  /\  w  e. 
{ x  e.  CC  |  x #  0 }
)  ->  ( (
( ( q  e. 
{ x  e.  CC  |  x #  0 }  |->  ( 1  /  q
) ) `  a
) ( abs  o.  -  ) ( ( q  e.  { x  e.  CC  |  x #  0 }  |->  ( 1  / 
q ) ) `  w ) )  < 
b  <->  ( abs `  (
( 1  /  w
)  -  ( 1  /  a ) ) )  <  b ) )
5838, 57imbi12d 234 . . . . . . . . . . . 12  |-  ( ( a  e.  { x  e.  CC  |  x #  0 }  /\  w  e. 
{ x  e.  CC  |  x #  0 }
)  ->  ( (
( a ( ( abs  o.  -  )  |`  ( { x  e.  CC  |  x #  0 }  X.  { x  e.  CC  |  x #  0 } ) ) w )  <  u  -> 
( ( ( q  e.  { x  e.  CC  |  x #  0 }  |->  ( 1  / 
q ) ) `  a ) ( abs 
o.  -  ) (
( q  e.  {
x  e.  CC  |  x #  0 }  |->  ( 1  /  q ) ) `
 w ) )  <  b )  <->  ( ( abs `  ( w  -  a ) )  < 
u  ->  ( abs `  ( ( 1  /  w )  -  (
1  /  a ) ) )  <  b
) ) )
5958ralbidva 2493 . . . . . . . . . . 11  |-  ( a  e.  { x  e.  CC  |  x #  0 }  ->  ( A. w  e.  { x  e.  CC  |  x #  0 }  ( ( a ( ( abs  o.  -  )  |`  ( { x  e.  CC  |  x #  0 }  X.  {
x  e.  CC  |  x #  0 } ) ) w )  <  u  ->  ( ( ( q  e.  { x  e.  CC  |  x #  0 }  |->  ( 1  / 
q ) ) `  a ) ( abs 
o.  -  ) (
( q  e.  {
x  e.  CC  |  x #  0 }  |->  ( 1  /  q ) ) `
 w ) )  <  b )  <->  A. w  e.  { x  e.  CC  |  x #  0 } 
( ( abs `  (
w  -  a ) )  <  u  -> 
( abs `  (
( 1  /  w
)  -  ( 1  /  a ) ) )  <  b ) ) )
6059rexbidv 2498 . . . . . . . . . 10  |-  ( a  e.  { x  e.  CC  |  x #  0 }  ->  ( E. u  e.  RR+  A. w  e.  { x  e.  CC  |  x #  0 } 
( ( a ( ( abs  o.  -  )  |`  ( { x  e.  CC  |  x #  0 }  X.  { x  e.  CC  |  x #  0 } ) ) w )  <  u  -> 
( ( ( q  e.  { x  e.  CC  |  x #  0 }  |->  ( 1  / 
q ) ) `  a ) ( abs 
o.  -  ) (
( q  e.  {
x  e.  CC  |  x #  0 }  |->  ( 1  /  q ) ) `
 w ) )  <  b )  <->  E. u  e.  RR+  A. w  e. 
{ x  e.  CC  |  x #  0 } 
( ( abs `  (
w  -  a ) )  <  u  -> 
( abs `  (
( 1  /  w
)  -  ( 1  /  a ) ) )  <  b ) ) )
6160adantr 276 . . . . . . . . 9  |-  ( ( a  e.  { x  e.  CC  |  x #  0 }  /\  b  e.  RR+ )  ->  ( E. u  e.  RR+  A. w  e.  { x  e.  CC  |  x #  0 } 
( ( a ( ( abs  o.  -  )  |`  ( { x  e.  CC  |  x #  0 }  X.  { x  e.  CC  |  x #  0 } ) ) w )  <  u  -> 
( ( ( q  e.  { x  e.  CC  |  x #  0 }  |->  ( 1  / 
q ) ) `  a ) ( abs 
o.  -  ) (
( q  e.  {
x  e.  CC  |  x #  0 }  |->  ( 1  /  q ) ) `
 w ) )  <  b )  <->  E. u  e.  RR+  A. w  e. 
{ x  e.  CC  |  x #  0 } 
( ( abs `  (
w  -  a ) )  <  u  -> 
( abs `  (
( 1  /  w
)  -  ( 1  /  a ) ) )  <  b ) ) )
6228, 61mpbird 167 . . . . . . . 8  |-  ( ( a  e.  { x  e.  CC  |  x #  0 }  /\  b  e.  RR+ )  ->  E. u  e.  RR+  A. w  e. 
{ x  e.  CC  |  x #  0 } 
( ( a ( ( abs  o.  -  )  |`  ( { x  e.  CC  |  x #  0 }  X.  { x  e.  CC  |  x #  0 } ) ) w )  <  u  -> 
( ( ( q  e.  { x  e.  CC  |  x #  0 }  |->  ( 1  / 
q ) ) `  a ) ( abs 
o.  -  ) (
( q  e.  {
x  e.  CC  |  x #  0 }  |->  ( 1  /  q ) ) `
 w ) )  <  b ) )
6362rgen2 2583 . . . . . . 7  |-  A. a  e.  { x  e.  CC  |  x #  0 } A. b  e.  RR+  E. u  e.  RR+  A. w  e. 
{ x  e.  CC  |  x #  0 } 
( ( a ( ( abs  o.  -  )  |`  ( { x  e.  CC  |  x #  0 }  X.  { x  e.  CC  |  x #  0 } ) ) w )  <  u  -> 
( ( ( q  e.  { x  e.  CC  |  x #  0 }  |->  ( 1  / 
q ) ) `  a ) ( abs 
o.  -  ) (
( q  e.  {
x  e.  CC  |  x #  0 }  |->  ( 1  /  q ) ) `
 w ) )  <  b )
64 cnxmet 14851 . . . . . . . . 9  |-  ( abs 
o.  -  )  e.  ( *Met `  CC )
65 xmetres2 14699 . . . . . . . . 9  |-  ( ( ( abs  o.  -  )  e.  ( *Met `  CC )  /\  { x  e.  CC  |  x #  0 }  C_  CC )  ->  ( ( abs 
o.  -  )  |`  ( { x  e.  CC  |  x #  0 }  X.  { x  e.  CC  |  x #  0 }
) )  e.  ( *Met `  {
x  e.  CC  |  x #  0 } ) )
6664, 11, 65mp2an 426 . . . . . . . 8  |-  ( ( abs  o.  -  )  |`  ( { x  e.  CC  |  x #  0 }  X.  { x  e.  CC  |  x #  0 } ) )  e.  ( *Met `  { x  e.  CC  |  x #  0 }
)
67 eqid 2196 . . . . . . . . . . . 12  |-  ( ( abs  o.  -  )  |`  ( { x  e.  CC  |  x #  0 }  X.  { x  e.  CC  |  x #  0 } ) )  =  ( ( abs  o.  -  )  |`  ( { x  e.  CC  |  x #  0 }  X.  {
x  e.  CC  |  x #  0 } ) )
68 eqid 2196 . . . . . . . . . . . 12  |-  ( MetOpen `  ( ( abs  o.  -  )  |`  ( { x  e.  CC  |  x #  0 }  X.  {
x  e.  CC  |  x #  0 } ) ) )  =  ( MetOpen `  ( ( abs  o.  -  )  |`  ( { x  e.  CC  |  x #  0 }  X.  {
x  e.  CC  |  x #  0 } ) ) )
6967, 7, 68metrest 14826 . . . . . . . . . . 11  |-  ( ( ( abs  o.  -  )  e.  ( *Met `  CC )  /\  { x  e.  CC  |  x #  0 }  C_  CC )  ->  ( Jt  { x  e.  CC  |  x #  0 } )  =  (
MetOpen `  ( ( abs 
o.  -  )  |`  ( { x  e.  CC  |  x #  0 }  X.  { x  e.  CC  |  x #  0 }
) ) ) )
7064, 11, 69mp2an 426 . . . . . . . . . 10  |-  ( Jt  { x  e.  CC  |  x #  0 } )  =  ( MetOpen `  ( ( abs  o.  -  )  |`  ( { x  e.  CC  |  x #  0 }  X.  { x  e.  CC  |  x #  0 }
) ) )
7110, 70eqtri 2217 . . . . . . . . 9  |-  K  =  ( MetOpen `  ( ( abs  o.  -  )  |`  ( { x  e.  CC  |  x #  0 }  X.  { x  e.  CC  |  x #  0 }
) ) )
7271, 7metcn 14834 . . . . . . . 8  |-  ( ( ( ( abs  o.  -  )  |`  ( { x  e.  CC  |  x #  0 }  X.  {
x  e.  CC  |  x #  0 } ) )  e.  ( *Met `  { x  e.  CC  |  x #  0 }
)  /\  ( abs  o. 
-  )  e.  ( *Met `  CC ) )  ->  (
( q  e.  {
x  e.  CC  |  x #  0 }  |->  ( 1  /  q ) )  e.  ( K  Cn  J )  <->  ( (
q  e.  { x  e.  CC  |  x #  0 }  |->  ( 1  / 
q ) ) : { x  e.  CC  |  x #  0 } --> CC  /\  A. a  e. 
{ x  e.  CC  |  x #  0 } A. b  e.  RR+  E. u  e.  RR+  A. w  e. 
{ x  e.  CC  |  x #  0 } 
( ( a ( ( abs  o.  -  )  |`  ( { x  e.  CC  |  x #  0 }  X.  { x  e.  CC  |  x #  0 } ) ) w )  <  u  -> 
( ( ( q  e.  { x  e.  CC  |  x #  0 }  |->  ( 1  / 
q ) ) `  a ) ( abs 
o.  -  ) (
( q  e.  {
x  e.  CC  |  x #  0 }  |->  ( 1  /  q ) ) `
 w ) )  <  b ) ) ) )
7366, 64, 72mp2an 426 . . . . . . 7  |-  ( ( q  e.  { x  e.  CC  |  x #  0 }  |->  ( 1  / 
q ) )  e.  ( K  Cn  J
)  <->  ( ( q  e.  { x  e.  CC  |  x #  0 }  |->  ( 1  / 
q ) ) : { x  e.  CC  |  x #  0 } --> CC  /\  A. a  e. 
{ x  e.  CC  |  x #  0 } A. b  e.  RR+  E. u  e.  RR+  A. w  e. 
{ x  e.  CC  |  x #  0 } 
( ( a ( ( abs  o.  -  )  |`  ( { x  e.  CC  |  x #  0 }  X.  { x  e.  CC  |  x #  0 } ) ) w )  <  u  -> 
( ( ( q  e.  { x  e.  CC  |  x #  0 }  |->  ( 1  / 
q ) ) `  a ) ( abs 
o.  -  ) (
( q  e.  {
x  e.  CC  |  x #  0 }  |->  ( 1  /  q ) ) `
 w ) )  <  b ) ) )
7422, 63, 73mpbir2an 944 . . . . . 6  |-  ( q  e.  { x  e.  CC  |  x #  0 }  |->  ( 1  / 
q ) )  e.  ( K  Cn  J
)
7574a1i 9 . . . . 5  |-  ( T. 
->  ( q  e.  {
x  e.  CC  |  x #  0 }  |->  ( 1  /  q ) )  e.  ( K  Cn  J ) )
76 oveq2 5933 . . . . 5  |-  ( q  =  z  ->  (
1  /  q )  =  ( 1  / 
z ) )
779, 14, 16, 14, 75, 76cnmpt21 14611 . . . 4  |-  ( T. 
->  ( y  e.  CC ,  z  e.  { x  e.  CC  |  x #  0 }  |->  ( 1  / 
z ) )  e.  ( ( J  tX  K )  Cn  J
) )
787mulcncntop 14884 . . . . 5  |-  x.  e.  ( ( J  tX  J )  Cn  J
)
7978a1i 9 . . . 4  |-  ( T. 
->  x.  e.  ( ( J  tX  J )  Cn  J ) )
809, 14, 15, 77, 79cnmpt22f 14615 . . 3  |-  ( T. 
->  ( y  e.  CC ,  z  e.  { x  e.  CC  |  x #  0 }  |->  ( y  x.  ( 1  /  z
) ) )  e.  ( ( J  tX  K )  Cn  J
) )
8180mptru 1373 . 2  |-  ( y  e.  CC ,  z  e.  { x  e.  CC  |  x #  0 }  |->  ( y  x.  ( 1  /  z
) ) )  e.  ( ( J  tX  K )  Cn  J
)
826, 81eqeltri 2269 1  |-  ( y  e.  CC ,  z  e.  { x  e.  CC  |  x #  0 }  |->  ( y  / 
z ) )  e.  ( ( J  tX  K )  Cn  J
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1364   T. wtru 1365    e. wcel 2167   A.wral 2475   E.wrex 2476   {crab 2479    C_ wss 3157   {cpr 3624   class class class wbr 4034    |-> cmpt 4095    X. cxp 4662    |` cres 4666    o. ccom 4668   -->wf 5255   ` cfv 5259  (class class class)co 5925    e. cmpo 5927  infcinf 7058   CCcc 7894   RRcr 7895   0cc0 7896   1c1 7897    x. cmul 7901    < clt 8078    - cmin 8214   # cap 8625    / cdiv 8716   2c2 9058   RR+crp 9745   abscabs 11179   ↾t crest 12941   *Metcxmet 14168   MetOpencmopn 14173  TopOnctopon 14330    Cn ccn 14505    tX ctx 14572
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-nul 4160  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-iinf 4625  ax-cnex 7987  ax-resscn 7988  ax-1cn 7989  ax-1re 7990  ax-icn 7991  ax-addcl 7992  ax-addrcl 7993  ax-mulcl 7994  ax-mulrcl 7995  ax-addcom 7996  ax-mulcom 7997  ax-addass 7998  ax-mulass 7999  ax-distr 8000  ax-i2m1 8001  ax-0lt1 8002  ax-1rid 8003  ax-0id 8004  ax-rnegex 8005  ax-precex 8006  ax-cnre 8007  ax-pre-ltirr 8008  ax-pre-ltwlin 8009  ax-pre-lttrn 8010  ax-pre-apti 8011  ax-pre-ltadd 8012  ax-pre-mulgt0 8013  ax-pre-mulext 8014  ax-arch 8015  ax-caucvg 8016  ax-mulf 8019
This theorem depends on definitions:  df-bi 117  df-stab 832  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-if 3563  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-tr 4133  df-id 4329  df-po 4332  df-iso 4333  df-iord 4402  df-on 4404  df-ilim 4405  df-suc 4407  df-iom 4628  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-isom 5268  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-1st 6207  df-2nd 6208  df-recs 6372  df-frec 6458  df-map 6718  df-sup 7059  df-inf 7060  df-pnf 8080  df-mnf 8081  df-xr 8082  df-ltxr 8083  df-le 8084  df-sub 8216  df-neg 8217  df-reap 8619  df-ap 8626  df-div 8717  df-inn 9008  df-2 9066  df-3 9067  df-4 9068  df-n0 9267  df-z 9344  df-uz 9619  df-q 9711  df-rp 9746  df-xneg 9864  df-xadd 9865  df-seqfrec 10557  df-exp 10648  df-cj 11024  df-re 11025  df-im 11026  df-rsqrt 11180  df-abs 11181  df-rest 12943  df-topgen 12962  df-psmet 14175  df-xmet 14176  df-met 14177  df-bl 14178  df-mopn 14179  df-top 14318  df-topon 14331  df-bases 14363  df-cn 14508  df-cnp 14509  df-tx 14573
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator